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D. C. MATTIst AND J. BARDEEN

Department of Physics, University of Illinois, Urbana, Illinois

(Received February 24, 1958)

Chambers' expression for the current density in a normal metal in which the electric field varies over a
mean free path is derived from a quantum approach in which use is made of the density matrix in the pres-
ence of scattering centers but in the absence of the field. An approximate expression used for the latter is
shown to reduce to one derived by Kohn and Luttinger for the case of weak scattering. A general space-
and time-varying electromagnetic interaction is treated by first-order perturbation theory. The method is
applied to superconductors, and a general expression derived for the kernel of the Pippard integral for fields
of arbitrary frequency. The expressions derived can also be used to discuss absorption of electromagnetic
radiation in thin superconducting films.

I. INTRODUCTION

'~ OR calculations of the anomalous skin effect in

metals and for related problems, one is interested
in the response of conduction electrons to high-fre-

quency fields which vary in amplitude over a meali free
path, so that the usual expression for current density
in terms of bulk conductivity is invalid. A convenient
method, which has been successfully applied to several
problems, is to start with an infinite medium, so that
boundary eGects do not come in. Sources of the field
are introduced into the interior, and the response of
the electrons to the held is calculated by time-dependent
perturbation theory. The total 6eld acting on the elec-
trons, the sum of the external field and that due to the
electrons themselves, is taken to be self-consistent. ' '

Most earlier calculations of the' anomalous skin
effect in normal metals have been based on the Soltz-
mann equation. A particularly simple and elegant
derivation is that due to Chambers. ' A quantum-me-
chanical derivation similar to the present one has been
given by Mattis and Dresselhaus' who obtain exactly
Chambers' result. Our treatment differs in the way in
which scattering of the electrons is introduced but also
leads to the same result. A main purpose is to formulate
the theory in a way that can readily be extended to
superconductors. In the low-frequency limit and in the
absence of scattering, our method reduces to the deriva-

tion of the Meissner effect as given by Bardeen, Cooper,
and Schrieffer. '

While in general there are difficulties involved in
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applying a solution derived for an infinite medium to a
6nite body of arbitrary shape, there is no problem for
the case of most practical importance, that of a plane
boundary. Such a solution may also be used to discuss
conduction and absorption of radiation in thin films.

There has been considerable interest recently in
quantum derivations of conductivity from the density
matrix formalism. Kubo' has given a formal solution in
which it is assumed that scattering is present in the
zero-order Hamiltonian. Kohn and Luttinger' and also
Nakano' have treated both scattering and the external
field as perturbations, and have shown how Boltzmann's
equation appears in a certain approximation. The
connection between the quantum formulation and
Boltzmann's equation has also been discussed by I.ax.'

Our treatment follows Kubo and Lax in - that we
assume that scattering occurs in zero order. We do not
use the density matrix formulation directly, but expand
to first order in perturbation theory the wave functions
appropriate to ali applied external field, in terms of
those in the absence of the 6eld. This requires some
knowledge about the solutions of the wave equation,
its(r), in the presence of the scattering centers but in
zero 6eld. What is required for the current is the density
matrix for an energy shell; that is, g&*(r)lt&(r'))
averaged over states of the same energy, ek, and over
random distributions of scattering centers. We do not
derive an expression for this quantity, but assume a
form based on plausible arguments. A similar method
was used by one of the authors' in a discussion of the
effect of a 6nite mean free path from elastic scattering
on the superconducting penetration depth.

We start with the time-dependent Sch'rodinger

equation,
Hp4+H, „C =ifiBC/Bt,

in which IIO is the Hamiltonian in the absence of ex-
ternal fields, but including any scattering which may
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be present, and H,„ is the total electromagnetic
interaction.

If H,„ is expanded in a Fourier series in time, an
arbitrary function of space and time may be expressed
in the form

est P II (r,) ekvE

F0~ 7

(1.2)

e
II.„=+ PA(r, ,t) —p;, .

mg i
(13)

(we shall consistently neglect terms quadratic in the
fields), where A is subject to the gauge condition

The sum over j is over all electrons. Reality requires
that H „=H„*.The introduction of s, a small positive
parameter to be set equal to zero in the 6nal expres-
sions, insures that the field started from zero in the
remote past and sets the direction of time for irreversible
phenomena. Mathematically, s determines how the
integration over energy denominators is to be carried
out.

It is most convenient to choose a gauge such that the
vector potential alone represents the applied electro-
magnetic fields. The portion of the interaction Hamil-
tonian which is linear in the fields is then

The wave function C is then used to calculate the cur-
rent density.

2. ANOMALOUS SKIN EFFECT IN
NORMAL METALS

We take a simple model for which the single-particle
states in the absence of scattering are plane waves
designated by the wave vector k and normalized to
unit volume. It is assumed that the electrons move
independently and the exclusion principle is taken into
account only in the sta, tistics. The exact one-particle
wave functions, fk(r), in the presence of elastic scatter-
ing are made up in large part of linear combinations of
plane waves of approximately the same energy. Here k
is a quantum number which designates the common
energy, ek

——fi'k'/2', but is without significance as a
wave vector. If the scattering is not too strong, the
energy of the states will not be changed much by the
presence of the scattering centers. The probability of
occupancy of a state pk of energy ek is given, in the
absence of an external field, by the Fermi-Dirac func-
tion f(ek).

Wave functions, 0'~, in the presence of an external
field may be expanded in a series of the unperturbed
wave functions fk To the f.irst order in II,

V A=O,
%k(r, t) = {fk(r)+pk ak k(t)pk (r)}

(1 4) Xexp ( i ekt/I—i), (2.1)
which expresses mathematically the physical condition
that no external charges be introduced into the sample
and that electrical neutrality be maintained throughout.
The fields are as usual the derivatives

(k'I II„
I k) e'"'

ak k(t) =e"p-
ek ek' 'It (M 'Ls)

(2.2a)

1 8
8= ——

c Bt
and H= VXA.

(k'I II„Ik)e'"'
akk~*(t) = —e'~ p

ek ek'+A (Go is)
(2.2b)

We are concerned in the anomalous skin e6ect only
with transverse fields. For these, in the gauge V A=O,
we need to introduce in the perturbation-theory ex-
pansion only particle-like excitations of the super-
conductor. In an arbitrary gauge, collective excitations
would have to be included. Further, the expression for
the density matrix required for both normal and super-
conducting metals appears to be simpler in this gauge.

The procedure is to expand C in a series of the time-
independent eigenstates, q, , of Ho.

(1.6)

so that if the unperturbed state is pp, then

C =exp( iWDt/A) go+—P a;(t) exp( —i Wt/ )fbi;. (1.7)
7AO

The expression for the expansion coeS.cient is

(7III„IO) expLi(~ —is)tj
a, (t) =

Wo —W,—A(co —is)

In the latter we have made use of H„*=H „.
The expression for the current density is

ek
j(r, t) = —. Q fk(4k V+k —+kV4'k*)

2m'

e2——~ &kA(r t) I +k(r, t) I'
mc

fk(4'k V4'k'ak'k+ak'k fk' Vlpk)
2m' &,&

ne'—comp. conj. ——A(r, t), (2.3)
mc

where fk is the probability that k is occupied and
ii=Q fkpk*pk is the density of electrons, assumed
constant. We have included in (2.3) only terms to the
first order in applied fields and have supposed (as must
be true in thermal equilibrium) that the current van-
ishes in the absence of the field.

A typical term in the expression for the current
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p, = (sinkR)/kR, (2 3)

whereR=[r —r') andk=(k(.
For a particular set of scattering centers, p, is a

complicated function of both r and r'. What we want
is an average of p, over random distributions of scatter-
ing centers, which would be expected to depend only
on the distance R between r and r'. This amounts to
the neglect of off-diagonal components of p, in the
momentum representation, which are zero only on the
average. Arguments given in reference 2 suggest that
the appropriate average for elastic scattering describ-
able by a mean free path /(e) is"

sinkR
p (R) — e—B/si (2 6)

kR

In a metal, the significant values of 0 and 1 are those
for the Fermi surface, k=kg.

Some remarks should be made concerning the limita-
tions of (2.6): (1) It may be expected to be valid only
if the mean free path is large compared with the inter-
atomic distance, or if kFl))1. (2) It should be used only
when the charge density is uniform, as would not be
the case for an electrostatic potential varying in space.
(3) It is not gauge invariant. A change of gauge
would multiply the individual wave functions by
exp[ieio(r)/hc] and p, by exp(ie[q (r') —

q (r)]/hc);
which in general is not a function of R alone. (4) The
expression is an average over a random distribution of
scattering centers and so is not a solution of Schrod-
inger's equation as a true density matrix must be.
(5) Isotropic scattering is implied. (6) When it is used
to evaluate (2.3), the additional assumption is made
that the average of the product of two p, 's for different
energies is the product of the averages.

From the above discussion, we expect (2.6) to be
valid only when the gauge is chosen so that divA=O.
It can be shown (Appendix A) to be correct in the limit
of a low density of weak scattering centers, for which /

can be computed by conventional scattering theory. It
is a simple form which has the right general features to
describe scattering for more general cases which would
be dificult to treat accurately. A further advantage is

Since the above was written, we have been informed of a
derivation by P. R. Weiss and E. Abrahams LPhys. Rev. (to be
published)7, who show that {2.6) follows approximately from a
perturbation expansion. It has also been called to our attention
by M. Lax that {2.6) follows from the optical model for treatment
of multiple scattering Lsee M. Lax, Revs. Modern Phys. 23, 287
(1951), Eqs. (6.55) and (5,29)7.

density contains products of the form ltj,*(r)V'p& (r)
XP& *(r')v'P&(r') multiplied by factors dependent on
the energies eJ, and e~. If we first sum over terms for
fixed e& and e&, we need the average over an energy
shell of

p.= (A*(r)A(r') )A' (2.4)

For plane waves, we average over the directions of the
wave vector k and find

that it can be used to discuss superconducting as well
as normal metals. A more complete mathematical
derivation and justification from first principles would,
of course, be highly desirable.

With p, defined by (2.3), the expression (1.11) for
the current density becomes

zzes e'h' (4zr)' t
"

X ——A„(r)+ — ~ dkk' I dk'k"
mc m'c (2zr) '"o

x t dr'[A„(r') RjR p8p, (R)~ ~tip, .(R)q

E aR ) L aR )

X + . (2.7)
- e e +h((d zs) e e h(oi zs)

The evaluation of (2.7) for the limit to —+0 has been
given by one of the authors' who found that it leads
to Landau's expression for the diamagnetism of free
electrons. Small corrections which appear, of order
(ksl) ', are of doubtful validity because of the limita-
tions on (2.6). The conclusion is that, except for possible
corrections of this order, scattering does not affect the
diamagnetic properties of normal metals.

The integration in (2.7) can be carried out most
readily by first performing that with f(e) over k' and
that with f(e') over k. We need the derivative with
respect to R of

11 + k"p, (R)dk'"o e —e'+h(co —zs) e—e' —h(co —zs)

~
exp( —R/2l)(exp[iR(k' —2h 'moi)'j

2R Kh')
+exp[ iR(k'+—2h 'duo)'*)), (2.8)

provided that hsk'/2m)hei Since most. of the con-
tribution from the integral over k is for h'k'/2m))hei,
we may expand the square roots and keep terms linear
in or as follows:

Bpg l9Ii
f(e) k'dk

0 M BR

2mzr
e ~t' dk exp( —icomR/hk)

O'R'

ioimk (1 1 )cos'(kR)+k'i —+—
i cos(2kR)

kR 2l)

1(1 1q
+-,'k' sin(2kR) 1——

~

—+—
~

ks ER 2l)

(ioim 1 1 )x~ +-+—
~

. (2.9)
&hk R 2I&
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When the integration over R is carried out, which may
be done before the Anal integration over k, it is found
that the constant term, proportional to A„(r), exactly
cancels the gauge current, —(Ne'/mc) A„(r). The second
term averages to zero and the third gives the Landau
diamagnetic contribution to the current density. '

A di6'erent method" is more convenient for evalua-
tion of the resistive contribution. If in place of the
gauge current we subtract from the integrand in (2.7)
the corresponding expression for ~=0, we get as a
factor

e +A(M ZS)

(2.11)
e ek—(pp

—zs) e—e'
which is appreciable only for energies within A~ or

kT of the Fermi surface. Further, because of the
antisymmetry of f ~ } in e and e', we may replace
f(e') f(e) by ——2f(e) if we are careful to treat e and

symmetrically in the evaluation of semiconvergent
integrals. For this purpose, it is convenient to let e be
the energy measured from the Fermi surface, to intro-
duce the convergence factor

e2+6 2+g2
(2.12)

and then take the limit as a —+ ~.
Near the Fermi surface, we may approximate the

factors from the density matrices as follows:

Bp, Bp, e- /' ( Rq
kR coskR —

] 1+—[ sinkR
BE BE kk'E4 2EJ

Rq
X k'Rcosk'R —

~
1+—

~

sink'R
212

e—8/Z

2R2

e
—8/Z

cos[(k—k')R] = cos[n(c —c')], (2.13)
2R'

"This is similar to that used for the calculation of the Meissner
effect (reference 5).

The first term in curly brackets, which gives the
part in phase with the electric 6eld and thus the re-
sistive contribution, will be discussed later. The other
terms, together with the gauge current proportional to
A, give the diamagnetic contribution. Since these terms
have cos(2kR) or sin(2kR) as factors, they are rapidly
oscillating for kR&1, and so are important only for R
very small, of the order of the interatomic distance.
For such small R, we may expand A„(r') in a series
about r:
A„(r') =A„(r)+R VA„(r)

+-,'(R V)'A (r)+ . (2.10)

where n= (dk/de) RR. We have omitted rapidly oscillat-
ing terms and neglected terms of order (1/krR)' or
(1/krl)'. Further, we replace integrations over k by
integrations over e as follows:

k'dk =2pr'1V (0)de, (2.14)

where X(0) is the density of states of one spin in
energy at the Fermi surface:

2pr'X(0) =kp'(dk/de) R.

We then need to evaluate the integral

t" ~" g'f(e) cos[n(e —c')]
I2= —llm

g~ 00' J
p —00 —00 e'+ e"+g'

(2.15)

X + dede'. (2.16)
e e +k(M 'Ls) e e h( —pp zs)

The integration over e' can be carried out by con-
tour integration. The contribution from poles at e'

=~i(e'+g')& vanish in the limit g —p ~. Poles at
e'= e~h(pp is) g—ive

I2 —lim ni f——(e) exp( inbred)—
~ ~

g ~00 J

X de (2.17)
g2+ e2+ (e+Pg~) 2 g2+ e2+ (e /tip) 2

~" g2[f(e) —f(e+fuu)]
mi lim exp( —inh—~e)

J g2+e2+ (e+Q&g)2

e'E(0)vo
I
R[R 8(r', t—R/pp)]

e R"dr' (2.19)
2~ ~ R4

Note that the electric field, 8, is evaluated at the re-
tarded time, t —R/ep. When the field is constant over a
mean free path, (2.19) reduces to Ohm's law, with
conductivity r given by

0 = -,'e'E (0)apl. (2.20)

In the earlier derivation, 4 scattering was introduced
by use of a phenomenological relaxation time, v.. In-
stead of taking the limit s~ 0, one sets s=1/r and

pri7ippe "—"'p, (2.18)

where we have introduced the velocity at the Fermi
surface, ep ——h '(de/dk). The third term, 2/(e —e'), in
(2.11) gives a vanishing contribution for finite R, but
serves to cancel the 5 function at R=O from the first
two terms.

We thus arrive at Chambers' expression' for the
current density:

$2gg 2 rv R (R .A) e RI le vR+I vp- —

j(r, t) = —— Q E(0)'(iprirue), ~

m'c ~ R4
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e'N(0) vp

3(r, t) =Q
2K AC3. ANOMALOUS SKIN EFFECT IN SUPERCONDUCTORS

uses the plane wave expression (2.5) for the density density,
matrix. This procedure also gives (2.19) with t= v»r.

Expressions for the current density in superconduc-
tors which apply at microwave or infrared frequencies
may be obtained by extensions of the method used in
Secs. 1 and 2 and of the method used in the low-fre-

quency limit (~=0) by Bardeen, Cooper, and Schrieffer'
to discuss the Meissner effect. We find that I.(«,«') used
in (5.15) of BCS' is to be replaced by

1 ( ««+»p )
L(m, », »') =

~
1+

4 E. E'E'

f' f—f' f—x), +
EE E' A(»i i—s) —E E—'+A(—~ is) )

1
t

»«'+. 0 ~

1 f f'——
x~ +, . I, (31)

&E+E' A(co is) —E+E—'+A(co is))—
which may also be written in the form

E+A (cv is) +[—(«p'+ ««')/E]
1.(&u, », »') = ——,

' (1—2f) E'~—[E+A (cu —is) ]~

E—A (co—is) +[(«o'+ ««')/E]
(3.2)E"—[E—A ((u —is)]'

in which use has been made of the symmetry in e and
&'. The second form is most convenient for subsequent
integration over e'. We have followed the convention
of BCS to take E=+(«'j»0')' and define f=f(E),
f'=f(E'), where f is the usual Fermi-Dirac function.
Note that (2.11) of Sec. 2 corresponds to the difference
J.(~,», »') —1.(0,», »') for normal metals («0=0). The
apparent difference in form arises from the fact that e

takes on both positive and negative values, while E is
always positive.

Scattering can be introduced as in Sec. 2. If Pj, is a
given wave function in the presence of scattering,
another wave function of the same energy is f &

—=P&*.
Unless P~ is real (except for a possible constant phase
factor), these can be chosen. to be orthogonal. If the
paired states are (ki, —kg), as for plane waves, the
same density matrix over an energy shell, (2.4), is
required for evaluation of superconducting as for normal
metals. The net effect of scattering is then to introduce
an extra factor, e "t', into the kernel of the integral for
the current density.

The integration for the current density can be carried
out as in Sec. 2 by introduction of the convergence
factor (2.12) and contour integration. The expression
for the kernel in the Pippard expression for the current

t R[R A„(r')]I(co,R,T)e ""dr'
(3.3)

I(»Ri, T) = rri—[1—
2 f (E+AM) ]

ep —Aa)

X[g(E) cos(«»«i) i sin(n«i)]—e' "dE

vi —{[1-2f(E+Aa))]
ep

X[g(E) cos(o.»g) —i sin(n»i)]e' "—[1—2f(E)]

X[g(E) cos(n»i)+i sin(n»i)]e '~'2)dE, (3.5)

where e~ and e~ are the Bloch energies corresponding to
E and E+Aru, respectively:

»1= (E »0 ) *, »i= [(E—+A»i) —»p ]';

g(E) = (E +»0 +ALOE)/»1»2.

(3.6)

(3 7)

For a negative argument, —x, (—x) '* = ix '. The negative
sign of the square root is to be taken when Ace —E& ~p.

The expression reduces to the appropriate value for
the normal state, —mikcoe ' "'0, in the limit cp~o.

In the extreme anomalous limit, for which the pene-
tration of field is small compared with the coherence
distance )o vo/il »p(0), we may set n=R/Av» 0 It ——is.
then convenient to introduce, following Glover and
Tinkham, " a complex conductivity o-=0-&—io-2 for the
superconducting state. We then have, for the ratio of
the superconducting to normal conductivity,

0'i io'n I(M,O, T)

7l 2kco
(3.8)

Expressions for 0~ and o2 are

O.
y 2

Lf(E) f(E+A~)]g (E)dE—
0~ AGO~ ep

1+-
AM~ ep —Ace

[1—2f(E+A(u)]g (E)dE, (3.9)

0.2 1

0+ AM~ ep —fice, —ep

[1 2f(E+A»i)] (E'+«o—'+A»iE)

(«»' —Ei) -'*[(E+Aco)2»OP]-.'

(3.10)
R. E. Glover, III, and M. Tinkham, Phys. Rev. 108, 243

(19&7).

rs

f()—f( ')
I(6)IR)2) = I (co)»)» )J—oo —oo

Xcos[n(» —«')]d»d»', (3.4)

where n is again R/A v»The integral in the limit s —+ 0 is
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Note that (3.9) is the same as the expression for the
ratio of absorption for superconducting to normal
metals for an interaction which follows case II of
BCS.P The second term of (3.9) does not appear unless

Ace&2&0, in which case the lower limit of the integral
in (3.10) is —

pp instead of pp
—h&o. Signs of the square

roots are such that g(E) is positive in both integrals
of (3.9).

Numerical integration is required for T&0, but the
integrals can be carried out explicitly in terms of com-
plete elliptic integrals for T=O. When we set f(E)=0,
the first integral of (3.9) vanishes. There is absorption
only for A~& 2&0, in which case

oi ( 2pp) f2«i
y —IE(k) —21

—IZ(k), (ii~»«) (3 11)
o ~ ( A(o) (Aa))

An expression for o-2 valid for all cv is

centers, the density matrix is diagonal. The expansion
(C.1) of KL gives to terms of second order

ppp= f(p)+Z (l&~k l')
kl

f(p ) f(p)+ (p —p ) (df/dp)
X (A.2)

where (lH~~ l') is an average of the scattering matrix
element over random distributions. The mean free
path, l, is given in terms of the relaxation time, r, by

w//=1/r=2pr(dk/dp)(lHqq lP)X(p), for e'~p, (A.3)

where E(p) is the density of states in energy.
The expression (A.1) is diagonal in the momentum

representation and the diagonal component is given by
the Fourier transform of (A.1):

(2«) t'2«l pai=g f(p')(4ir/kk') sinkR sink'R e ~~"dR
l

—+1 lE(k')+l ——1 lE(k'), (3.12) g J p

oip 2 (ho~ ) (Apo

where the arguments of the elliptic integrals E and E are

k=
l
2pp —Ap~ l/l 2pp+Api [) k'= (1—k') &. (3.13)

The ratio of the surface impedance in the extreme
anomalous limit in the superconducting state, Z„„ to
that in the normal state, Z„„,is given by

(A.4)
&' kk'l (k —k')'+(2l) ' (k+k')'+(2l) —'

If we change variables from k and k' to e and e' and the
sum over k' to an integral over p'=h'k"/2m, we find
after some reduction

Zoos t ol po2$

Z„„
(3.14)

1 e f(p') (5/2r')de'
Ptl =— (A.S)

Lp —p'+ ($'/SmP) $'+ (A/2r')'

These expressions should be useful not only for
interpretation of measurements on the anomalous skin
effect, but also for absorption in thin superconducting
films. Comparisons which have been made with data of
Glover and Tinkham" on absorption of microwave and
far-infrared radiation in thin superconducting films
show good agreement between theory and experiment. "

sin(k'R)
p
—p y(pl) e

—R/pl

kl
(A.1)

where in general the mean free path / may be a func-
tion of e'.

In the perturbation expansion, it is assumed that the
unperturbed states are plane waves and the density
matrix is expressed in the momentum representation.
When averaged over random positions of the scattering

'3 See A. T. Forrester, Phys. Rev. 110, 769 (1958);M. Tinkham
and R. E. Glover, III, Phys. Rev. 110, 771 (1958).

APPENDIX A

We wish to show here the connection between the
expression we have used for the density matrix over an
energy shell and a corresponding expression derived
by Kohn and I uttingerv by a perturbation theory
expansion. If the probability of occupancy of a state
of energy p' is $(p'), the over-all density matrix is

where r'= lo'= ml/hk'.
We may neglect (h, '/SmP) in comparison with p in

the denominator, since we are assuming that kl)&1. For
weak scattering, fi/r is likewise small, so that the major
contribution to the integral is for e' close to e. The
singularity at p= p' gives just f(p) If we a. dd terms to
f(p') to eliminate this singularity and write f(p) as a
separate term, we find, with neglect of small terms in
the denominator,

& ~f(p') f(p)+(p p')(d—'/dp) d'—
pi'= f(p)+ (A.6)

7-'

The equivalence to the perturbation-theory result
follows when 1/r' is replaced by (A.3).
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