
394 D. J. DEBITETTO AND L. H. FISHER

values of pd. At any rate, Kachickas in his thesis gives a
sparking potential of 35.0 kv for pd= 960 cm mm Hg for
"moderate ultraviolet illumination. " Considering that
Kachickas used a different cathode than we did, this
agreement seems very consistent with our measurements
of F*, G*, and y*.

Thus although a detailed study has not been made,

the indications are that the Townsend breakdown condi-
tion satisfactorily describes the breakdown mechanism
in electron-attaching gases.

One may now see why oxygen has a breakdown po-
tential as low as that of air or nitrogen. While attach-
ment reduces primary ionization currents, y is so high
in oxygen as to compensate for the effect of attachment.
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Although most of the features of the observed periodic devia-
tions in the Schottky eGect are in good agreement with predicted
behavior, there is still disagreement between theory and experi-
ment in the phase and amplitude of the deviations. It has been
suggested that a possible origin of this difhculty is the use of the
simple image force barrier at the surface of the metal. In this
paper a model for the surface potential barrier is developed which
is based on the quantum-mechanical calculation made by Bardeen
on the form of the potential at the surface of a sodium-like metal,
and the analysis of Sachs and Dexter on the quantum limits of
the image-force theory. Employing this model, the periodic
deviations are recalculated using essentially the mathematical
formalism developed by Juenker and his co-workers. Certain

computational refinements are introduced in the averaging of
the transmission coeKcient. The results are compared with
previous theory and experiment in terms of two parameters
which characterize the form of the surface potential; the surface
reflection coeKcient ~p ~

which appears as a factor in the ampli-
tude, and the phase factor B. These computed values are 0.6 and
2.6 respectively, as compared to single mean experimental values
of 0.4 and 2.2 for the highly refractory metals, and to previous
theoretical values of 0.2 and 3.7. The surface reQection coeKcient
calculated for the present model is in satisfactory agreement
with recent experiments on the elastic scattering of slow electrons
from the surface of a metal.

I. INTRODUCTION

'HE increase in saturation thermionic emission
from a metal with applied field strength was

explained by Schottky as due to the lowering of the
potential barrier at the surface by the external electric
field. When careful measurements are taken on the
variation of the current density, j, with the applied
field, F, the plot of logj against F' is not a straight line

as predicted by the simple Schottky theory, but instead
one finds small oscillations about a straight line which
increase in amplitude and period as Ii is increased.
Guth and Mullin, ' using the free electron model of a
metal and a one-dimensional classical image potential,
accounted for the periodic deviations as due to the
interference between electron waves reflected from the
barrier maximum and those reflected from a region of

steep potential gradient near the surface of the metal.
The analysis of the experimental data on the Schottky

deviations was made physically clearer when the theory
was reformulated in terms of a total transmission co-

*This paper is based on a dissertation submitted by P. H.
Cutler in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Physics of The
Pennsylvania State University.

f Haloid Fellow in Solid State Physics.
' E. Guth and C. J. Mullin, Phys. Rev. 59, 575 (1941).

efficient defined by Herring and Nichols. ' They ex-
pressed the transmission coefFicient in terms of two
complex reflection coefficients, one of which, ), depends
upon the potential in the region of barrier maximum,
and p, which depends upon the form of the potential
near the emitter surface. Stated in this way, the effect
of each reflecting region upon such experimentally
measurable quantities as the period, phase, and
amplitude of the deviations can be clearly identified.

The theory has been modified in terms of the revised
transmission coefficient by Juenker, Colladay, and
Coomes, ' Juenker, ' and Miller and Good. ' Their results
gave the correct period of the deviations and also
agreed with the observed variation of the amplitude
with field and temperature. '' '' However, quantita-
tively the observed amplitudes and phase of the devia-
tions did not agree with the theory. A possible source
of the disagreement might have been the validity of the
WEB approximation used in both the original Guth-

' C. Herring and M. H. Nichols, Revs. Modern Phys. 21, 185
(1949).

3 Juenker, Colladay, and Coomes, Phys. Rev. 90, 772 (1953).
This reference will hereafter be referred to as JI.

4D. W. Juenker, Phys. Rev. 99, 1155 (1955). This reference
will hereafter be referred to as JII.

5 S. C. Miller and R. H. Good, Phys. Rev. 92, 1367 (1953).' Munick, La Serge, and Coomes, Phys. Rev. 80, 887 (1950).' Brock, Houde, and Coomes, Phys. Rev. 89, 851 (1953).
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Mullin' theory and in JI and JII. Miller and Good, '
however, making use of the more exact WEB-type
approximations' in recalculating the periodic deviations,
obtained essentially the same results as in JI and JII.
Since they used the same potential model as Juenker
et aIt. , the agreement removes any uncertainty about
the mathematical approximations.

It has been suggested' that a possible origin of the
disagreement lies in the use of the simple image-force
potential in the immediate neighborhood of the surface.
Herring'' has discussed the general behavior of an
eRective one-dimensional potential which an electron
encounters moving through the surface of a metal.
The qualitative features of this model are based upon
general quantum-mechanical considerations and the
results of Bardeen's" Hartree-Fock calculation of the
charge density in the double layer at the surface of a
monovalent metal.

More recently, Sachs and Dexter" have calculated
an approximate quantum-mechanical correction to the
classical image-force interaction energy which varies
inversely with the square of the electron's distance
from the surface. Using a correction term of this form,
and imposing conditions of continuity with the internal
potential of the metal, we obtain a potential function
which has qualitative agreement with the Bardeen
one-dimensional form. Furthermore, the coe%cient of
the correction term chosen in our work is shown to
have the same sign and order of magnitude as the co-
efficient computed by the methods of Sachs and Dexter.
It is here pertinent to observe that the actual three-
dimensional problem has been reduced to an eRective
one-dimensional model which can only be justified by
the success of its predictions over a fair range of
experiments.

In the present paper the periodic deviations of the
thermionic Schottky eRect are recalculated using the
new model for the potential barrier and some of the
mathematical formalism developed by Juenker, Colla-
day, and Coomes in JI and JII. However, the surface
reAection coefhcient p is here obtained by means of an
exact solution of the Schrodinger equation for the
potential region near the surface where the Geld term
can be neglected. In addition certain modifications of
the energy-averaging process employed in JI and JII
are introduced. The mathematical forms of the devia-
tion terms are essentially unchanged but the new
potential model yields better agreement with experi-
mental results in the phase and amplitudes of th~
deviations.

The proposed model for the surface potential barrier
is discussed in Sec. II. In Sec. III the details for the
calculation of p are given. The parameter X and the

s S. C. Miller and R. H. Good, Phys. Rev. 91, 1N (1953).' C. Herring, in Metal Interfaces (AInerican Society for Metals,
Cleveland, 1952), pp. 1—19.' J. Bardeen, Phys. Rev. 49, 653 (1936)."R.G. Sachs and D. L. Dexter, J.Appl. Phys. 21, 1304 (1950).

correction to the phase factor 8, defined in JI and JII,
are derived in Sec. IV. The energy-averaging of the
transmission coeKcient is performed in Sec. V and the
deviation terms are derived in Sec. VI. A discussion of
the results is given in Sec. VII.

V=O

~ —~ —(ii)
(i11)

FIG. 1. Behavior of the electronic potential energy function in
the neighborhood oi a metal surface according to: (i) simple
classical image-force theory, (ii) the image-force with the Sachs-
Dexter correction term, and (iii) the Bardeen-Herring effective
potential.

"See reference 2, Chap. IV, p. 228.

II. MODEL FOR THE SURFACE
POTENTIAL BARRIER

When an electron is at large distances from the
surface of a metal, the dominant long-range force
exerted on it is due to the induced mirror-image charge
on the metal, but within a distance of a few angstrom'
from the surface the short-range potential fields which
the electron encounters can no longer be represented
by the classical image force. Several theoretical at-
tempts" have been made to determine the charge
distribution at the surface of a metal, from which one
could then obtain the form of the short-range potential
field. Two methods which have been used most fre-
quently are the Fermi-Thomas statistical model of a
metal and the more refined wave-mechanical treatment.
Bardeen" has made the most rigorous quantum treat-
ment and the qualitative features of his results have
general application. By including exchange-correlation
eRects Bardeen finds a one-dimensional eRective poten-
tial asymptotic to the image potential at large distances
outside the surface and approaching a constant value
inside the metal. The electronic charge density which
he calculates has a maximum just beneath the surface
resulting in a corresponding shallow minimum in the
potential function. Thus the eRective potential obtained
by Bardeen has the correct asymptotic form and the
properties that (1) it keeps the force on the electron
finite near the surface, and (2) it exhibits a potential
minimum in the surface region. The solid curve in Fig. 1
describes the Bardeen-type potential.
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of U(x) and —W, then gives the equation for finding
the join point:

x,=-,'xi(1&L1—4'(xi) ']'*), (2)
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FrG. 2. Proposed model for the potential energy barrier of an
electron near the surface of a metal (not drawn to scale). An
electron escaping from the metal with total energy W= U(xo)+e
passes through the constant potential region I and into the surface
reflection region II. Beyond II, the electron moves in the pre-
dominantly mirror-image nonreflecting potential of region III,
and then into the region of the barrier maximum, B~, where elec-
trons having small energy, e, can suffer reflection. As in JI and
JII, the potential in B~ is approximated by the parabolic potential
V„,shown by the dashed curve. The potential in II is joined to—W, and U„atx, and x2 (here, as in JII, x2 is taken equal to x1).

Sachs and Dexter have treated the problem of the
quantum limits of the electrostatic image force theory.
They obtain a correction term A&E which gives the
order-of-magnitude deviation from the classical image
formula due to purely quantum-mechanical eRects in
the metal. This first-order correction to the interaction
energy is of the form Klx '~W(x) ~, where x is the
distance of the electron from the surface, W(x) is the
classical image force energy, and z' is a parameter
depending on the properties of the metal. When ~' is
positive, the resulting potential energy function exhibits
the correct behavior as it approaches the surface, i.e.,
the force on the electron becomes less than the classical
image force. The form of the Sachs-Dexter potential is
given by the dashed curve in Fig. 1. Although Sachs
and Dexter formally set up an equation which in theory
would allow one to compute the potential function
continuously through the surface and into the metal,
the final expression they obtain is only applicable out-
side the surface because of the approximations which
must be used in the derivation.

These considerations have led to the following choice
for the eRective potential energy function in the region
outside the metal:

U(x)= e'(4x) '+.f/e'(4x'—) ' eFx, (1)—
where —e is the value of the electronic charge and F is
the electric field strength. The parameter g in the
correction term would be expected to depend upon the
surface properties of the metal. U(x) must be made to
joie. the constant electrostatic potential energy —8'
inside the metal.

Near the surface the contribution to the potential
due to the field term can be neglected, The continuity

where xi is e'(4W ) '. Note that xi as defined here
would have been the join point of the classical image
potential and —S' . The resulting model for the
potential is shown in Fig. 2.

It is realized that the addition of a simple iI/x' term
will not yield the correct potential in the immediate
neighborhood of the surface. However, when the nega-
tive sign is chosen in (2) there are introduced the two
relevant features of the Bardeen analysis, the finite
force on the electron and a potential minimum in the
surface region.

If we restrict q to positive real values, then from
Eq. (1) we have

0&q&-,'xg.

AiE= const' 'i W(x) i, (4)

where ~: is evaluated by applying a Fermi-Thomas
statistical model to the metal ele'ctrons. The values of
)const~'$, which should correspond to g, are computed
in the Sachs-Dexter approximation to be ~0.41)(10 '
cm for the three metals tungsten, tantalum, and
molybdenum. However, values as high as this render
impossible the joining of the external potential to 8', .
The highest allowed values we can choose for q and
join the potentials are q & ~x~. This makes g~0.09&(10 '
cm for W, Ta, and Mo.

There is an additional argument which tends to
justify the larger value of the parameter p. The depth
of the potential well is related to p by the equation

V = —xi(4') 'W„

where V is the value of V(x) at the potential minimum.
From the calculations of Bardeen" or of Juretschkeia
one can find the approximate value of U for a mono-
valent metal like sodium. For V they obtain about
1.1 8', and the corresponding value of q would be
~~xi. Even if the well depth is varied from 1.1 8' to
1.3 8'„the value of p is very nearly the same. These
small variations in p do not significantly change any
final results in the computations in this paper.

"H. J. Juretschke, Phys. Rev. 92, 1140 (1953).

Values of p 0 introduce a physically implausible
potential and in the limit V(x) reduces to the usual
image-force model. By choosing q&4x~, the Sachs-
Dexter type correction term yields a total potential in
general qualitative agreement with the Bardeen
potential.

Moreover, the larger value of g is indicated on a
physical basis by the computation Sachs and Dexter
make for D~E. Their result for a point-charge inter-
action is
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III. DISCUSSION OF THE PARAMETER p

A. Derivation of p

The calculation of p, proceeds from the following
assignment for the potential in the vicinity of the
surface (see Fig. 2). The zero of V(x), when F=O, is
taken at x= ~.

I. The potential to the left of the join point x, is a
constant:

to the left of the barrier maximum, the WEB approxi-
mation is assumed valid. In this region, the general
solution is a first-order WEB wave

4rir=cip 'exp z " p(g)dg

+czp-' exp —z p(k)dk, (13)

U = —S', for x&x,. (6) with

II. The potential in the region of the minimum is
considered to be independent of applied field:

V(x)=—e'(4x) '+t/e'(4x') ' for x &x&xz (7)

where x2 denotes the beginning of a region in which the
probability of electron reaction is small.

III. To the right of x2 the potential is

p(x) = (2mb '[W+—e'(4x) ' tte'(4—x') '+eFx j)l

In the computation for p only the transmitted wave,
the first term on the right of (13), is used.

The continuity of the wave functions and their
derivatives at the join points x, and x2 yield four
equations for determining the constants p, , b1„,b~, and c~.

V(x) = e'(4x) '—+tte'(4x') ' eFx fo—r xz& x. (8)

In region I we take the plane wave solutions of the
Schrodinger equation to be

$1—e~ "s+ tie

e'""+tie '""=biM1+b&Mz,

Z'K[e' ' tie —'""5=biM1'+bzMz',

( pzs

blMz+b2M4 clpz ' exp~ i pdp

(14)

with time factor e '"'. Since the total energy 8' of a
thermal electron taking part in the emission process
is small compared to 8"„the wave number
k '[2m(W+W )» is very nearly k '[2mW, ».

For the potential in region II, the wave equation
becomes:

~/dxz+2mlz '[W+e'(4x) ' —t/e'(4xz)-'jr=0. (10)

biMz'+ bzM4'

=~j~ 2' g 2' 2

(
&&exp( i pdp ~. (17)

Setting o-'= —2nsk 2', X'= 2me'k ', and introducing the
change of variable p=2ox, we now obtain (10) in the
form

O'P 1 X' t/X' '

+ —-+
dp2 4 80p 4p2 '~

This equation is identically Whittaker's equation, "
O'P 1 k 4

—m'
+ ———-+ /=0

dp 4 p p'

with k= —),'(ga)-' and. m = a-', [1+g),'» The solution
of (11) ls

Ai=biMK, + +bzM1, —,

To facilitate our work we have introduced the simplify-

ing notation

Mi ——Ms, ~ and Ms ——Ml, , „atx,= (2a) 'p„
Ms=My, „and M4=Mt„„atxz= (2o) 'pz,

and pz ——p(xz), hereafter written simply as p. The
prime denotes differentiation with respect to the argu-
ment of the function, and explicitly the derivatives of
the M functions are

M't, ,~=[—-', +p '(2Am)7', ~ +p&l&~e i&

I"(1m 2m) I'(I+-', am —k)
(Ig)

=o I'( —1z+m —k)I'(I+2+2m)1'(tz)

where M&,~ are the Whittaker conQuent hyper-
geometric functions"

MI„~ ——p~"e-»

Solving (14)—(17) for tt, we obtain

Elfl+&2f2+z(bf1 klf2)
p Q s t/Std (19)

I' (1&2m) I' (tz+ —'&m —k)

To the right of xz and extending to a distance of x(f)

"I.N. Sneddon, Specia/ Pttttctiotts of Mathetttatica/ Physics attd
Chemistry (Interscience Publishers, Inc. , Neer York, 1956), p. 34.

GO where
X 1++ .-. (»)

=e I'(-,'am —k)1'(tt+2&m)1'(n+1) fi pK[MzMz M——1M4) giM
—1'+gzMz'—, (19a)

fz p[M1'M4 Mz'——Mzj+K[gzM—z giMij, (19b)—
kl PK[M2M3 M1M43+glM1 g2M2

$2=p[Mz Mz Ml M4$+K[g2M2 glMljq
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and

gi ——(P'/2P) M4+ M4',

gp= (P'/2P)M p+M p'.

(19c)

(19d) M'(x) =aiPi'+bpPp'. (23)

their boundary values are known at x, :
M(x) =agPz+bpII p, (22)

Following JI, Sec. II, and JII, Sec. II, we shall
employ two complex transmission coefFicients in the
surface reAection region, where the latter is to be
treated as an isolated reflector. The arguments of these
coeKcients are necessary for computing the phase
accumulation of an electron wave making forward and
backward transits of this region. Referring to (9) and
(13) for notation, we define a forward transmission
coef6cient

Tp =ci (cp= 0),

and a reverse transmission coefficient

Ts = (p/c2).

From (14)—(17) we readily obtain

2~P*'W(Mp, M4) (fp+ifi)
7 g2KSsgX'2

2 2

Xexp —i P(g)dg, (20)
SP

where f& and f& are given by (19a) and (19b) respectively
and 8' is the VAonskian,

W (Mp,M4) =M pM4' M4M, '. — (21)

For a given value of g and lV„the series solutions for
the M's differed by 1%%uo from those calculated by (22)
and (23). The "internal" consistency of the solutions
obtained by both methods was checked by noting that
the tA"ronskian for any two independent solutions of
(11) is a constant.

IV. CALCULATION OF 2 AND 5

The discussion in this section will follow the notation
and formalism of Sec. II, JII. In Sec. IU and all subse-
quent analysis, we shall use atomic units, i.e., distances
are in units of the first Bohr radius Lap

——(me') 'h'
=0.529 A) and energy in units of the hydrogen ioniza-
tion potential LWir ——(2h') 'me'=13. 58 evj.

It has previously been shown' that the transmission
coefficient for the total potential barrier may be
written in the following form:

D=1 2=1—
f
(X+—p)(1+Iiy*) 'f' Dp

+Di+Dp, (24a)
where

Do=1—fI~ f' (24b)

D = —
II I'C(1 —

I~ I')' —2l~l'(1 f~l') cos2o.j, (24c)

D =2f~ff&f(1- f&f') cos~, (24d)
Upon using the appropriate wave functions in regions

I and III and proceeding in similar fashion as for p and
Tp, the reverse transmission coefficient is found to be

o =argX-arri+ pr,

e2(arg T~arg Tg)

(24e)

(25)

2Wf —Vp+iVif
Tg = /2K&s exp —i P(P)

ViP+ VpP

where
Vi= 'P'3'p+ pP *P3—'p+P '3'p

V =l P 'P'~ ~P 'y+P'~i,
W= W(Mi, Mp),

yg =MgM2' —Mg'3E4,

y2 =Mg'M4' —3f2'M 3',

y3= MIM4 —M2M3,

y4= M2M3' —3fgraf 4'.

B. Numerical Evaluation of p

The rapid convergence of the series solutions in (12)
and (18) makes the numerical computation of p from
the Whittaker functions feasible. As a general check, a
lengthier Runge-Kutta numerical integration of (11)
was performed to obtain two solutions, say Pi and Pp
and their first derivatives. Then since the 3f's are
linear combinations of the f functions, we have the
following set of equations to determine the M's at x2 if

where now, however,

its ——Le+ (xp —x)'(2x xp') '
—iI(x) '(xp —x)'(2xxp') '+iI(xp —x)(3xp') 'j'. (2&)

Xp is defined, as in JII, as the reflection coeKcient to be
attributed to the region 8~ considered as an isolated
reflector. The expansion on D is made with the assump-
tion that fbi f'((1.

To calculate ) 0 the following model for the potential
is assumed: In region III, where V(x) is given by (8),
the WKB approximation, Eq. (13), is used. In the
neighborhood of the barrier maximum, the parabolic
approximation to the potential is assumed valid:

V=V„(x)= —xp '—(2xp') '(x—xp)',

x(l-) «**(—t.).
The corresponding wave function, P~, is given in JII.

The formal calculation for Po has been done else-
where4' so only the final result is given here:

lip ——(cp/ci) = (1+e'&') '*

&(0)

Xexp i/C+in(f') jPe+ ,'f'+2 ~ -~Qdx ——',pr, (26)j.,
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. where

Ke—Kp+o(2Kp) +oKpp —op(4ap)

p= —iI(x) '+2gxxp '(xp —x) ',

Kp= Kp(x) =Ke(o= 0).

(28)

Then, using the approximations (28) and xp«xp,

2 pedx=y —(Sxp)i ——',1'

—L4+1n(P) —lny —ln12)Po —4&(8xp)
'*

The expression for o. given in Eq. (7a) of JII remains
unchanged except that ~& is given by (27).

To evaluate the integral term in (26), we proceed,
as in JII, by first expanding a& about o=0. To terms
of first-order in o Eq. (26) becomes

(a) e+owea (32)

where B= (2orPkT) '.
The result of computing the average of Do is given

in Eq. (10a) of JI. Assuming the high-temperature
approximation discussed in JI and discarding all terms
in (10a) smaller than

~ p ~

B or B', one obtains

(Dp)A, =1+(prB)'/6, (33)

The (+) and (—) signs correspond to the quantities
evaluated for the energy range e&0 and e &0,
respectively.

After expanding ~X~ as in JI, Do, Dig(~), Di~(p)
and Dp~, defined in JI, are more conveniently expressed
by (18a), (18b), (18c), and (18d) of JII, except that
o'p and g' are given by Eq. (30). The functions E~ are
the Boltzmann factors

which differs slightly from Eq. (17b) of JI. The average
of the periodic term Di is the same as Eq. (17c) of JI.
In averaging the important periodic term, D2, certain
approximations were used by the authors of JI and JII.
We have carried out the averaging process for D2
without introducing similar approximations and have
obtained somewhat different results. Upon inserting
(32) into (31), replacing the denominator by (2orB) ',
and setting

r(~+-,')
Do+=2~@~ Q (—1)" cos(op'+g'n)e-'",

I'(-,')I'( +1)

+i1L4+ln(i') —lny —ln12)Po+-'pitPo. (29)

In obtaining (29), the quantity x(l)', defined in Eq.
(5b) of JII, has been approximated by

x(f)' xp'[1——(2xo) i2P' —(8xp ) i')
Substituting (28) in Eq. (7a) of JII, and letting
n=

~ po), one obtains

(30a)0 =oo &g Qy

where

~o' ——(y+ m/2) —8', (30b)
00 r (I+-,')

D-=2lpl 2 (—1)"
r(-;)r(~+1)

5'= 6+ (Sxp)'*+ (y —y')+4it(Sxp) '*, (30c) cos(o p'-g'n) e-',

r( +!)
(Dp)A=4 Blpl & (—1)" Ll.+&.) (34).=o r (i'd+1) I'(-', )f%+2

argT~+argTip n.+P' 2d, —2—— red—x (31) w.here
SQ

e ~ cos(oo'+g'a)dn for o)0, (35)

g'= C—(1—i1) (4—lny —ln12)+&fin(f')+4p). (30d)

The quantities g and 6 are still conveniently found the expression for (D2 Ay becomes

from Eqs. (3a) and (3b) of JII. However, P' is now
determined by the relation

V. ENERGY AVERAGING OF THE
TRANSMISSION COEFFICIENT

The discussion in this section will be restricted to
the thermionic Schottky deviations. The transmission
coefficient given in Eq. (24) can be expressed as a
function of the field and energy by substituting the
values of ) p and p from Eqs. (26), (19), Eqs. (3) and
(4) of JII, and (30) into (24). The average transmission
coefficient (D(F))A„is then found by summing D(Ii, W)
over a Maxwellian distribution of energies. The
average of each term, D„,in Eqs. (24a) —(24d) is
defined, in analogy with Eq. (20) of JII, as

f"E„= e o" cos(op' g'n)da fo—r o(0, (36)

(37)

(38)

u =2m (e+-', +B) for o)0,

b„=2or(n+1 —B) for o(0.
When the integrals are evaluated, (34) becomes

r(I+-;)
(Dp)A. =4~lplB 2 (—1)"

r(N+ 1)r(-;)

X($& '(1+G ') '+b '(1+J ') ') cosop'

o

+ D (a)N (a)da
~

p 4 o

N+(a)da.

+LG„a„—'(1+G ')—'—2„b—'(1+7„')—' sino p') }. (39)

In (34), G„andJ„aredefined by

G„=—g'/a, J =g'/fi . —
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——(2 '[22+2j] '*) =2 '[22+2j]
dj

(D2)A, =42r
~ p ~

Bf2(y) costa p'+f4(y)] . (40)

Since the factor g' is a function of the applied field, sidered as equal to
the summation in (39) must be performed for different
values of g' and a relation developed for (D2)A, of the
form (44)

Z=Z+ 2 +
n=0 n=0 n=¹+1 n=N "+1

(41)

where for the computations E' and Ã" were taken to
be 25 and 45, respectively. For the erst Ã' terms, the
only approximation is to neglect 8 in a„and b„when
the index e)5. Since 8&O. 1 for T)1000'K and
F—10' volt cm ', this results in an error of less than
1% in each term of the first sum.

In the range of e covered by the second sum on the
right of (41), both G„andJ„aremuch less than unity.
Therefore this sum contributes a value independent
of g':

N I I NI I r (22+-;)
(—1)" [a„-+b„—]cosop'.

"=A'+»=N'+1 I'(22+1)1'(2)

The coefficient of sincr0' can be neglected with an error
of less than 1%.

In the last sum on the right side of (41) the values
of n are such that u —b and the Sterling approxima-
tion to the gamma function,

I'(22) (22r)2e "22~

is valid. This sum then becomes

From (30d) it is seen that g' varies slowly with f
Therefore it is adequate to choose a mean value of f' for
all computations. For a characteristic field, say
F=10' volt cm ', the parabolic approximation to the
potential V„,was compared to the true potential V(x).
The choice of f was determined by finding where V„
differed from V(x) by 1%.

If the limiting values of field are 10' volt cm ' to
2 X10' volt cm ', then g' lies between 4.47 and 2.82.
Numerical computations for determining fp(y) and
f4(y) were made for four g' values. To facilitate the
evaluation of (39), the summation was broken up into
three ranges within which appropriate approximations
were applied:

00 N' N"

Inserting (44) into (43) and assuming a continuous
distribution on j, one obtains

oo

(22+2j)-'dj.
n=¹'+1 J 0

The contribution of the final term of (41) is, therefore,

=2r le 1(1P-'+—1)
n=N II+1

When the summations are carried out it is found that
the functions fp(y) and f4(y) can be represented by the
equations

fp(y):44y—",
f4(y)—=o 226y' ".

(46a)

(46b)

&D)"= &D(o))"+&D (B))", (48)
where

(D(B))A„= (2rB) +17.62ry '
~
p~B cos(0'p+0. 4). (49)

VI. THERMIONIC SCHOTTKY DEVIATIONS

To calculate the monotonic and periodic deviation
terms, Fi and F2, we substitute (48) into the current
density formula for Schottky emission:

j=A(D(F) &T' exp[ —(q —Fl) (AT) '],
where q is the thermionic work function for F=0, and
A =4&mk'eh '. Then, letting j0 be the zero-field current
density and taking the logarithm of j/jp, we obtain

Since f4(y) varies by less than. 0.1 of a radian over the
entire range of F, it can be replaced by its average
value. Upon using (46a) and (f4(y))A„the final average
for D2 is

&D2&A =17.62ry "~IA~ B COS(o'p'+0. 4). (47)

If we let (D(0))A,=1—
~
p~' be the zero-field transmis-

sion coeKcient, then the averaged total transmission
coefFicient can be written as

22r
—

&e
—

& p (—1)"22 '. (42)

»(j/jo) —222F'= in[(D(F)&A/&D(0))A ]
=»(L1—

I ~ I
'+ p (2rB)'+ &D2&"][1—I ~ I

'] ')
=Fi+F2, (50)

The summation in (42) can be rewritten as

p ([n+2j] * [I+2j+—1] '),
j=0

(43)

where 22 is now equal to 1P'+1. If 22 is taken large
enough, then the term in curly brackets can be con-

where 224= the Schottky slope= (AT) ' and the terms on
the right side of (50) constitute the deviations from the
simple Schottky theory. By expanding the denominator
in (50), retaining only second-order terms and making
the approximation ln(1+x)—x in the resulting ex-
pression, Eq. (50) becomes

»(j/j p) IIAF':=p(m B)'+ (D2&—A„=F1+F2 (51).
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Then, substituting (47) and (30b) into (51), inserting
numerical values for 8, and changing to the common
logarithm, we obtain the final expressions for the
deviation terms for the thermionic Schottky effect:

F&=4.0X10"T 'y (52)

F,—4.6X10'y "T '~lr~ cos(y+sm —8'+0.4). (53)

The small nonperiodic term Ii~ is identical in its
dependence on 6eld and temperature with the expres-
sions obtained by Juenker4 and Miller and Good' and
differs only in a numerical factor from their results.
Since the monotonic deviations have not been con-
clusively observed, the theory is compared with the
experimentally observed periodic term Ii 2. For purposes
of comparison the periodic term F2 found in the previous
theories are given here:

(Fs) z ——4.9X10'~ir
~

T 'y "cos(y+-'s —5+0.6), (54)

(Fs)srg ——4.6X10'~ p~ T 'y "
Xcos(y+-,'s+argir+8), (55)
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where 0 is a phase factor which varies very slowly with
the applied 6eld. If the model for calculating p is left
unspecified, then (53), (54), and (55) are almost
identical in form.

The theoretically predicted 6eld-dependent factors in
the amplitude and period of the periodic deviations
have very good experimental confirmation. But the
amplitude and phase are also functions of p, , and when
the model for the surface potential barrier is specified as
the conventional image force with discontinuous slope,
the predicted phase of the deviations differ from the
observed phase by about s./4. Moreover, there is lack
of agreement between theory and experiment in the
amplitude of the periodic deviations. This is illustrated
in Fig. 3(a) where (54) and (55), with T=1500'K,
H/' = 10 ev, and p determined by this model, are compared
with the available experimental data for the refractory
metals. (The results of the two expressions are practi-
cally indistinguishable and are plotted as a single
curve. ) By way of comparison, in Fig. 3(b), the present
theory based on the potential of Fig. 2 and with the
parameter ii equal to (—,'s)xr, is compared with the same
experimental curves.

VII. DISCUSSION AND CONCLUSIONS

It has already been noted that the terms
~ p ~

and 8
are determined by the form of the potential at the
surface of the metal. Since these parameters can be
empirically determined from the amplitude and the
location of the maxima and minima of the experiment-
ally measured deviations, comparison can be made with
the values of these terms predicted from theory. In
Table I we have summarized the measured values of
the parameters, those calculated for the simple image-
forqe model, and those given by the present theory.
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FIG. 3. Comparison of the experimental and theoretical Schottky
deviations F~ as a function of y=357.1 F & (F in volt cm '). The
solid lines represent the theoretical curves for T=1500'K and

=10 ev: in Fig. 3(a) according to the simple image-force
model employed in JI, JII and by Miller and Good; in Fig. 3(b)
for the model used in the present theory. Smooth curves have
been drawn through the experimental points. For tungsten, the
experimental data exhibited a bad patch break in the F&—100—300
region and only the half-cycle curve in Fig. 3 could be used with
assurance. References: tungsten, A. 1.. Houde, Ph.D. dissertation,
University of Notre Dame, 1952 (unpublished); tantalum,
reference 3, Fig. 3; molybdenum, G. A. Haas and E. A. Goomes,
Phys. Rev. 100, 640 (1955).

The data for
~ p~, , and (8,„,) are quite similar for

all three metals and, as may be noted from Fig. 3,
within experimental error the deviations for the three
are almost indistinguishable. This is not surprising
when one considers that tungsten, tantalum, and
molybdenum are all b.c.c. lattices with similar surface
structure on corresponding crystal faces and hence
have about the same electron-emission properties. It is
then questionable whether, in the framework of existing
theory, the apparent experimental differences between
the three are significant enough to be considered at
present. Moreover, when these parameters are com-
puted for the box model (see lines 3 and 5, Table I),
the values obtained using the three different 8" 's are
practically equal and a single mean value of each of
the parameters could equally well be used for all three
emitters (see last column, Table I). This is also true
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TABLE I. Summary of the values of the surface parameter l pl

and the phase factor 6 as determined from the experimental
Schottky deviations and computed for the different surface
potentials. The experimental values are taken from Table I of
JI and Table I of JII. The single dagger denotes the theoretical
calculations for the box model [JI, JII], and the double dagger
the values of libel and s' computed from Eqs. (19) and (30a) of
the present theory. Most probable value of 8, ~ for molybdenum
is indicated by an asterisk.

Tungsten Tantalum Molybdenum Mean value

10.3 ev
0.39—0.46
0.22
2.1 -2.3
3.6
0.61
2.6

9.3 ev
0.39—0.45
0.21
1.9 -2.2
3.8
0.61
2.6

10.2 ev
0.30—0.42
0.22
2.8 —2.3*
3.7
0.61
2.6

0.4
0.22
2.2
3.7
0.6
2.6

for the present theory where one value of ~iu~„i and
8'„lcalculated for 8' =10 ev, su@.ces for all three
metals. We shall correspondingly take a single mean
experimental value for ~ii~ and for 5 with which to
compare the theoretical results.

The surface potential proposed in the present theory
yields good agreement in the observed and predicted
phase term 6. There is also improved agreement
between theory and experiment in the surface parameter
Iiu~. The seemingly high values of

~
p~, ~ found from

the periodic deviations have always been regarded
with suspicion because they disagreed with the pre-
dictions of the Nordheim"-MacColl" and Miller-Good'
calculations of the reflection coeScients for a one-
dimensional image-force potential. Juenker4 has sug-

gested that local effects, such as patches, surface
irregularities, and contaminations, would produce low
rather than high apparent values of ~p~,„,. On the
other hand, some recent experimental results on the

's L. Nordheim, Proc. Roy. Soc. (London) A121, 626 (1928).
is L. A. MacColl, Phys. Rev. 56, 699 (1939).

elastic reflection of slow electrons from carefully cleaned
metals are in marked disagreement with the previously
mentioned theories. In particular, for electron energies
of the order of the work function of the metals, the
values of ~fi~' for tungsten" and molybdenum" were
found to be &0.25 and 0.18, respectively —values con-
sistent with results from the periodic deviations.

Thus the analysis, even if restricted to a one-
dimensional potential approximation, can yield satis-
factory agreement with experiment when the simple
image-force law is modified in a manner suggested by
quantum mechanical considerations. Certain improve-
ments in the procedure might suggest themselves, such
as smoothing the derivative of the potential at the join
with W, and correcting for the approximation

~

p~'&&1."
Moreover, it is realized that the shape of our potential
minimum, selected for mathematical convenience,
should probably be somewhat broader and shallower.
However, in the present state of the theory such
second-order corrections seem to be unwarranted.
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