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Correlation Energy of a Free Electron Gas
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The limits of validity of the correla, tion-energy calculations in
the regions of high density, low density, and actual metallic
electron densities are discussed. Simple physical arguments are
given which show that the high-density calculation of Gell-Mann
and Brueckner is valid for r, &1 while the low-density calculation
of Wigner is valid for r, 20. For actual metallic densities it is
shown that the contribution to the correlation energy from long-
wavelength momentum transfers (k &Pko &0.47r.&k&) may be
accurately calculated in the random phase approximation. This
contribution is calculated using the Bohm-Pines extended Hamil-
tonian, and is shown to be
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An identical result is obtained by a suitable expansion of the result
of Gell-Mann and Brueckner; the validity of the Bohm-Pines
neglect of subsidiary conditions in the calculation of the ground-
state energy is thereby explicitly established. The contribution to
the correlation energy from suSciently high momentum transfers
(k&ko) will arise only from the interaction between electrons of
antiparallel spin, and may be estimated using second-order
perturbation theory. The contribution arising from intermediate
momentum transfers (0 47r, &.k k &ko) cannot be calculated
analytically; the interpolation procedures for this domain proposed
by Pines and Hubbard are shown to be nearly identical, and their
accuracy is estimated as 15'Po; The result for the over-all
correlation energy using the interpolation procedure of Pines is

E,=(—0.115+0.031 lnr, ) ry.

I. INTRODUCTION

HE ground-state energy of a free electron gas has
now been calculated accurately in both the high-

and the low-density limit. It depends only on the inter-
electron spacing r„which is defined by (4vrr, 'as'/3)
=e ', where e is the electron density. ' The results of
such calculations may be conveniently expressed in
terms of the extent to which they represent an im-

provement over the Hartree-Fock calculation of the
system energy. Thus we may write

p2. 21 0.916
Es——

(
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where Es is the ground-state energy per electron, 2.21/r, s

+0 916/r, is .that quantity calculated in the Hartree-
Fock approximation, and E, is the correlation energy.

The behavior of the electron gas is simple in the limit
of high densities (r,«1) because here the Coulomb
interaction is a relatively small perturbation on the
motion of the electrons. Gell-Mann and Brueckner' have
shown that in this case the correlation energy may be
expressed as a series of the following type:

E.= (A lnr, +C+Dr, 1nr,jEr,+ ) ry, (1)

and have calculated the coefficients 2 and C. Results
which are equivalent to those of GB in the high-density
limit have recently been obtained by a number of
investigators. ~'
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' We adopt the notation of reference 7, unless we explicitly
indicate otherwise.

2M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957), hereafter referred to as GB.

' K. Sawada, Phys. Rev. 106, 372 ('1957); Sawada, Brueckner,
Fukuda, and Brout, Phys. Rev. 108, 507 (1957), hereafter referred
to as SB; R. Brout, Phys. Rev. 108, 515 (1957).

4 J.Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957);Proc.
Roy. Soc. (London) A243, 336 (1958).' P. Nozieres and D. Pines, Phys. Rev. 109, 1009 (1958).

The behavior of the electron gas in the low-density
limit is again simple because here the Coulomb inter-
action exerts a dominating influence on the electrons.
As Wigner' first remarked, at sufficiently low densities
the electrons may be expected to form a stable la(tice in
the sea of uniform positive charge. The potential energy
keeps the electrons apart, and the kinetic energy for
large r, (r,»10) is insuflicent to prevent the electrons
becoming localized at fixed sites. The correlation energy
may then be expanded as a power series in (1/r, ) l,

tU V W
+ + + . . ry.

) (2)

The coefficients U and t/' have been estimated by
Wigner. e

The region of actual metallic densities (1.8& r, &5.6)
is essentially an intermediate density regime. The
kinetic energy and the potential energy play roughly
comparable roles in determining the electron behavior.
There exists rto simple rigorosts series expressiort for the

correlatiorl, erIergy. In some ways the behavior of the
system resembles that of the high-density regime, in
some ways that of the low-density regime. A detailed
physical discussion of the electron behavior at metallic
densities may be found in the work of Bohm and Pines. '
Pines" has given a calculation of the correlation energy
in this regime, together with calculations of the influence
of electron interaction on the various one-electron

E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).
7 D. Bohrn and D. Pines, Phys. Rev. 85, 332 (1952), hereafter

referred to as BP II; D. Bohm and D. Pines, Phys. Rev. 92, 609
(1953),hereafter referred to as BP III. Where no specific reference
is required, we refer to the approach developed in these papers, and
in reference 8, as the BP approach.

D. Pines, Phys. Rev. 92, 625 (1953).
D. Pines, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press, Inc. , New York, 1955), Vol. 1, p. 373,
hereafter referred to as SSP.
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properties (specific heat, spin susceptibility, transport
properties, etc.). The correlation-energy calculation is
based on an approximate interpolation between the
contribution to the system energy arising from the long
wavelength part and that arising from the short wave-
length part of the Coulomb interaction, both limits
being accurately calculated,

The BP calculation of the correlation energy gives
results which are in good agreement with the interpo-
lation formula proposed by Wigner'":

E,= —0..88/(r, +7.8) ry. (3)

Recently Hubbard has proposed a somewhat different
interpolation procedure which yields results in close
agreement with those of Pines. The results of Pines,
Hubbard, or the Wigner interpolation formula, when
combined with the calculation of the remaining contri-
butions to the cohesive energy of the alkali metals, are
in satisfactory agreement with experiment for these
simple metals. ' "

In a sense, then, the question of the correlation energy
at actual metallic densities might be regarded as satis-
factorily solved. However, because the procedures
adopted by Pines and Hubbard are interpolation pro-
cedures, which do not yield exact results in either the
high-density or the low-density regimes, it seems de-
sirable to explore further the relationship between the
various approaches. In particular, one would like to
answer the following questions:

(1) What is the region of validity of the high-density
result of Gell-Mann and Brueckner? Of the low-density
result of Wigner?

(2) May one hope to obtain an accurate result for the
correlation energy at metallic densities by calculating
the next terms in either the high-density or low-density
series expressions?

(3) What is the relationship between the interpolation
procedures of Pines and Hubbard? How accurate are
they for metallic densities?

It is the aim of the present paper to discuss the
foregoing questions with a minimum of mathematical
detail. We use simple physical arguments to estimate
the region of validity of the present calculations of the
correlation energy in the high- and low-density limits.
We conclude that for r, &1, the GB result should be
accurate, while for r,&20, the Wigner result should

apply. We establish the close relationship of the inter-
polation procedures of Pines and Hubbard and estimate
the accuracy of either method as no worse than 15%
for actual metallic densities. We do not give a definitive
answer to question (2), but we give plausibility argu-
ments which lead us to conclude that such a systematic
extension does not appear profitable.

In Sec. II, we review the different methods for the
high-density limit calculation, all of which are based on

'0 E. P. Wigner, Phys. Rev. 46, 1002 (1934).
"H. Brooks, Phys. Rev. 91, 1027 (1953).

the random phase approximation (RPA) introduced by
Bohm and Pines. We identify the region of electron
density for which the breakdown of the RPA may be
expected to alter appreciably the calculation of the
correlation energy, and discuss the role played by the
exchange diagrams which lie outside the RPA. The
RPA works best for the contribution to the correlation
energy coming from the long-range part of the Coulomb
interaction. Therefore, in order to make a quantitative
study of the breakdown of the RPA it is necessary to
study this long-range part of the correlation energy in
some detail. We carry out such an investigation in Sec.
IV, and summarize there the detailed results of our
studies, which are based on the BP collective description.

We find that the contribution to the correlation energy
from a given momentum transfer k of the Coulomb
interaction may be expressed as a power series in k in
the form obtained by BP. We first calculate the coeffi-
cients of the leading terms of this expansion within the
RPA. In an appendix we show that, contrary to the
recent opinion expressed by Sawada et at. , the GB result
may likewise be expressed as a power series in k. The
resulting expression is identical with that obtained using
the BP method. This result establishes the validity of
the BP scheme as a method for calculating the individual
particle contribution to the correlation energy, and
represents an explicit justification of their use of an
extended Hamiltonian for this problem. We then pro-
ceed to estimate the alteration of this power series ex-
pansion arising from the breakdown of the RPA by
calculating two leading correction terms which arise
outside the RPA. We find these terms are small, so that
it is not unlikely that the RPA calculation of the long-
range part of the correlation energy is valid even in the
region of metallic densities.

In Sec. III we discuss the region of validity of the low-

density correlation energy calculation of Wigner. In
Sec. V we consider the relationship between the inter-
polation schemes of Pines and Hubbard, and the accu-
racy these possess for metallic densities.

We do not here consider the applicability of any of
the above approaches to the problem of electron inter-
action in actual solids. We refer the interested reader to
a series of recent papers which deal with the generaliza-
tion of the BP collective approach to electrons in solids. "
A similar generalization may be carried out in the high-
density regime, as indicated in reference 5.

II. HIGH-DENSITY ELECTRON GAS

The Hamiltonian for the free electron gas may be
written as

(4)

where p& is the density Quctuation of momentum k

"P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958);109, 762
(1958); 109, 1062 (1958), hereafter referred to as NP I, NP II,
NP III.
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defined by

p = ~dx p(x)e
—'" =P, e "".

within the RPA, is

A =0.0622, C= —0.142 (9)

The prime in the summation in (4) indicates that we
leave out the Fourier component with momentum zero;
this part of the electron interaction is cancelled by the
uniform background of positive charge. The prime will

be understood in all similar sums over k which follow.
The total system interaction energy in the ground

state is defined by

27/'8

~ -~(~') =2 f(+0*(~)I» p& I+o(~))—~}, (6)

where @o(e) is the ground-state wave function for the
interacting electron system. One may obtain the ground-
state energy, Eg, from (6) by regarding the charge as a
vari. able parameter and making use of the relation,
valid for any normalized 4o(e),"

r (")' d(g')2
+G 5++P+I, ~ &[(~ ) 3 (~)

(e')'

where Ez is the energy of an electron at the top of the
Fermi distribution. The correlation energy is then given

by
(Eg 2.21 0.916)

+ ,, )
provided Eg is expressed in rydbergs. The form of
Eqs. (6) and (7) shows that, in principle, one can com-
pute the contribution to the system energy from each
interaction momentum, k, separately.

The correlation energy in the high-density limit may
now be obtained by a number of diRerent methods. We
review these briefly here. The first accurate calculation
was that of Gell-Mann and Brueckner (GB)' who used
a method deriving from an earlier calculation of Macke. "
From an examination of the perturbation theory ex-
pansion they show that the energy may be expanded as
a power series of the form (1) in the high-density limit.
The basic GB procedure involves the summation, under
the integral sign, of the most divergent terms of the
perturbation theory expansion of the energy. The sum-
mation was carried out with the aid of techniques similar
to those used by Feynman in quantum electrodynamics.
In lowest order, this procedure is equivalent to making
the random phase approximation. (RPA) of Bohm and
Pines for all interaction momenta. In the RPA the
contribution to the system energy from each interaction
momentum k depends only on the eRect of the kth
component of the interaction on Vp(8), and may be
computed independently of all the other interaction
momenta.

The result obtained by GB, on neglecting contribu-
tions to the coefficients, D, E, etc in (1) wh. ich arise

'3 See, for instance, K. Sawada, Phys. Rev. 106, 372 (1957).
'4 W. Macke, Z. Naturforsch. Sa, 192 (1950).

for the leading coefficients of the correlation-energy ex-
pansion, (1).The result for A is exact. There is a further
contribution to C from the exchange part of the second-
order interaction energy for electrons of parallel spin

C= —0.096 ry. (12)

The actual procedure which Gell-Mann and Brueckner
followed was somewhat open to question, in that the
series which they sum is convergent only for large mo-
mentum transfers [actually (k/ko) )0.814r,l]. They as-
sumed that the result thereby obtained could be
analytically continued into the region of low momentum
transfer. This procedure is difficult to justify directly.
However, Sawada et aL' (SB) have obtained the result
(9) by a diferent method. They make use of the fact
that the RPA, as emphasized by BP, is equivalent to
linearizing the equations of motion of the density
fluctuations. They then find the normal modes of the
electron gas (the q~ of BP II and BP III) and use field-
theoretic techniques to calculate the system energy.
Their calculation, like that of BP, includes an explicit
plasmon contribution to the energy. The SB form of the
correlation energy [from which (9) may be calculated]
diRers from that of GB; the equivalence of the two
expressions is established by SB.

Hubbard has developed a method for the electron gas
which involves the regrouping of the perturbation series
expansion into a summation over certain polarization
diagrams. Kith the aid of a procedure analogous to that
used by Dyson for summing the vacuum polarization
terms in quantum electrodynamics, Hubbard obtains a
set of coupled integral equations from which the energy
of the system may be calculated. Hubbard's first ap-
proximation, that of keeping only the simplest set of
polarization diagrams, is equivalent to making the
RPA, and yields the correct high-density result. ' This
same high-density result may also be obtained by a
slight modification of the basic BP technique, in which
the stopping power is calculated using the minority
carrier technique of NP II, and use is made of a simple

J dkJI dpJ dQ

jv ~(&) —+ ry. (10)
16s' k'(k+p+q)'k (p+q+ k)

In (10), all momenta are measured in units of ko, the
wave-vector of an electron at the top of the Fermi
distribution. The limits of integration are p(ko, q(ko,
and

I p+kl )ko,
I
q+k I

)ko, GB report a numerical
integration of E&('~ by the Monte-Carlo technique, which
yields the result

Z&&"= (0.046&0.02) ry.

Their final result for C is then
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relationship between the stopping power and the
ground-state energy of the system. '

A derivation of the high-density result which does not
involve the use of field-theoretic techniques may be
given along the following lines. We have recently shown
(details will be given elsewhere)" that the exact inter-
action energy in the ground state is given by

E;„g=—Im dQ"
p s(&,Q)

(13)

The use of the RPA in obtaining the dielectric constant
is discussed in some detail in NP II, where it is shown
that it corresponds to neglecting local Geld corrections.
With the substitution (14), the result (13) is in the form
given by Hubbard.

How far may the high-density result (9) and (12) be
extrapolated toward the region of actual metallic densi-
ties? The validity of the result depends on the appli-
cability of the RPA. Physically, as is discussed in some
detail in BP, it is clear that the RPA can succeed only
when the wavelengths of interest are long compared to
the inter-particle spacing. In the high-density limit, the
dominant contributions to the energy come from wave-
vectors less than or of the order of magnitude of

k.= (0.814r,l)kp, (15)

where ko is the wave-vector of an electron at the top of
the Fermi distribution. This result follows by inspection
of either the expression (14) or the direct perturbation
series expansion. It corresponds to the fact that the
correlations induced by the Coulomb interaction act
over a characteristic screening length, X., here k, '.
Each electron may thus be regarded as surrounded by a
correlation hole, which corresponds to the effective
range over which electron interaction takes place, that
is, the screening length. The gain in energy from this
screening process is the correlation energy. The screening
length corresponding to (15) is simply the Fermi-
Thomas screening length, a not unsurprising result in
view of the fact that we here deal with long wavelengths
and high kinetic energies.

's P. Nozieres and D. Pines (to be published). Equation (13) has
been independently derived by J. Hubbard (private communi-
cation).

where e(k,Q) is the exact dielectric constant at wave-
vector k and frequency 0 for the free electron gas. The
exact ground-state energy may then be obtained from
(7). The correct high-density result for the correlation
energy then follows if we substitute for s(k,Q) in (13) its
value calculated in the random phase approximation,

See' L(k p/m)+ (O'A/m) J.(A,Q) =1+
Ak' p (~o t (k y/m)+ (hk'/2m))' —Q'

~X+I ( )A.o

iz r (k p Ak'q+~Q
( +

~

. (14)
2 i m 2m)

The breakdown of the RPA arises from the exchange
diagrams in the perturbation series expansion of the
system energies. In order for this approximation to be
satisfactory, these exchange diagrams should not be
important for k k, . Now exchange eGects occur only
for electrons of parallel spin, over a range ), ,h, equal to
the diameter of the exchange hole. Practically, ), ,h is
of the order of the interparticle spacing"

) .„,g~(0.5kp) ' r, . (16)

In the high-density limit, with the estimates (15) and
(16), we find that (X,„,s/X, ) ~ r,,l, so that this limit is
characterized by an exchange length which is small
compared to the screening length. Physically this result
means that the most effective interaction present is that
brought about by the Pauli principle between electrons
of parallel spin, a result which is equivalent to saying
that the exchange energy is large compared to the
correlation energy in the high-density limit. It is this
smallness of the exchange length which also makes
possible the neglect of exchange diagrams, since the
dominant contribution to the higher order terms in the
perturbation series expansion of the energy come from
momentum transfers for which k is small compared
« ~exch

We are led to the following picture of the high-density
correlation energy results. For r,&(1., the RPA is cer-
tainly valid; the dominant contribution to the correla-
tion energy is the A lnr, . term which is calculated exactly
within the RPA. As r, increases, exchange diagrams
become of importance, being certainly important for
values of r, for which there are contributions to the
energy from momentum transfers comparable to X, ,h.
This will be the case for r, &1. In this region, however,
there is still the possibility of carrying out a tolerably
accurate calculation of the correlation energy by in-
cluding the simplest set of exchange terms, those which
arise in second-order perturbation series, and yield the
Ep~'& of Eq. (10).These exchange terms act to reduce the
random phase value of C to some —', of its value, and
therefore represent a not inappreciable correction to the
correlation energy.

As we further increase r„ the higher order exchange
terms become important. One might try to calculate the
exact contribution made by processes involving one
more exchange, which GB have shown gives rise to the
r, and r, 1nr, terms in (1), two more exchange terms,
etc. In fact such a procedure appears hopeless for actual
metallic densities, for the GB series shows little sign of
convergence there. It may easily be seen that for
momentum transfers which are large compared to),„,h ',
that is k&0.5ko, exchange terms of all orders in a
perturbation series expansion will play an important
role. Fortunately, in this limit that role tends to be
simple: the exchange diagrams roughly cancel one-half
the contribution to the energy from the direct diagrams.
"See F. Seitz, The Modern Theory of Solids (McGraw-Hill Book

Company, Inc. , New York, 1940), pp. 241—242.
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Hence, in a given order, there remains approximately
only half the direct interaction, which corresponds then
to an interaction between electrons of antiparallel spin
only.

Physically this result is a consequence of the fact that
the Pauli principle renders it unlikely that electrons of
parallel spin approach closely to one another; therefore
they cannot further interact through a short-range
interaction which gives rise to high momentum transfers.
The electrons of antiparallel spin are under no such
inhibition of course, and thus the major inhuence of the
high momentum transfer part of the interaction is on
electrons of antiparallel spin. We return to this question
in a later section.

satisfies the relation'~'8:

Z. ~4'(p) =~.',
where or„ is the plasma frequency,

te„= (4s ee'/m) '.
If one takes an Einstein model for the oscillations, as did
Wigner, one finds one longitudinal and two transverse
oscillations at ce„/V3 for each value of k. The constant V
would then be 3. The alternative extreme, also con-
sistent with the sum rule (18), would be to assume only
longitudinal phonons (plasmons) with a constant fre-
quency or„. In the latter case one Ands V=1.73. We
therefore have

III. LOW-DENSITY ELECTRON SOLID
1.'73 ry& V&3 ry. (20)

The first term represents the difference between the
potential energy of the electrons on fixed lattice sites
and the exchange energy. The second arises from the
zero-point oscillations of the electrons about their equi-
librium ppsitions. The third comes from higher order
terms in the expansion of the electronic vibrations about
their equilibrium positions.

The constant U may be calculated by carrying out an
Kwald sum for the assumed lattice structure. If one is
not concerned with the actual lattice structure, one may
calculate U by making the Wigner-Seitz approximation
of replacing the actual unit cell by a sphere. A simple
electrostatic calculation then yields'

U = —0.088 ry. (17)

A precise determination of the constant U requires
consideration of the spectrum of the oscillations of the
electrons, a spectrum which depends upon the particular
form of the lattice one assumes. "We may, however,
place upper and lower bounds on V in the following way.
The sum of the squares of the phonon frequencies

'7An investigation of the phonon modes for simple lattice
structures has been carried out by W. Kohn and T. Kjeldaas
(private communication).

The electron gas in the low-density limit represents
an extreme example of the breakdown of the RPA. The
electrons will be found in a periodic array in the sea of
positive charge. Hence a typical term which in the high-
density limit may be assumed small compared to e be-
cause of the RPA,

pt ——Q;e '" *' (k/0)

will assume the value e whenever k is equal to the
reciprocal lattice vector K. As another indication of the
quite different physical behavior in the low-density
limit, the series expansion for the correlation energy
assumes the form, (2),

(U V W
+ + +.

I
ry.

i

The constant 8' has not yet been evaluated.
For what values of r, may we expect the energy to be

well represented by a power series expansion of the form
(2) P As we start from the low-density side, and reduce
r„we may expect to reach a value of r, for which the
electronic solid will "melt, " in that the electrons will no
longer be bound in their equilibrium positions. This
melting as a result of increasing pressure could take
place at absolute zero; it is therefore not clear whether
the phase transition would in fact be a sharp one. We
may estimate the density at which it occurs in the
following way.

In ordinary solids melting may be regarded as arising
from the increase with temperature of the vibrational
amplitudes of the atoms oscillating about their equi-
librium positions. This is the underlying physical basis
of the notably successful Lindemann melting-point
formula. "The Lindemann formula may be interpreted
to state that any solid will melt when the mean vibra-
tional amplitude (8R )A, & reaches a certain critical frac-
tion of the interatomic spacing Ro,'

((MP),„'/Re) =8. (21)

and we expect that below r, 20 the electronic solid will

not be stable.
Of course, even after the electronic solid has been

transformed to an electronic liquid, there may still be a
' D. Pines, lecture notes in Solid State Physics, Princeton

University, 1957 (unpublished).
"N. F. Mott and H. Jones, The Theory of Metals and A/loys

(Clarendon Press, Oxford, 1936).
'0 See reference 18 for a further discussion of this interpretation,

together with a derivation of (21).

The constant 8 varies somewhat from one solid to
another but is of the order of ~ for most simple lattice
types. For our electronic solid at T=O, (8R')A„ is de-
termined solely by the zero-point vibrations of the
electrons. We underestimate their e%cacy if we assume
only longitudinal phonons at a frequency or, . We then
have

(8R2)A, '1 ( A ) 1 1 ( 1

Re ~ 2@m~) r, (12r,)
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considerable range of r, for which the expansion (2) is
approximately valid for the correlation energy. Some
indication that this may be the case may be found in an
approximate calculation by one of us, ' in which the BP
approach was applied to the low-density electron gas. In
general, however, we tend to believe that the low-

density limit is not a particularly illuminating guide to
the behavior of electrons at metallic densities.

IV. CONTRIBUTIONS TO THE CORRELATION
ENERGY FROM DIFFERENT REGIONS

OF MOMENTUM TRANSFER

Thus far we have concentrated on the r, behavior of
the correlation energy in various limiting cases. We
have seen on the basis of our qualitative discussion in
Sec. II that the concept of the contribution to the
correlation energy arising from a given set of momentum
transfers is particularly useful in assessing the accuracy
of a given method for computing the correlation energy.
We now study this aspect of the problem in some detail.
As we have remarked, it is in principle possible to
evaluate separately the contribution, E.(k), to the
correlation energy from each interaction momentum k

of the Coulomb interaction energy. We shall 6nd it
convenient to express our results in terms of the long-
range correlation energy

E.'(p) =Zk &eko E(k), (22a)

and the short-range correlation energy

E."(p)=Ek &ek. E(k) (22b)

We begin our study with a consideration of the long-
range correlation energy. Since the RPA breaks down
as one goes to larger values of k, it should be possible to
study the onset of the breakdown by considering the
way in which exchange diagrams affect the long-range
correlation energy. Within the RPA, as one of us has
shown, ' the long-range correlation energy may be ex-
pressed as a simple series expansion in P. The following
terms were explicitly calculated:

p2 pR p4 p4

E,"(P)=a +c +d +d—'——
~8 ~8 ~8 ~8

We shall mak. e use of the collective description of
Bohm and Pines, which is well-suited to the present
investigation. Bohm and Pines did not work directly
with the Hamiltonian, (4). Instead they developed a
method designed to take advantage of the fact that at
long wavelengths the electron interactions give rise to
organized oscillations of the electron system as a whole,
the plasma oscillation. s. The plasmons (the quantized
modes of plasma oscillation) are the dominant low
momentum elementary excitations of the electron gas;
they possess a minimum frequency which is the classical
frequency of plasma oscillation, ~„. BP describe the
plasmons explicitly in terms of a suitable set of Geld
coordinates. This is done by introducing a Hamiltonian
which is equivalent to (4) and which corresponds to a
collection of plasmons of wave-vector less than some
pko interacting with the electron system. In this
Hamiltonian the density fluctuations with k(Pko no
longer appear; their effect resides entirely in the
plasmon coordinates. The contribution to the system
energy coming from the plasmons and their interaction
with the electrons is then evaluated within certain well-
defined approximations described below.

The equivalent Hamiltonian is given by

p' m k*~k+(u„'Qk*Qk 2n.me'
H=Q + Q

2m k &pko 2 k2

+H «+&+H.„(25)
where ~k and Qk are the momentum and coordinate of a
plasmon of wave-vector k."In (25)

(kre2) 1(k y, Ak2~'+ iQ,.-"*', (26.)
ik&ek«( , k ) ( rr«2rr«)

and describes a linear coupling between the plasmons
and the electrons;

2me2(k 1)'
U= Q Q exp[i(k —1) x;], (26b)

j, k (pkp k~Pm
l &pko
k&l

p' p' p'
+e +f' +g' ry—. (23—)—

rl 2' 8

and describes a nonlinear coupling between plasmons
and electrons;

The effective limiting value of p is proportional to r, ',
so that the unprimed terms contribute to the constant
C in the GB expansion, (1), while the primed terms
contribute to K In going beyond the RPA we shall
consider two of the lowest order (in p) contributions of
the exchange diagrams: the alteration of d' and a new
term

e'p'ir, 1 (24)

so introduced into E."(P).A comparison of d and d', e

and e', then enables us to estimate the values of r, for
which E,"(P) may be reliably calculated within the RPA.

H„= P exp[ik (x,—x,)j,
k )pko k

(26c)

and describes the short-range part of the Coulomb
interaction,

Within the RPA, the long-range correlation energy is
obtained by solving the reduced Hamiltonian given by
the ffrst three terms of (25). The effect of U and H„on
the low momentum transfer part of the Hamiltonian

~' For a detailed discussion of this equivalence, and of the role
played by the BP subsidiary conditions (which we here omit) we
refer the interested readcg tq Qqb~, Huang, and Pines, Phys. Rev.
107, 71 (1957).
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gives rise to corrections to the RPA. There exists a
simple series expansion (23) for E."(P) because the
reduced Hamiltonian has a simple structure for long
wavelengths. The coupling between free electrons and
free plasmons induced by H;„& is weak, and may be
treated by means of a systematic perturbation series
expansion. The coupling constant which measures the
strength of the interaction between a plasmon of mo-
mentum Ak and an electron of momentum y is"

(k y+-2'kplri) 2

g"(p) =

where

L(k y)'+ i~hk4j, (27)
4nr, k04

n = (4/92r) &.

The expansion (23) is a simple expansion in powers of
g&2(p), suitably averaged over electron momentum y.

The leading terms, which are of zeroth order in gI,', are
obtained by neglecting H;„& entirely. The ground-state
energy is then given by the difference between the zero-
point vibrational energy of the plasmons and the self-

energy of the charge distribution they have replaced,

f'Ace„2prlVe2 )
i;&tii.o ( 2 k )

(28)

To get the correlation energy, subtract from (28) the
exchange energy associated with the interaction mo-
menta k(Pkp, ' (28) then becomes

t'Aoi „22re2
(Pi*Pi)" ~,

~&»& 2 k'
(29)

The next terms in (23) are of order g22. They may be
obtained directly by transforming from (25) to a
Hamiltonian in which there is no longer any coupling
between the electrons and the plasmons to this order.
The canonical transformation required is given in
SP III; the new Hamiltonian is

p"
H=Z + Z

i 2m k&pkp

Pi*Pi,+re'Q2*Qg, 22rne'

k'

where the second term is now the sum of the exchange
and self-energies of the charge distribution which has
been described by the plasmons. From (29), we find

3P2 &3P2 ( 3 qP4-
+——+f f

—ry,
2m.nr, 2 r;* &96irn) r,'

or
O' O' P'i

E "=
i

—0.458—+0.866—+0.019—
i ry. (30)

r,)

de6ned through the dispersion relation

&e'
7

m e &»~ (' k y) ' iii2k4

m) 4m .

(32)

which reads, to order gl, ',

~k yq2 Apk4-
rp =pp~+ P 3~ (+

p &io

Ernie~

~ 4mpoi~2
(33)

The electrons interact through a weak long-range
interaction

H rp
$J

k (Pkp

k (y,——2,hk)k. (y, +2'hk)

2k'me

&&expJ ik (x,—x;)]. (34)

The results (33) and (34) confirm the identification of
g~' as the coupling constant. The relative shift in
plasmon frequency is of order gI,', .H, ~ represents an
interaction between electrons which is reduced in
effectiveness by one order of g&' from the original
Coulomb interaction.

The terms d, e', f', and g' in the series expansion (23)
arise from the interaction H,„and from the correction
to the plasmon zero-point energy, k(oi —pp~)/2. The
latter yields

e=0.70 ry; g'=0.21 ry. (35)

The contribution made by H, ~ to the correlation energy
was estimated in SSP by calculating the expectation
value, (H„)A„ that is, the exchange energy associated
with H, ~. One finds then

d= — =0.517 ry; f'=0.058 ry.
64'

(36)

There are, however, contributions of order P'/r 2 and
pp/r 2 arising from all higher-order terms in a perturba-
tion series expansion of the energy associated with H,„.
The contribution these make to d is simply calculable by
means of the GB summation technique. We consider
only the correction to d; the calculation is given in
Appendix I. The result, combined with (36), yields for d
the value

d=0.98 ry. (37)

We see that the series expansion (23) contains two
kinds of terms. The erst, corresponding to odd powers
of P, and involving inverse powers of r.'*, arise from the
zero-point energy of the plasmons. The plasmon fre-
quency co may in general be expanded as

+H,n+H„. (31)

The plasmon frequency has been modified to or, aed is

k2 (E2) 2

~=~„+—E,+k'~ —
( P (38)

'~ The coupling constant introduced in BP III and SSP is simply
the average of gr' over plaemon and electron momenta, g'—p'/2r, . The p' term arises from or» the pp& pr, etc. terms arise
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from the k dependence of co. The second class of terms,
those even in p and involving inverse powers of r„arise
from the interaction between the individual particles.
The p' term comes from the long-range part of the
exchange energy, as does part of the p4/r, term; there
are contributions of order P4/r s+Ps/r s from H,~; there
will be a P'/r s term when one considers the screened
particle interaction to one higher order in gI, , etc.

The power series expansion, (23), may also be ob-
tained from the GB and Hubbard expressions for the
correlation energy. The derivation of the coeS.cients
through P' within the RPA (and of the P'/r, ' term)
using the GB method may be found in Appendix I,
where the odd and even terms in p are also seen to
possess a different origin. The coe%cient d obtained by
the GB method is shown there to be identical with that
calculated using the BP collective description. There
has been little doubt as to the validity of the BP
approach for plasmons; this identity verifies the validity
of that approach for the interaction between individual
particles, and the contribution arising thereby to the
correlation energy: we thus obtain an explicit justifica-
tion within the RPA of the BP neglect of subsidiary
conditions in the calculation of the ground-state energy.

What is the radius of convergence of the series ex-
pansion (23)? An upper limit may be obtained by
setting the coupling constant for the most strongly
coupled plasmon equal to unity. If we neglect the k4

term in (27), a proper procedure at both high and metal-
lic densities, we then find

ry,
64ir4 nr, [k (k+y+q)](k+y+q)'k'

(40)

where the regions of integration for p and q are subject
to the usual limits imposed by the Pauli principle, as for
Eq. (10), and that for k is given by k (P."On dropping
terms which contribute to higher order than P', we have

d'k d'p t d'q(k y)(k. q)

proximate the total correlation energy well, since the
latter contains important contributions arising from
momentum transfers of the order of the Fermi-Thomas
wave-vector, 0.81.4r, &.

We now consider the corrections to (23) arising from
exchange diagrams. In the collective approach these
arise from two kinds of terms; those involving U, which
correspond to the coupling between diferent long-
wavelength density fluctuations, and those involving
the coupling between H;„~ and H., which is a coupling
between the low and high momentum transfer part of
the Coulomb interaction. The latter appear at a lower
order in p, and we calculate them first.

The lowest order in P influence of exchange diagrams
on the individual particle contribution to the correlation
energy is of order P'/r, . We may estimate this term by
using the Hamiltonian (31);there will be a contribution
arising from the second-order exchange diagram, in-
volving H„once and H„once. This is

"d'k d-'p "d'q(k y)(k q)
9 1 a J

Pmax = 1 j Pmxx=0 47rs' (39) 6'' o,r,
ry, (41)

k'k (y+q) (y+q)'
The choice (39) represents the wave-vector beyond
which it is certainly not proper to regard the plasmon as
an elementary excitation of the system. It likewise
indicates the maximum wave-vector for which it is
useful to use the BP approach, since the latter has as its
basis the simplicity introduced in the problem by
working explicitly with the plasmons in the region of
wavelengths for which they are a well-defined elemen-
tary excitation. This cutoff for the plasmons essentially
agrees with that proposed by SB and by Ferrell, "that
the cutoff occurs for that value of k for which the
plasmon spectrum merges with the individual electron
continuum. '4 If one seeks to represent the long-range
correlation energy accurately by the first few terms of
the series (23), it may well be advisable to choose a
somewhat smaller value of P. In any event, it is clear
from these considerations that at high densities the
long-range part of the correlation energy will not ap-

~3 R. Ferrell, Phys. Rev. 107, 450 (1957).
24 In fact, we would get just their criterion if we had defined

gp cllz(p (kp) /clap cors0 (kp) being the free-electron excitation fre-
quency, instead of our choice, g&' ——co„02(p,k)/co„'. We believe the
latter choice is better suited to the determination of the radius of
convergence of the power series expansion of E,"(P), and also
represents. a realistic choice for the maximum plasmon wave-
vector.

which may be estimated rather well by"

~d'k d'p d'q(k y) (k.q)
9 1 ~

64m' nr,

We thus find

2k'k (y+q)
ly.

9 P4 p4
hd'= {2ln2 —1)=0.0136—ry.

16(hr nr, rs
(42)

where the limits are the same as in (40) and the nu-

~' In the remainder of this section we measure momenta in units
of kp.I A similar estimate for the low momentum part of E&&~) may
be shown to be accurate to ~5%.

The exchange terms (40) and (42) represent a "screened"
version of the long-range part of E~'2). The latter is
given by

f"dk "dp d,J J
Eb(') = —0.015P' ry, (43)

16rr' k'(k+y+q)'k. (k+y+q)
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pj v3 pj pj—0 O&8—ry
r, : 96 r, : r, '

(43)

U thus 6rst gives rise to a correction to the plasmon
frequency of order k4; its importance may be assessed by
comparing (39) with the contribution from the two k'

terms which arise within the random phase approxi-
mation"

pj pj ( pj pj
g yg —=

(
0.21—0.084

~
ry.

r, 'i' r, * & r, ' r, i')
(46)

We may make the following remarks on the basis of
our investigation of the role of the exchange diagrams:

(1) There are no corrections to the P' and P' terms of
the series expansion (23). Hence for suKciently long
wavelengths, the RPA is valid for ajjy dejjsity in the
calculation of the long-range correlation energy.

(2) The p4 and p' terms in the expansion of the long-
range correlation energy may be written, approximately,
as

( 0.98 0.033
P'] + —— + ) (47a)

P' t 0.70 0.039
+

)r, '& r,'
(47b)

The terms in parentheses of order 1/r. represent the
contribution from exchange diagrams involving H„
once as well as the P'/r, term from (30). They are
negligible in the high-density limit, as they should be.
The corrections are numerically small for actual metallic

2~ We should like to thank Professor M. Cell-Mann for making
this result available to us.

"We have corrected the value given in BP III by a factor of 2,
and estimated the reduction in the sum over states due to the
Pauli principle by the approximate value ts.

merical result has been obtained from the Monte-Carlo
calculations carried out for Gell-Mann and Brueckner. 27

In (40) we have taken into account the screening of the
long-range interactions between the electrons, which
reduces the exchange contribution (43) by a factor of
order gj,'.

The lowest order exchange correction to the plasmon
frequency is of order k', and hence contributes to the p'
coefficient in the long-range correlation energy. It ap-
pears when we take into account the cross-terms be-
tween H;„~ and H., which arise, for instance, when we
decouple the electrons from the plasmons to order gI,

' by
means of a canonical transformation. We estimate one
such term, which involves only one power of H„, in
Appendix II. We find that the e' of Eq. (24) is given
approximately by

e'= 0.039 ry. (44)

The contribution to the correlation energy from
V is simply estimated using second-order perturbation
theory, and is approximately"

densities. We do not at present know whether the higher
order terms in the series (in p) display a similar behavior.

It is clear that where E&,' is accurately calculated by
keeping terms only through P' or P', say, the use of the
RPA result for these terms should provide a quite
adequate approximation.

(3) On the basis of the structure of the exchange
terms involving one power of FI„in (47), it is tempting
to conjecture that the result of taking into account all
RPA corrections would be to yield an expression P'
which is

(s t
p'

~

—+—+u 1nr, +ji+jor, 1nr,+
&rP r, )

Thus the coefficients of P', P'/r, ', etc., themselves may
possess a power series expansion in r, analogous to that
for the electron energy in the high-density limit. We
have not verified this conjecture in detail. If it is true,
it is clear already in (47) that the coefficients of that
expansion will not be the same as in the system energy;
hence it might be possible to use the P4, P', etc. , contribu-
tions to the correlation energy with some confidence,
even though the series expansion (2) does not apply.
However, the question is by no means settled, and
merely points up the diKculty of drawing definitive
conclusions from our calculation of the erst set of ex-
change corrections.

We conclude this section by considering E"(P) briefly.
We have given physical arguments in Sec. II that for a
sufficiently large p this part of the correlation energy
arises almost entirely from the interaction between
electrons of antiparallel spin. We may obtain an idea of
how well this hypothesis is born out by studying the
contribution to E (P) arising from electrons of parallel
spin, as calculated in second-order perturbation theory.
This is

dk] dp~ dq

g~)(~) =
16jr' k (k+p+q)

1
X — ry. (48)

k4 k'(k+p+q)'

The momenta here are measured in units of ko and the
limits of integration are as in (10); the first term in the
parenthesis is the direct contribution, the second is the
exchange contribution. For large momentum transfers,
(k) 1), the regions of p and q which contribute to E»&@

become small compared to k, and the exchange contribu-
tion tends to cancel the direct term. The integration
(48) may be carried out explicitly for k)P; one finds,
with the aid of (43) and Eq. (6.22) of SSP,

Eii"' = (+0.021+0.062 lnP —0.021P') ry. (49)

The result (49) is valid for P&4, the limitation being
imposed by the accuracy of (43); for larger values of P
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it is an underestimate. The values of Eii "~ (P) calculated
from (49) tend to support our physical argument con-
cerning the short-range correlation energy associated
with electrons of parallel spin.

We have been discussing the breakdown of the RPA
for E (p) due to the coupling between different short
wavelength momentum transfers. We have also con-
sidered the breakdown of the RPA for E,"(P) due to the
contributions arising from H„. We may mention that
there will also be contributions to E,"(P) arising from
the long-wavelength momentum transfers. We do not
consider these corrections here because E (p) is itself
so imperfectly known once one leaves the high-density
limit.

V. INTERPOLATION PROCEDURES FOR ACTUAL
METALLIC DENSITIES

On the basis of our qualitative and quantitative dis-
cussion of the preceding section we have reached the
following conclusions.

(1) It does not appear feasible to extend systemat-
ically the GB scheme into the region of actual metallic
densities. Therefore it is necessary to consider the
possibility of developing suitable interpolation pro-
cedures to calculate the correlation energy at metallic
densities.

(2) The behavior of the correlation energy at a given
r, as a function of interaction momentum, E,(k), pro-
vides a natural basis for the development of interpola-
tion procedures. In the low momentum region, the
RPA calculation of E,(k) is rigorous for the k and k'

terms, and provides quite a good approximation for the
k' and k' terms throughout the region of actual metallic
densities. The maximum value of P for which E.(k) may
be reliably calculated in the RPA is P=0.47r, l, for
which g~'—1. For su%ciently large k, the exchange
diagrams cancel one-half the direct diagrams, so that
one need consider only interactions between electrons of
antiparallel spin. This region begins at approximately
p=1.

One possible interpolation scheme would involve
plotting E,(k) for all k according to the following
prescription: (1) for k &Pi, take the value given by the
RPA; Pi should then be &0.47r, l; (2) for k)P~, take
the value given by second-order perturbation theory,
in which only interactions between electrons of anti-
parallel spin are considered; p& should be &1.5; and

(3) for Pi&k&P2, draw a smooth curve between the
portions defined by (1) and (2). To get the correlation
energy for a given value of r„one would then carry out a
numerical integration of E,(k) over all interaction
momenta k.

A somewhat simpler scheme, which yields an explicit
formula for the correlation energy as a function of r„
and very nearly the same numerical values as the above
procedure, is based on the following expressions for the
long-range and short-range parts of the correlation
energy:

p2 p3
E,"(pi)=

i

—0.458—+0.866—

pi' pi')—0.98—+0.706—
~ ry, (50).~)

E (P&)—(—0.025+0.062 lnP2 —0.006P~') ry. (51)

The long-range part of the correlation energy, E."(pi),
is calculated in the RPA. Only terms through pi5 are
gept, because for actual metallic densities the pi' terms
are comparable with the exchange corrections to the pi'
term, and (50) may be regarded as accurate only as long
as both such terms are small. The short-range part of
the correlation energy, E (P2), is calculated in second-
order perturbation theory, and only interactions be-
tween electrons of antiparallel spin are kept. If we now
choose Pi ——P2

——P, it is clear that there will be a dis-
continuity in E,(k) at k=P, because both expressions
(50) and (51) are approximations; however for a suit-
able choice of P this will not introduce any appreciable
error. It is desirable to choose P as large as possible, in
order that (51) represent a tolerably accurate approxi-
mation; on the other hand, if P is taken as too large, the
long-range correlation energy will no longer be well
represented by (50). We accordingly take for P that
maximum value for which (50) is still a rapidly con-
verging series,

p =0.47r, '*. (52)

With this choice, we find

E,"(P)——0.043 ry,

E (P)—(—0.072+0.031 lnr, ) ry.

(53)

(54)

We have dropped the P' term in E,"(P) since it is of the
same order as the p'/r. exchange term. The total
correlation energy is given by the sum of (53) and (54),

E,—(—0.115+0.031 lnr, ) ry. (55)

The foregoing interpolation scheme is very nearly the
same as that proposed earlier by one of us in SSP. The
present proposal differs in that we have used the correct
RPA coeKcient of the P' term in E,'(P), instead of the
lowest order approximation to it utilized in SSP. This
has enabled us to go to a larger value of P.

Hubbard has proposed an alternative interpolation
procedure, which is equivalent to multiplying the RPA
value of E.(k) by a phenomenological correction factor,
which is 1 for small k and —', for large k. This procedure is
obviously satisfactory for large k. Detailed investigation
shows that his procedure does not yield the p'/r,
exchange correction, so that for small k Hubbard's re-
sult cannot be regarded as any more accurate than the
RPA result.

In Table I we compare our numeric~i results for the
correlation energy with those obtained by Hubbard. In
Fig. 1 we plot E,(k) for r,=4 as calculated by us and by
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TABLE I. A comparison between the revised BP calculation of
the correlation energy and that of Hubbard; the energies are
given in ry.

APPENDIX I

The GB result for the correlation energy may be
written as

EBP
EH11bbard

—0.094—0.099
—0.081—0.086

—0.072—0.074
—0.065—0.067

3
~k'dk

4m'+sr s ~

Hubbard. The close agreement of the two interpolation
procedures is not surprising, since they agree in both the
high and low momentum limits.

It is difficult to set any exact limit on the accuracy of
either interpolation procedure. We can estimate rather
well the accuracy of E,'(P) in our scheme, but we do
not know the accuracy of our perturbation theory ex-
pression for E."(P).Hubbard's interpolation procedure
is sufficiently close to ours that it suffers from the same
defect, an inadequate knowledge of the behavior of
E,(k) in the region between / = 0.47r, l and that value
of P for which the perturbation theory calculation of
E,"(P) becomes accurate. It is perhaps encouraging
that there is such good agreement between Hubbard's
estimate of E.(k) and the perturbation theory calcula-
tion for P&1; however both could be somewhat inaccu-
rate in the region of P—1. If one is content with 15%
accuracy in the correlation energy, it is quite likely that
both schemes may be regarded as satisfactory. On the
other hand, if one demands a value of the correlation
energy which is accurate to within 5%, it is doubtful
that either scheme is that accurate except, perhaps,
through a fortunate cancellation of rather larger errors.

We conclude that the Hubbard scheme is mathe-
matically more satisfying, since it yields a smooth curve
for E,.(k). On the other hand, our modified SSP inter-
polation procedure is simpler, and rather closely tied to
the physical behavior of the electron gas. It may also be
more flexible, in that it permits straightforward calcula-
tion of other metallic properties, such as the one-electron
energies, specific heats, etc."

p+w ~ ~ ( ])n
X ' du P LQI, (u)7", (A1)

where the function Qs(u) is given by

Qs(u) = dp
7l k ~ [p[&i

fp+k/ )j.

X ~ exp{ituk
f
t

~

(-',—k'+k p) }dt (A2. )

|'2m.e'
P sP sf. —

sl, k'
(A4)

The GB result is now in a form well suited for its
application to the calculation of the long-range correla-
tion energy arising from P„,E,~. To lowest order in k',
we may write

2''8
+ ~=K Ps P s~-

k2
(A5)

The total change in energy due to the Coulomb inter-
action, E«t ——E«„,+E,„,z, is given by

3 Go (+co
dk k' du

4rrrr r, p 00

(—1)" (2~e'l
LQ. ( )7"—Z~ I (A3)

n=i sEk')
The first term on the right-ha, nd side of (A3) may there-
fore be viewed as the energy change brought about by a
perturbation

X

~s

0.5

E Hubb

4.5

where p&' is a screened density fluctuation defined by

p'
ps'=P( exp( ik x;)—

nun, J

Thus (AS) and (A4) differ only in the replacement of p&

by p~'. E,~ is therefore given by

3 P

47rrr'r, ' "s

f+w ~ ( 1)n
X ~ d & LQ,.(u)7-, (A6)

FIG. 1. E,(k) in the present calculation and according to
Hubbard for r, =4.

"An investigation of the way in which one-electron properties
are influenced by 8'„has recently been carried out by J. Fletcher

where Qs'(u) is the screened version of Qs(u) arising

and D. C. Larson, following paper LPhys. Rev. 110, 455 (195g)].
They have considered only the second-order interaction between
electrons of antiparallel spin, and obtain thereby not unreasonable
values for the specific heat, etc.
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from the replacement of ps in (A4) by p&' in (A5).
Inspection of the matrix elements arising from (A4) and
(A5) shows that the change from pq to pq' introduces a
multiplicative factor in the integration over p in (A2)
which is simply —(3m/4nr, ) (k p)',

that is, —gq'(p) (to lowest order in k'). The minus sign
corresponds to the fact that B„ induces attractive
electron correlations.

We have therefore

3
Q'(u) = ——

4~ ~ t, (i
(k p)'

d p
k'

t
k'

dt exp ituk
~
t( ]

—+k p ))
=3u'R(u) —1, (A7)

FIG. 2. The contour on which one must integrate uR'(u)/
LE(u)+sks/4', g in order to expand I(k) in powers of k.

where
R(u) =1—u arc tan(1/u),

uR'(u)
I(k) = du

(prk'/4nr, )+R (u)
(A12)

and we have carried out the integration in the first of
Eqs. (A7) to lowest order in k. On substituting (A7)
into (A6) and summing the series there, we find

3 ~P oo

E„p= —
~ dk k' I du lnL3u'R(u) j. (A8)"

4~n'rP &,

The latter integral may be computed numerically, and
yields the result

We wish to expand I(k) in powers of k.
The function R(u) is even and analytic. It has two

branch points at u= &i, which we must join by a cut in
the complex plane. Its only zero is at m= ~, near which
it behaves as

R(u) 1/3u' —1/Su4

For small enough k, the only poles of

NE.

E,p
= —0.98(P4/r, ') ry. (A9) (prk'/4rc, r)+R (u)

E i'(P) =— 3 ~p oo

dk k' dlJ„
4o.r,

R(u)
ok'

—ln 1+ R(u) . (A10)
xk'

In (A10) the first term in brackets yields the P' term of
(23); we integrate the remaining term by parts,
obtaining

r&
k'dk I(k),

4n-n'rP p

(A11)

We now show that the GB result, (A1), when re-
stricted to sufficiently long wavelength momentum
transfers P, may be expanded as a power series in P. Let
us return to the expression (A2) for Qq(u). A careful
examination of (A2) shows that Q&(u) may be expanded
in powers of k, and contains only even powers of k. The
leading contribution is

Qi(u) = (4nr, /irk')R(u).

On substituting this value in (A1) and carrying out the
sum there, we'get

arise therefore at amigo, where uo is given by

up= i(4nr, /3rrk') 'L1+O(k') j.
The residue of the pole iuo is simply ilo.

I(k) may then be calculated by integrating over the
contour shown on Fig. 2. Ke find

~ ~

uR'(u)
I(k) =2iri(iup)— . R(u)+s.q'/4nr,

(A13)

in which the contour c goes from —0 to i and then back
to +0.

The first term of (A13) corresponds to the plasmon
ground-state energy. It gives rise to the pp/r, &, p'/r, &,

terms. The coeKcients determined with (A11) agree
perfectly with those obtained by the plasma theory.
Remark that we have kept only the first term in the
expansion of Q&(u). Since Q&(u) contains only even
powers of k, such corrections will always lead to correc-
tions to the energy odd in P, such as Pr/r, ',

The second term of (A13) corresponds to the energy of
the individual particles. Ke can simplify it considerably
by remarking that on the contour c, R(u) is never small,
being of order 1 or more. We may therefore expand the
fraction in powers of k. The correlation energy arising
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from the individual particles is then given by

3 NR'(u)
p4 dQ

far n2r, 2 c
NR

+
32 3 3 E2

du . (A 14)

The integral on the left-hand side may be integrated by
parts, yielding

t.+" 44R'(44)
2+ - du.

Since the function (2+[44R'(44)/R]) goes to zero as 1/44'

at inanity, we can again integrate on the contour of

Fig. 2. The only contribution comes from the integration
on the contour c. The term 2, being single valued, gives
obviously zero, which establishes (A15).

We remark that it is simple to calculate the higher
order terms in P by using (A14). In (A14) we give the
explicit coeRcient of P', which has been computed
numerically. The contribution to the correlation energy
from (A14) is thus

It is easily shown that the inclusion of k' correction
terms to Q&(44) will only introduce even powers of P.

In order to establish the equivalence of the plasma
and the GB calculation of the P4 term, we have to show

that
~+00 44R'(I)

du in[3''R (u) $=— dl. (A15)

be eliminated by a further canonical transformation:
this would yield a frequency shift involving two powers
of H„, and is therefore beyond the range of the study.
The terms in which we are interested are in fact the
second-order terms, or, more precisely, their expectation
value with respect to the electronic wave function. Such
terms are quadratic in the field coordinates and there-
fore represent a shift in the plasmon frequency.

If we limit ourselves to the leading order in k, the
generating function of the canonical transformation
performed in BP III can be written

~4~e'q ' k.p;
S=(

~ g *exp(—4k x,)~,.
E k') 'm4a, '

It is a straightforward matter to calculate the double
commutator of (A17), and to take the corresponding
expectation value for a Fermi distribution of inde-
pendent particles. The Anal result is to add to the
Hamiltonian a correction term given for small k by

3 k'

I 40k02

plasman line

electron line

t»eraction line, invofving H 5r

Fzc. 3. The diagrams taken into account in the calculation
of. Appendix II.

r.2 r.3

APPENDIX II

O' P'—0.98——0.23—+ ry.
This results in a shift of the frequency

A(u 3 k'

0 ko'
(A18)

In this appendix we discuss brieQy the question of
non-RPA corrections to the plasma frequency. In the
BP approach such corrections occur for the following
reason: when one eliminates the linear plasmon-electron

coupling by a canonical transformation generated by 5,
the transformation acts also on H„and yields new

terms coupling the plasmons with the individual par-
ticles. These new terms give rise to the extra "exchange"
frequency shift of the plasmons. We shall restrict
ourselves to a very limited class of such corrections,
namely those of order k' which involve only one power
of II„.Each power of II„introduces a factor e2, i.e., a
factor r, : this discussion is therefore limited to the
terms in P'/r. l in the correlation energy.

The canonical transformation gives rise to new terms
of the form

p4q'
)H„,S)+,' i

—
i [[H—„,S),Sj+ . . (A17)

&a)

The first term of (A17) is an extra coupling term. It can

The contribution to the long-range energy of the system
may then be written as

—0.039(P'/r, '*) ry,

which is to be compared to the P' term occuring within
the RPA

0.70(P'/r, i) ry.

It may be seen that, for actual metallic densities, the
exchange correction to the plasma frequency is ap-
preciably smaller than the RPA correction.

It is interesting to see what the foregoing procedure
means in the language of diagrams. The diagrams which
we take into account are those shown on Fig. 3. They
involve first-order corrections to the excitation energy
of the individual particles, and to the matrix elements
for such excitations, (pi,)0„. Remark that in keeping
only some of these diagrams, one can be led to a shift
of the plasma frequency independent of k: such a result
is obviously spurious, since it disappears when one takes
consistently into account all diagrams of a given order.


