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A method for solving the Fermi-Thomas and Fermi-Thomas-Dirac equations for crystals is presented.
The results of computing the electronic density of copper by this method are given together with those at-
tained from the application of the spherical approximation to the Wigner-Seitz cell. Also presented are the
results of cohesive energy calculations for copper, which with the inclusion of the correlation effect predict
stability but only about one-third of the observed value.

I. INTRODUCTION

NUMBER of uses of the Fermi-Thomas and

Fermi-Thomas-Dirac statistical models in the
study of crystals have been previously suggested, e.g.,
in providing approximations of the potential field for
Schrodinger’s equation in the one-electron scheme for
deriving crystalline properties, if not in a direct determi-
nation of such properties as the cohesive energy, and in
giving approximations of the electronic density for
comparison with that obtained from x-ray diffraction
measurements. The feasibility of this, however, has not
been fully explored, presumably because of the diffi-
culty with the corresponding nonlinear differential
equations of finding solutions with lattice symmetry.

Slater and Krutter! have obtained radial solutions ap-
plicable to metals, for which the Wigner-Seitz cell is
approximated by a sphere of equal volume. Their
results indicated that in this approximation the crystals
would be unstable, considering the binding energy as
the sum of the changes in the Coulomb, Fermi, and
exchange energies accompanying the transition from
the crystal to a gas of the free atoms. However, March?
has pointed out that the Fermi-Thomas-Dirac model in
the spherical approximation does yield a minimum in
the curve of energy vs lattice spacing, although in the
case of copper, which was investigated by Slater and
Krutter, the minimum occurs for a lattice spacing
beyond the range of their calculations and, therefore,
considerably greater than the observed lattice spacing.
This he interpreted as affording some explanation of
metallic cohesion. For the alkali metals, March showed
that this model predicts lattice spacings in fair agree-
ment with observation.

This paper presents a method, which may be applied
to polyatomic crystals, for obtaining solutions with
lattice symmetry to the Fermi-Thomas and Fermi-
Thomas-Dirac equations. The method depends on suc-
cessive approximations, for whose rapid convergence to
the solution an argument is given.

In the case of copper, for which the method was
tested, this rapid convergence was borne out. The solu-
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tion did not require undue computational labor. The
resulting electronic distribution is given, together
with that derived from the spherical approximation for
comparison. The cohesive energy, computed from the
Coulomb, Fermi, exchange, and correlation energies,
turns out to be correct in sign but about one-third
the measured value. Without the correlation correction
the cohesive energy and its components are essentially
the same as predicted from the figures provided by
Slater and Krutter.

II. MATHEMATICAL DEVELOPMENT
A. Solution of the Fermi-Thomas Equation

Let V 5° represent the solution for the free atom of the
element with atomic number Z to the Fermi-Thomas
equation

VIV =aV3, 1)
where
a=32n%(2me)3/ 313,

and V (r) is the potential from the electronic and nuclear
charges, plus a constant whose value is not of present
concern. The V2% tables of which are readily available,?
are radial functions satisfying the boundary conditions

rV(r)—>Z as r—0,
VAr)—0 as r—owo,
rendering

V(r)>0 for r<oo. (2)

Then, with V,(r) representing the sth approximation to
the solution of Eq. (1) for a crystal, the first approxima-
tion may be written

Vl(r)=§ Z V2(lr—1mz)), ©)

mz=1

where rmz is the center of the mzth of the Nz atoms
with atomic number Z in the crystal. Since the V 2° are
solutions of Eq. (1), one has

VVi=aX X [V2(|r—1m]) ] 4)

Z mz=1

3V. Bush and S. H. Caldwell, Phys. Rev. 38, 1898 (1931).

418



FERMI-THOMAS METHOD FOR CRYSTALS

With a function ¢;(r) defined by
gi=aVi=V2V, (5)
let v;(r) be the solution of the equation
— V43V v, =q; (6)
that is finite at the nuclear positions and possesses the
symmetry of the lattice. Such a solution exists if V;,

and therefore from Eq. (5) ¢;, has such symmetry.
Defining V; for ¢=2, 3, --- by

Vi=Vii1—vi (7)

gives it this symmetry if V,_; has it. Since V' possesses
lattice symmetry, by induction it follows that this must
be true of V; for all values of <.

From Egs. (5) and (6) one obtains

V2(V;—v) =aVH(Vi—3v,). 8)

Now assume that for a particular 7, the relations
V2V (1) >0, (9a)
Vi(r)>0 (9b)

hold. Then from the relations (8) and (9a), and, as a
consequence of the lattice periodicity of v;, the equality

f V"’v@dT:O,

c

(10)

where the integration is over a unit cell, it must follow
that

()<f V2V,~dr=af Vi%(Vi_%'ui)dT:

which requires that

over at least a portion of the unit cell. Now if there
were a region 7, throughout which v,>3%V,; and over
whose surface S, v;=%V, the integration of both sides
of Eq. (8) over this region and the application of
Gauss’s theorem would give

X f V2V dr+-3 f

V,.(Vi—%vi)dS

a

= f V,,%( Vi— %vi)d-r,

where the second integral on the left would be over this
surface S,. The integrand, the outwardly directed com-
ponent normal to S, of the gradient of V;—%v;, would
have to be non-negative. This and inequality (9a)
would make the sum of integrals on the left positive.
Since the integral on the right would be nonpositive,
74 cannot exist, i.e., relation (11) must hold for all
values of r. This means that under the provisions of
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Egs. (7) and (8), the relations (9a) and (9b) must
apply also for i+1.

Now these relations are valid for ¢=1, as is evident
from inequality (2) and Egs. (3) and (4). Therefore,
by induction one establishes that relations (9a), (9b),
and (11) hold for all values of 4.

Next assume that for a particular ¢ one has

qi>0, (12)
from which with Egs. (6) and (10) one obtains
0<f [qi{d‘r=%a f Vﬁ'UidT, (13)
indicating that ’ ’
;>0 (14)

within at least a portion of the unit cell. Now if there
were a region 7, throughout which »;<0 and over whose
surface .S, v;=0, the integration of both sides of Eq. (6)
over this region and the application of Gauss’s theorem
would yield

f anidS= —f ( [ qi| — %aVﬁw)d‘r.
Sb Th

The integrand on the left, the outwardly directed com-
ponent normal to Sy of the gradient of »;, would have
to be non-negative. Since the quantity on the right
would be negative, the region 7, cannot exist. Thus,
inequality (14) holds for condition (12).
Now from Egs. (5), (6), and (7), there follows
girr=al (Vi—v)i=V i+5V k], (15)
from which it may be inferred that under conditions
(11) and (14) ¢:+1>0. Inequality (12) applies for i=1,
as may be seen from relations (2), (3), (4), and (5)
and the fact that

(a+b+---)P>ar+4-b7+ - - -
for
a, b, --->0 and p>1.

Therefore, by induction one proves inequality (12), and
as a consequence inequality (14), for all values of 3.
One deduces from relations (7) and (9b) that

ntvt - - Fo<Vy,

i.e., the series of positive functions on the left is bounded
for all values of 7. Consequently, the series converges.
Also, from Eq. (15) it follows that ¢,—0 as +— since
v,—0 as i— 0. Therefore, the sequence Vi, Vs, --- con-
verges to the solution of Eq. (1).

As an indication of the rapidity of convergence, one
may obtain the expression

quz'+1|d7<(1/3%)£|lli|d7
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from the relations (11), (13), and
[giv1] <Y Da(v/VH),

which follows from expressions (11), (14), and (15) and
the fact that

@B/ Dur> (1—u)t—14+(3/2)u>0 for 0<u<2/3.

Thus the solution with lattice symmetry to the
Fermi-Thomas equation may be developed from the
function V5, which results from the superposition of
the potentials from the atoms of the crystal treated as
free, by solving the linear Eq. (6).

B. Solution of the Fermi-Thomas-Dirac Equation

A similar method is proposed for solving for a crystal
the Fermi-Thomas-Dirac equation

VY =al (V+691+6T,

where 8= (2me®/h*)*. Again, for the ith approximation
one has

Vi=Vig—vi,

where V1482 may be set equal to the solution of the
Fermi-Thomas equation discussed above, and v; is the
solution with lattice symmetry and finiteness at the
nuclear positions to the equation

— Vo3l [ (VBT (Vi)
‘ =—VVital (Vi+6) 46T
However, an argument for convergence, analogous to

that given in Part A, breaks down at the ith approxi-
mation if for some value of r one finds V ;<332

i=2,3,4, -,

III. APPLICATION OF THE FERMI-THOMAS
METHOD TO COPPER
The condition of lattice periodicity on the solution to
Eq. (6) suggests its expression as a Fourier series:

v;=2 ax? exp(2mik- 1),
%

3
k = Z %ibi,

=1

where the b; are fundamental translational vectors of
the reciprocal lattice and the #; are integers. Application
of the additional condition on v;, that it transform into
itself under the symmetry operations of the point group
of the crystal, permits a modification of this expression
with a decrease in the number of coefficients to be
determined from Eq. (6). For copper, with the Car-
tesian coordinate axes parallel to the edges of a face-
centered cube of the lattice and the origin at the posi-
tion of one of the nuclei, the center of the Wigner-Seitz
cell mentioned below, this expression becomes

®© © o 6
S Y @i Y Py cos(2mnx/a)
n=m m=1l =0 =1

X cos(2xmy/a) cos(2nlz/a),
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where ¢ is the lattice constant, the operator P, effects
the 7th of the six permutations on %, m, and /, and
@nmi? vanishes if #, m, and [ are neither all even nor
all odd.

However, as exemplified by copper, ¢; and V¥ vary
gradually over the Wigner-Seitz cell except near the
nucleus, where they behave according to

gi= /) ot -,
Vi=Ze[ (1/r)+ (1282/97)}(B/as)+ - - -],

where @, is the radius of the first Bohr orbit for hydrogen
and the constant B is altered from the free atomic
value? Bo=—1.589. These circumstances recommended
the determination of v; in two parts, letting v;=1v,"+v,®.

For the first part, v,” was represented by the above
series with the coefficients other than @opo®, @111, @200,
@220V, @311?, and a992® set equal to zero. The values
for these six coefficients that make v," an approximate
solution of Eq. (6), i.e., the values that make the corre-
sponding six terms of the Fourier expansion of one side
the same as those of the other, were computed. The
function ¢/, defined by

113 1 Ayl = !
—Vh/'+3aV o' =g/,

proved to be a close approximation to ¢, except near
the nucleus.

For the second part, »,” was obtained as the radial
function which, under the boundary conditions that it
be finite at »=0 and vanish as r—oo, satisfies the
equation

— VO +Jal =g,

where V, represents the spherically symmetric approxi-
mation of Vi;—although to the three significant figures
of the computation, V1 was radial in the region where
2;%) was found to be appreciable—and ¢, is equal to
the spherically symmetric part of ¢;—¢:’ in the neigh-
borhood of the nucleus and is zero beyond. The success
of this procedure rests upon the fact that »,¢) became
negligibly small while yet well within the Wigner-
Seitz cell.

The expression for ¢s(r) was accordingly altered from
Eq. (15) to

q2 =a[(V1— 'U1)%—‘ V1%+%V1’1"01
VA=V D]+ (=g —gn).

Since the calculated ¢s/V?V: nowhere exceeded 1.29,
the second approximation was considered adequate.
The corresponding electronic density 7, which from
Poisson’s equation is equal to (1/4mwe)V2V, for 730,
and V, given as (V2Vy/a)? rather than V, since it is
supposed that in a succeeding approximation the latter
would undergo the larger percent correction, are pre-
sented in Table I. Also given, for comparison, is the
spherically approximate electronic density », together
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with the related quantity V, the solution to the Fermi-
Thomas equation applicable to copper according to the
method of Slater and Krutter. In the neighborhood of
the nucleus, # and 7, as well as V and V, become indis-
tinguishable. For V, and V the value of the constant
B is Bo+0.00022.

The table gives the values of these quantities at
selected points designated by (V,M,L) in a coordinate
system in which the fundamental translation vectors
appear as (20,20,0), (20,0,20), and (0,20,20). The
point (0,0,0) is occupied by a nucleus. The collection
of points into which these selected points transform
under the operations of the point group of the crystal
constitutes a miniature simple cubic lattice that covers
the Wigner-Seitz cell.

The numerical integrations over the Wigner-Seitz
cell implicit in the formation of the six linear equations
in the @nm® for determining », were performed by
multiplying the value of the integrand at each of the
selected points by a weighting factor and summing the
products. The weighting factor is proportional to the
number of points into which the given selected point
is transformed under the operations of the point group.

The contributions to V; and V2V from the free atom
centered at (0,0,0) and from its nearest neighbors were
calculated for each of the selected points. For the next
66 atoms nearest the origin, however, the contributions
were computed only at the origin and at points of
symmetry, where such computations require less labor,
and from these data there were constructed power series
approximations in N, M, and L. The remaining atomic
centers were treated as though they were distributed
continuously with a density of 4/a® over the remaining
volume of the crystal. This permitted the formation of
expressions in N24M24-1? for the contributions of
these atoms to V; and V2V, by integrating (4/a®)V 5°
and a(4/a*)(V 23, where V 2° is assumed to be centered
at (NV,M,L), over this volume.

IV. COHESIVE ENERGY OF COPPER

The Fermi and Coulomb, exchange, and correlation
contributions to the cohesive energy were calculated
from

Ze
EFC:7 1333 LV (N —=Va(n)]

€
—{—~—[fnon°dT—f %Vsz],
10 ¢
3e2 73\ #
Eex=———(—) [f’ﬂvo'%dT-—f n4/3d7':|,
4 \7r

c

Ecor= _0-70932[fn04/3(1+ 12.6dh’ﬂ0%)_1d7'

—f n4/3(1—|-12.6a;,n%)_1d7],

421

TaBLE I. The electronic distribution and potential in copper
from the Fermi-Thomas model.

Electronic density Potential
(102 cm™3) (volts)
With With With With
Selected lattice spherical lattice spherical
points symmetry  symmetry symmetry symmetry

N M L n Na |4 Vs

111 170 169 1122 1117

3 11 29.5 294 349 348

511 7.37 7.32 138 138

711 2.54 2.54 68.0 68.0

9 11 1.13 1.13 39.6 39.6
1 1 1 0.621 0.644 26.6 27.2
13 11 0.413 0.438 20.3 21.1
15 1 1 0.325 0.377 17.3 19.1
17 1 1 0.288 15.9
19 1 1 0.272 15.3

3 31 12.9 12.8 201 200

531 4.81 4.79 104 104

73 1 2.00 1.99 58.0 57.1

9 3 1 0.979 0.977 36.0 36.0
1 3 1 0.579 0.580 254 25.4
13 3 1 0.405 0.422 20.0 20.6
15 3 1 0.331 0.375 17.5 19.0
17 3 1 0.299 16.3

55 1 2.54 2.54 68.0 68.0

7 5 1 1.35 1.33 445 44.2

9 5 1 0.775 0.763 30.8 30.5
11 5 1 0.516 0.507 23.5 23.2
13 51 0.399 0.399 19.8 19.8
15 5 1 0.350 18.1

77 1 0.873 0.857 334 33.0

9 7 1 0.605 0.580 26.1 25.4
1 7 1 0.466 0.438 22.0 21.1
13 7 1 0.408 0.380 20.1 19.2

9 9 1 0.497 0.457 22.9 21.7
1 9 1 0.453 0.391 21.5 19.5

3 3 3 7.37 7.32 138 138

533 3.40 3.38 82.6 82.3

7 3 3 1.62 1.61 50.3 50.1

9 3 3 0.864 0.857 33.1 33.0
1 3 3 0.541 0.540 24.2 24.2
13 3 3 0.396 0.409 19.7 20.1
15 3 3 0.334 0.374 17.6 19.0
17 3 3 0.309 16.7

55 3 2.00 1.99 58.0 57.7

75 3 1.14 1.13 39.8 39.6

9 5 3 0.700 0.690 28.8 28.5
1 5 3 0.488 0.479 22.6 22.4
13 5 3 0.389 0.391 19.5 19.5
15 5 3 0.350 18.1

77 3 0.779 0.763 30.9 30.5

9 7 3 0.559 0.540 24.8 24.2
11 7 3 0.445 0.422 21.3 20.6
13 7 3 0.397 0.377 19.7 19.1

9 9 3 0.469 0.438 22.0 211
1 9 3 0.431 0.381 20.8 19.2

555 1.35 1.33 44.5 44.2

755 0.868 0.857 33.2 33.0

9 5 5 0.592 0.580 25.8 25.4
11 5 5 0.445 0.438 21.3 21.1
13 55 0.379 0.380 19.1 19.2
15 5§ 0.357 18.4

775 0.640 0.644 27.1 27.2

9 75 0.493 0.479 22.8 22.4
1 7 5 0.413 0.399 20.3 19.8
13 75 0.381 0.374 19.2 19.0

9 9 5 0.427 0.409 20.7 20.1
11 9 5 0.401 0.377 19.9 19.1

777 0.517 0.507 23.5 23.2

9 7 17 0.427 0.422 20.7 20.6
11 7 7 0.383 0.380 19.3 19.2
13 77 0.374 19.0

9 9 7 0.385 0.381 19.3 19.2
11 9 7 0.373 18.9

9 99 0.361 0.374 18.5 19.0
1 9 9 0.357 18.4
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where r=0 designates the position of a nucleus, and
and the integrations involving #,, the free atomic
electronic density obtained from V9, are over all of
space. The Fermi part of Erc is derived with the aid of
Eq. (1) from the expression (342/10m)(3n/8)? for the
average kinetic energy of the electrons comprising a
Fermi-Dirac gas of density » at absolute zero tempera-
ture. The formula for E.y is derived from the expression*
— (3¢?/4) (3n/m)? for the mean exchange energy of such
a group of electrons; the formula for E.r, from the
Wigner relation® —0.44¢*/[ (3/4wn)i+7.8a;] for the
correlation energy per electron.
The results in Rydberg units are

4F. Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), p. 341.

5D. Pines, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc., New York, 1955), Vol. 1, p. 375.
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Exc=—1.63
Ee=1.62,
Eeor=0.088,

Sum = cohesive energy=0.08.

Thus with both the exchange and correlation effects
considered, the cohesive energy based on charge dis-
tributions determined from Fermi-Thomas models for
both metallic and isolated atoms falls quite short of the
observed value for copper, 0.26 Rydberg unit. On the
other hand, March,* using for the metallic atom the
minimum energy obtainable from the Fermi-Thomas-
Dirac model in the spherical approximation (which
does not correspond to the observed lattice spacing),
and for the isolated atom the energy, including ex-
change, derived from a modification of the Fermi-
Thomas charge distribution, has computed a value for
the cohesive energy of copper that, even with the ex-
clusion of the correlation energy, is too large.
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The specific heat of a boron-doped silicon crystal, which was first irradiated with thermal neutrons and
then annealed, showed a pronounced peak at the normal \ temperature of liquid helium. The anomaly is
due to the existence of helium inside the ingot, this helium being created by the boron-neutron reaction
BY-+-u'—He!+Li". On annealing, sufficient helium collected in macroscopic defects within the crystal to

liquefy and produce the observed specific heat.

INTRODUCTION

RECENTLY the specific heat of several impure
silicon samples has been measured in the liquid
helium temperature region. From the electronic con-
tribution to the specific heat information can be
obtained concerning the effective mass of the carriers
and the energy band structure of the crystal. While we
hope to present the results of these measurements in
the near future, a very pronounced anomaly was ob-
served in the specific heat of one sample, the explanation
of which appears worthwhile to communicate here.

EXPERIMENT

The specific heat of a 92-gram single crystal of silicon
containing 0.19, boron has been measured between
1.2°K and 4.2°K using the normal isothermal method
(1) when the crystal was in its original state as grown,
(2) after irradiation with a flux of 8.5X10'8 neutrons/
cm? and (3) after subsequent annealing in vacuum at
930°C for 24 hours.

* This work was supported by a Signal Corps contract.

Representative results are shown in Fig. 1, where
C/T is plotted against T2 The specific heat of pure
silicon is similar to that of insulators since at low tem-
peratures only a lattice contribution proportional to 7
is present. However, being heavily doped with boron,
this ingot contained a high carrier concentration
(holes) before bombardment. Thus, an additional con-
tribution due to the free carriers was found in the
specific heat. This contribution, proportional to T, is
indicated by the intercept on the C/T coordinate.
Irradiation reduced the electronic specific heat practi-
cally to zero as most of the free carriers were removed
by trapping.

On the basis of the results of Hall coefficient measure-
ments annealing was expected to restore the original
hole concentration and, therefore, the original electronic
specific heat. This appears to have occurred, but in
addition a pronounced peak just at the normal \ point
of liquid helium was observed. This temperature coinci-
dence suggested very strongly that liquid helium was
responsible for the anomaly. Other possibilities, how-
ever, have been investigated.



