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Anomalous Skin Effect in a Magnetic Field*
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A classical and quantum mechanical derivation of cyclotron resonance in metals is given. The classical
result di8ers slightly from that obtained by Azbel and Kaner. The quantum derivation yields the same result
as the classical calculation except that in the limit of low quantum numbers or high magnetic fields a de Haas-
van Alphen type of variation of the surface impedance occurs rather than the resonance behavior.

I. INTRODUCTION

'QIPPARD has indicated the importance of micro-
wave surface impedance measurements for obtain-

ing information concerning the electronic energy band
structure in metals. When the electron mean free path
is much greater than the skin depth, the collision term
can be neglected in the transport calculation, and
measurements can be interpreted directly in terms of
the anisotropy of the Fermi surface. By measuring
anisotropies in the surface impedance in the anomalous
skin effect region, Pippard' has given a detailed picture
of the Fermi surface in copper. Azbel and Kaner'
suggested that the application of a dc magnetic field
parallel to the surface of the metal and to the ac electric
field should yield a periodic variation of the surface
impedance, Z(0), from which one can determine an
average effective mass for electrons at the Fermi sur-
face. The derivation of the Azbel and Kaner result in
terms of Pippard's "ineffectiveness" concept has been
given by Heine. ' An effect like that which Azbel and
Kaner predicted was first observed by Fawcett' in
samples of tin and copper, and later in tin by Kip et ul. '
with better resolution of the resonance lines.

Past theoretical treatments of the skin effect in a
magnetic field are not quite satisfactory for the follow-
ing reasons. One might suspect that a periodicity of
Z(0) should occur in any metal showing a de Haas-
van Alphen effect, as electronic transport processes like
the Hall effect and the magnetoresistance are affected
by the quantization of the electronic levels and show de
Haas-van Alphen periods in high magnetic fields. The
quantum transport treatment enables one to show that
at high magnetic fields, i.e., at fields where de Haas-

van Alphen periods are observed in the susceptibility,
the cyclotron resonance data are not easily inter-
pretable, as the de Haas-van Alphen periods dominate.
Secondly, Azbel and Kaner solve a Boltzmann equa-
tion, the validity of which is questionable at high mag-
netic fields, i.e., fields such that co,r) 1 where co,= eHp/
mc and v if the relaxation time. Argyres' has shown that
one predicts appreciably different results for the mag-
netoresistance in the region ~,r&1 by a quantum-
mechanical calculation as opposed to a solution of the
Boltzmann transport equation.

Section II of this paper contains the solution to the
Boltzmann equation for a simple parabolic energy band
and the assumption that a relaxation time exists. This
case can be solved exactly. The result differs slightly
from that obtained by Azbel and Kaner. In Sec. III
the quantum mechanical problem is formulated and in
Sec. IV application is made to anomalous skin eGect
problems. The result for the skin effect without applied
magnetic fields is precisely the same as that obtained by
the solution of the Boltzmann equation. A detailed
quantum mechanical treatment of anomalous skin
effects with applications to superconductors will be
given in a paper by Mattis and Bardeen. ' Section IV also
makes the application of the results obtained in Sec. III
to the longitudinal and transverse cyclotron resonance
problem. The resonance result is the same as that ob-
tained in Sec. II for the longitudinal case, provided
Ace fur,«Bp, where Bp is the Fermi energy of the
metal and ~ the applied rf field angular velocity. The
case, Kv«Ace, Bp shows a de Haas-van Alphen type of
periodicity. The case Puv Lo, Bp is quite complex,
and in this region one must be quite cautious in inter-
preting the resonance data.
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II. CLASSICAL TREATMENT OF LONGITUDINAL
CYCLOTRON RESONANCE

The problem is solved first by means of the Boltz-
mann equation, which serves to introduce the means
of handling the specular reflection boundary condition
and of outlining the form which the later quantum

' P. N. Argyres, Phys. Rev. 109, 1115 (1958).
D. Mattis and J. Bardeen, Phys. Rev. 111,412 (1958), follow-

ing paper.
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the Fourier transforms

)2l '* t"
fp I I

I 8' *8fdv
Epr) ~ p

(2) & t"
e'"E(s)ds,

&) ~,
Eq. (1) becomes

(2)

X,vg
1—iqvr sin8 sin&p+rp, r bf, = —efp'EpvTcos8. , (3)

8p

where
7- = r/(1+irpr).

Y&Qy
Equation (3) has the solution

FIG. 1. Coordinate system and configuration of electric and
gf ~f

I c QE r d r exp{( )magnetic fields for longitudinal cyclotron resonance. The xy plane P P '
J

is the surface of the metal which occupies the space for s)0.
&(I (ip' —q)+ivrq sin8(cosip' —cosy) j}. (4)

calculation will assume. The diffuse reflection case,
though favored by experimental results, does not seem
to give appreciably different results from the case
treated here, and the mathematical simplicity obtained
for specular reaction is considerable.

The field configuration and coordinate system are as
shown in Fig. 1. The Boltzmann equation is

I,=2emsh 'J 8f, v'dv cos8 sin8d8dq. (5)

The constant of integration has been determined by the
boundary condition 8fp(p+2rr) =Sf,(ip}. The Fourier
transform of the x component of the current is given by

8 8
(1+irpr)5f+vr sin8 sin p Sf+cd,r —8f

Bs Bp

The integration over the velocity is accomplished by
use of the relation

t" 8fp 3 )2vIb~s
v'g(v)dv =

I I
Itr—g(v, )

8 &m)
= —efp'rE(s)v cos8, (1) (6)

Jp Bv
where v, 0, p are the polar coordinates in velocity space,
the distribution function f=fp+8fe'"', fp ——Bfp/88, r is where vy is the velocity at the Fermi surface and X is
the relaxation time, E(s)e'"' is the rf electric field which the electron concentration. Substituting (4) into (5)
damps out in the metal, and pp, =eHp/mc. In terms of and making use of (6), one obtains

3 Iv'e'E, ( 2v- )I,= —— 1—exp
I I ~

cos'8 sin8d8
4s. mrp, 4(p, 7=) ~ p

The change of variable

p21l' qv+2x'

X dq Jl
0

dy' exp{(rp,r) 'L(y' —p)+ivy7q sin8(cospp' —cosy) j}. (7)

enables one to write (7) as

~=s(p' —~), P=s(t'+V)

3 Xe'E, t'2v )I,= 1—exp I I
— cos'8 sin8d8 du

27l BIC0~ ~COAT) ~ p Ij p

dP exp{2(cp,r) 'I cr —ivyrq sin8 sinP sinn)}, (8)

which upon integration gives where op Iqe'r/m, b=a&,r, a. n——d

O.O&,
I,= ,' Eb(ivyrq), -

1+icev.

00 n 1
Eb(s}=4 p II—,, (1o)

n p(2rb+3) (2rs+=1) v=p 1+ysbs
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f'1+s't
Kp(s) =—2s —(1—s') ln(

S E1-s]
(12)

which gives, for small s (urer« ~
1+t'rdr

~

or X/8

«~1+itpr~; 'A is the mean free path and 5 the skin
depth),

Ko(0) = s (13)

resulting once again in Ohm's law for the current. In
the extreme anomalous limit (nrcIr))~1+itpr ~), one has
the asymptotic expansion

Kp (s) st/s, — (14)

In the limit of high magnetic fields, ~,7.))co7- and
co,v))1, only the m=0 term of the series is important
and one obtains Ohm's law

I,= [o p/(1+i&or) jE,.
The case of zero magnetic field can also be handled
easily. In this case the summation yields

An electron which is specularly rejected from the sur-
face will follow a trajectory after reaction which is just
the mirror image of the trajectory which it would have
followed if it had been allowed to cross over into the
other half-plane. When magnetic fields are present the
dc magnetic field must be reversed in the upper half-

plane, as a magnetic field is an axial vector which
reverses sign upon reflection. The problem may now be
considered io an infinite medium if the following exten-
sions are made:

E(—s) =E(s), E,=Ep, I p(
—tp.) =I,( pp). (20)

The latter is true in (17) by virtue of the reversal of
sign of co. for plus and minus q. In addition, the solution
of E es s must show a discontinuity in the first deriva-
tive at s=0. This is accomplished by adding the term
2E'(0)8(s) to the right-hand side of (18) or (2/pr)'*E'(0)
to the right-hand side of (19),where E'(0) = (dE/ds). =p.

The equation relating the Fourier coefficients in which
the boundary conditions are already contained is

which yields the current
Se'Eq

mvpq
(15)

QP

~2+
C2

4n.ice 2) '*

I.+ I

—
I
E'(0).

c'
(21)

This procedure is equivalent to introducing a current
sheet on the s=0 plane of the infinite medium. The
medium has been made infinite to account for the
specular reflection of the electrons from the surfaces,
after which a current sheet must be introduced at
s=0 to produce the correct boundary conditions for the
electric field.

The surface impedance is defined as

independent of the relaxation time. The asymptotic
expansion of (10) for large sb ' (pre/tp, ))1 or r,/5))1;
r, is the cyclotron radius) is

(16)Ks (s)~ i (rr/s) coth (pr/b—),

giving the current
iVesEp ( 1+sppr'l

I,= ', 7r coth~ n-
rlvr'rI k rpgT ) (17)

4n-ipp E(0)4n- E,(0)
Z(0) =R+iX=

c II„(0)

(23)E(s) = (2pr) '* Epe "*dq
d'E cv' 4mico

+ E= I, —
s' |,-2 c2

(18)
where E, is obtained from (21) and the expression for
I, obtained by a solution of the transport equation.
The high field limit, r,«8, gives, using (11), (21),

(19) and (23),

the Fourier transform of which is

t —q'+ (tp'/c') jE,= (4prstp/c') I,.

which for co~))1 shows periodic oscillations.
Following a method outlined by Serber, one can use

expressions (11), (15), and (17) to obtain the surface The quantity E(s) is given by the inverse Fourier
impedance for the case of specular reQection in a rather transform
simple manner. Maxwell's equations give QQ

where

E(0) 2 t" tp' 4n.ice ( ap q
' —1

&v —v'+
E'(0) ~ & p c' c' l 1+i~r) g,

4x'zG00 p

pc=
c' c'(1+ster)

(25)

and the sign of the square root is such' that the real part of q, is positive. This is identical to the skin e6ect problem

' R. Serber (unpublished). The authors are indebted to M. H. Cohen for calling this work to their attention.
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in. the absence of a magnetic field with E(s) following the exponential law e &". The low-field limit, r,)&8, is ob-
tained in a similar manner using the current expression (17). The ratio E(0)/E'(0) is

E(0) 2 t" ~' 3sr'coop f sr )
gdg g' ——q+ ico-thI

E'(o) sr "o c' c'vs r
(26)

which integrates to yield (neglecting the displacement current)

E(0) ( i ) (3srso.rsc)
—

&

E'(0) & V3) & c'vsr ) -Or c7
(1+icor) (27)

The power absorption is proportional to the real part of the surface impedance, R, which is given by

16sr&c cosI rs(n+sr)] I
sinh'(sr/cv, r) cosh'(sr/cp, r)+sin'(srrc/rd, ) cos'(srco/cc, )]"'

R=
3~c' (3rr'o ocu/c'vs r) ' Leos'(srM/cu, ) cosh'(sr/pp, r)+sin'(srco/co, }sinh'(sr/co, r)]'

(28)

where tann= sin(2srcc/cp, )I sinh(2sr/co. r}] '. A plot of
R for several values of the relaxation time is shown in

Fig. 2. Harmonic absorption occurs and leads to de-
creases in the value of R whenever cp/&p, is an integer.

IIL QUANTUM TRANSPORT

The use of density matrix techniques in transport
calculations has recently been reviewed by Xakajima. '

I25

X—Xp+ eXt) (29)

where BCO is time independent with eigenfunctions, q „,
and eigenvalues, B„=Ace„,and &AC~ is a time-dependent

perturbation. The solution to the time-dependent

problem,

The general considerations are given briefly in this
section followed by an application to the anomalous
skin eGect problem in Sec. IV.

The Hamiltonian for the system will be written

X+.= ik, r)%./Bt, (30)

is then expanded in terms of the eigenfunctions of BCO,

namely

.T5

+ =P„a (si, t)lt„e (31)

The u 's satisfy the differential equation

d (si, t)=(iIt) 'P a ( &ts)i( I
sXieI t')esi"&""'—""& (32)

.25

or the integral equation

a.(is,t)=a (si, —~)
t

+ (ih) ' g a (si', t')g„„(t')dh', (33)
v, "I4 0

.5 L5

g- (h) = (nleXr(h) In') expLih(~ —~ )] (34)

) I

0
I,O ~ 2.0 2.5

where

FIG. 2. R'=R(16rrco/3&c') '(3v'ao~/c'vsr)i vs co,/ca for err= 1 and
10. The first five harmonics are indicated by arrows. The funda-
mental and first harmonic are appreciably shifted toward lower
magnetic fields. This shift remains even for longer relaxation times. 13)r itel'atloil of (33},One obtains

a (si,t)=a (si, —~)+(ik) 'Q a.(n', —~) g (t')dh'
n' —00

+(i7i)—' Q a.(si" —~) g (h')dh' g„.„"(t")dt"+ . . (35)

The matrix element of the current operator is given by

e rr eyi„= ov„*I p —-A Ip„exp(it(pc„—cc )}+c.c
I2sst & c )

v S. Nairajima, in Advances In Physics, edited by N. F. Mott (Taylor and Francis Ltd. , London, 1955), Vol. 4, p. 363.

(36)
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The total current being given by
I=Tr(pi) =P„,„p.„i„„, (3'1)

where p is the density matrix whose matrix elements are

1
p„„(t)= P—a (N, t)a *(m,t).S (38)

Substitution of the perturbation expansion (35) into (38) enables one to express p„(t) as

-(t)= -(—™)+(+)'z --(— ) g- (t')«' —(@) 'z - (— ) g- -(t')«'+
n' n'

(39)

If one assumes that at t= —~ the perturbation is turned on adiabatically and that the density matrix is diagonal,
then

(4o)

where fo(8 ) is the Fermi function. The matrix elements of the density matrix at time t are

t

p-(t) =&-fo(~-)+( ~)-'I fo(~-)-f (~.)7 g..(t')«'+" .

The evaluation of the trace in (32) results in

(41)

e f e
I(r) = Z fo(&-) ~-*I F—-A

I ~-+ (+) ' 2 Lfo(@-)—fo(~-)3
2m n 0 c

, (
X g (t )«'p *~ y ——A ~y exp/it(co —~„)g+ +c.c. . (42)

c )
It is convenient to deal with the Fourier transform of (42) which is given by

I(q) = (2') '* e'&'I(r)dr

e ( e
& fo(&-)(~le"'lN')I ~' F—-A ~ [2m, ( c i

+(+) ' & Lfo(&-)—fo(&-)j g--(t')«'(~le"'~"")
n, n', fe"

e p —-A e
I expLit(~„—~„)j+ +c.c. . (43)

c

IV. QUANTUM MECHANICAL TREATMENT OF
ANOMALOUS SKIN EFFECTS

gas is
Xp=P'/2m. (44)

As a 6rst application of the quantum mechanical
treatment of a skin eBect problem, the anomalous skin
eGect in the absence of a magnetic field is now given.
The result is identical to that obtained by Reuter and
Sondheimer' for the classical case provided the skin
depth 6 is much greater than the de Broglie wavelength
of an electron at the Fermi surface, i.e., 8k~&)1, a
condition which is satisfied for all metals in the skin
e8ect region.

r n Hamiltonian for a free-electron

An rf electric 6eld in the x direction is represented by
the vector potential

A, = (ie"c/2") (e'"'—e-'"')E(s)i, (45)

where i is a unit vector in the x direction; this vector
potential builds up exponentially from t = —oo and
gives rise to the perturbation

(46)eK'= ( i e/a2& )me" ( 'e' e—' ')E(z)p—The one elect o

where the xy plane is the surface of the metal and the
A195, 336 l1949), electric Geld is dependent on s, the depth into the metal,
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The unperturbed problem has plane wave eigenfunctions

p = (2~)
—le"'

and energy eigenvalues
by=ha)g=h, 'k'/2m ha =k(u~ =k'k '/2m

The matrix elements required to perform the summation. (43) are

(k~ e'&'~ k")=8(—k+q+k"),

(47)

(48)

(49)

~

k" p —-A k'
~

=5k'8(k' —k")—i e"(—e'"' e'"—')5(k ' —k ")5(k '—k ")E(k ' —k ")
c ) 2(u(2~) -'*

8 1
g~ ~(t) = exp{it(a&~ —~q —ia)}—(e' '—e '"')kk 5(k —k ')8(k„—k„')E(k,—k, ').

mpp(2m) l 2i

(50)

(51)

Substitution into (43) yields

1.(a) =1*(a)=o,

i7i
I,(q) =—

2~
—

~
5(q,)8(q„)E(q,)e" i(e' ' e'"')—P fp(h&)+ —P k,'t fp(ha, —&,) —fp(h&) j

m ~

)(Pe'"'(cv+k 'ha, q, O— '—Sg ia) —~ e'"—'( co+—k 'ha —
p

—k 'hg —ia) ~j+ ~ +c.c. t (52)

where a factor of two is inserted to account for the sum over electron spin. If one assumes q,(&kp, i.e., b))de Broglie
wavelength of an electron at the Fermi surface, then the integration over k results in

Xe' (vpq, ) e,q, ql, (g) =2~8(q,)5(q„)fi E(q,)e"— e'~'Ep~
~

e'"'K ]-
mc Ea ia& — i.( gaia)

(53)

where 1V is the electron concentration, v& is the Fermi velocity, and Ep(s) is given by Eq. (12). To obtain the
conductivity, recall that the electric field is given by

1 BAg
jV =

c Bt

(cu —ia) (pp+ia)=-"'E(s)
I

—
I
e'"+

I (54)

1Ve' t' ~pq. )
Zp)

mi(~ —ia) lcd ia)—

If one assumes a time dependence e'"', then (53) and under what conditions the interpretation. of the experi-
(54) imply a complex conductivity mental results by means of the Boltzmann equation is

in question.
The vector potential for the dc magnetic field is

chosen as

which is identical to (9) for zero magnetic field where
the relaxation time 7- is identified with u '.

Thus, provided 6kJ ))1, the quantum calculation gives
precisely the same result as the solution of the Boltz-
mann equation for the skin effect in the absence of a
magnetic Geld.

The skin effect problem for a dc magnetic field, Hp,

parallel to the surface which has been treated classically
in Sec. II can be solved quantum mechanically by
using the expressions developed in Sec. III. The quan-

tum problem gives the same results as the classical
calculation; however, one now sees clearly the limits

of validity for the expressions developed and hence

Ap ——
yH p (0,0,1),

and the unperturbed Hamiltonian

(56)

( e
Xp=

i p —-Ap
i

c
2m (57)

which has eigenvalues

Sna= km', (n+, ,')+k'k. '/2-m, (58)

and eigenfunctions

PnA, „I,= (2m) ~
, exp{i(k,x+k,s)}P„(y+X2k,), (59)
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where
V= k/mpp,

and P„(y) is the normalized harmonic oscillator wave
function. The perturbation caused by the rf field is

aeg ———(ei/2ppm)e" (e'"' e—'"—)&(z)p., (60)

where o,=x or y for longitudinal or transverse cyclotron
resonance, respectively. An evaluation of matrix ele-
ments in the expression for the Fourier transform of the
x component of the current in the longitudinal cyclotron
resonance case, gives

I.(q) =J.(q) =o,
2

I,(q) = — p(q, )p(q, )e" i(e'"' —e '"') p J„„(q»k„k,—q~) Jn n(0& k~—qi, ki)fp(hnk*)
8m 2m(o n, n', k , k

gm n, n', k ', kz
kg [fp(8nkn) fp($ 'kn,)]J..(q»4, k,—q.)Jn n(0, 4—q., k.)

X{e'"'[ —,(n' —n) —ia] '—e
—'"'[—s)+pp, (n' —n) —ia] ')+. +c.c. , (61)

where

J„„(qp,k„k,') =
~ 00

e"»y *(y+Vk,)P (y+X'k, ')dy,

and
J„„(q„,k„k,—q,) =exp( —iqpX k,)J„(q„,0, —

q ). (62)

The sum over k, results in a delta function in q„; hence

g2

k
+—Q [fp(Ink, )—fp(Sn k,)]k,'J„„(0,0, —q,)J„.„(0, —q„0)

Zm n n' k

I,(q)= e"8( q)8( q)E(q, ) ti(e'~' e'~') P— fp(8 zn)kJ»~(0&0& qq)Jnln(0& qq&0)'1

X{e'"'[pp ia+pp, —(n' n)] ' —e""'[—~ ia+—pp, —(n' n)]—'l—+r. +c c (63)

For transverse cyclotron resonance, one obtains

g2

q q * ' '"' '' ( ""*
4xmo)) ' n, n', k

XJ„„(0,—q„O)+(ibm) '
n, n', n",n"', k~

[fp(h k*)—fp(@ 'k*)]J- --(0 —q* 0)(P.)-"-

XJ„„(0,0, —q,)(p„)„„{e'"'[pp ia+pp, (n' —n)] ' e' —'[ pp —ia+pp, (n—' —n)] 'l+ —+c.c. , (64)

where the momentum matrix element between the harmonic oscillator states is

k -
)ny '* pn+1y '

(p,)-"-=—
I

—
I &. .. i-I —

I &.-,.+~ .
i (2) ' E2) (65)

The integrals (62) are orthogonal for the special case

and are related by
P„"J„„"(0,0,q)J„"„(O,q,0) =8„„,

J' *(q„,k.,k, ') =J„„(q„,k, ',k.).

(66)

(67)

One can once again use Eq. (54) for the el'ectric field and obtain the complex conductivity for longitudinal
cyclotron resonance:

0 long=
g2g

m n, n', k

~cue

Q fp(bnk, )+
2pr9, 'm(pp —ia)

[fp(Ink ) fp(8 k)]n

Xk,P(n' —n)
~
J„„(0,—qg, 0)

~
P[(pp ia) P , —( pp' Pnn—)P] ' (68)
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and for transverse cyclotron resonance:

&tran = cue

f»(hnk )+ Q [fp(Snab )—f»(8n'k~))
2rr9're. (pp

—za), i* fez

&& (n' —e)
~
(J(0, —q„O)Pp) ~ ~ ~

'[(pi —ia)' —pi '(n' —n)')-' (69)

where J(0, —q„0)p„ is a matrix product and the operator J(0,0,q) =J(0, —q, 0)=exp[zhil, 'qp, „)
A Taylor's series expansion of the Fermi function and integration by parts simplifies (68) to

where

I J- -(0 —q* 0) I

'

ep ——8p (hp&,)
—'—-', .

V2e'i(pp —ia) »
Oi.„,—— g (np —n)l P

ezpi, 'zr9, » ~=» '=p [(co—ia)/pp, )'—(e' —n)'
(70)

After integration over k, the conductivity for the transverse resonance can be written

242e'i » ~
~ (P„)„„~' (n' —n)

O.z...= 2 (n~ —n)'* 2 +
I [J(0, —q*, o)P.) ~ I' (71)

zrprn(pi ia)—liI'z' =p "=o e' —e [(pp —za)/pi, )'—(e' —e)'

where the f-sum rule has been used in the manipulation of the first term in the bracket.
The two-center harmonic oscillator integrals (62) can be evalua, ted" to give

J~„(0,q,O)=exp[ (Xq/—2)')(e!/e'!)'(—liq/V2)"' "L "' "(X'q'/2), n') n,

where L„(x) is the associated Laguerre polynonial
dn

L„(x)= (e!)—'e*x—
(e

—*x"+ ).
dS

(72)

(73)

For large values of rs one can use the asymptotic expansion

r (n+u+1)
L„(x)=e"x—" J ([2x(2n+n+1))')+0(n " *)

e![(2n+n+1)/2) "
where J (g) is the Bessel function of order n. Thus for large n and n (n' one obtains from (72), (74), and the asymp-
totic expansion for the F function

J„„(O,q„0)= (—1)"'—"J„„(Xq,[n+e'+1)-:).

The limit of infinite skin depth, Xq.—4, reduces the two-center integral (62) to

J„„(O,q,O)=8 „,
which when substituted into (70) and (71) yield the classical result"

(73)

and

0 long = gp

1+zppr

1+iair

(76)

&tran 0 0
(1+i&sr)'+(o 'r' (77)

J„„(O,q„O) =2'[zr
j Xq.

~
(e+e'+1) ') & cos(Xq,[n+n'+1)&),

» See A. Erde]yi pt p$. , Pig/ep' Transcendenta/ Functions {McGraw-Hill Book Company, Inc. , New York, 1953), Vol. 2, p. 292.
'~ See Kittel, Introduction to Solid State Physics, {John Wiley and Sons, Inc. , ¹wYork, 1956), second edition, p. 372.

(7g)

where the relaxation time v. is identified with a '.
The argument of the Bessel function in (75) is approximately r,/5, which is large in metals at the magnetic fields

in question. Hence one can use the asymptotic expansion for the Bessel function and obtain
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and
2(rt+rt'+ 1) '*

[J(O,q„O)p„] „=— sin(Xg, [e+rt'+1]').
i) ~/) q, [

(79)

V2e'ip OQ—P (re t—t) l P -[2rt+n+ 1$
m(o m'9 4q n=o

C g8 a o=p—
s —ns

(80)0 long

Substitution of (78) into (70) and (79) into (71) and replacing the square of the sine and cosine by —, gives for the
longitudinal conductivity

and for the transverse conductivity

ot„= p (tt~ —n)*'p -[p'+n'+2n(2rt+1) j[2n+n+ 1j
m ((u —ia)~9.4q, =s a= ops —ns-

where p= (co—iu)/ro, .

(18)

The summations in. (80) and (81) may be evaluated
with the aid of the integral

f(s)
co as

2z.i o c p s
(82)

over the contour shown in Fig. 3. The integral over the
contour vanishes provided f(s) diverges slower than s'.
If f(s) has no singularities inside the contour, one
obtains

f(n) z.
=—(cotz P)[f(p)+f(—P)j.

R=o p n 2p
(83)

The summation is carried out under the assumption
that p«mp, i.e., a Taylor's series expansion is used for
f(p) The final . summation over tt is replaced by an

integration, an approximation which is very good for
large rte, . With these approximations both (80) and (81)
reduce to the classical expression (17).

In very high magnetic fields where A~&&hcv . h~&,

the asymptotic expansion for the associated Laguerre
polynomial is no longer valid, and one must use the
exact expression for the two-center harmonic oscillator
integral (72) . This limit gives a de Haas-van Alphen

type of oscillations of the surface impedance, which
results from the fact that as the magnetic field decreases
from infinite fields where only the e=0 state is occu-
pied, additional quantum states become occupied and
these quantum states for small values of e have ap-
preciably different q, dependence from the asymptotic
expansion used for large m. Hence the surface impedance
changes in a discontinuous fashion as each new oscillator
state begins to be occupied. New terms enter into the
summation (70) and (71) when

Sp/h(o, = (2rrt+ 1)/2, (84)

where m is an integer, and thus a discontinuous change
in Z(0) will be observed when (84) is satisfied. f.
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FIG. 3. The contour used to evaluate summation (83).
f Xote added r'I proof. M. Ia Azbel [J.Exptl. Theore—t. Phys.

(U.S.S.R.) 34, 969 (1958)g has also discussed this possibility.


