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We suppose that P decay and p, capture are described by a universal vector and axial vector Lagrangian
and we consider, via dispersion relation techniques, the properties of the corresponding S-matrix elements.
Owing to the strong interactions of the nucleons, the structure of the S matrix is expected to be more com-
plicated than that of the Lagrangian. In the former, vector and axial vector terms appear, but with coefB-
cients which in general depend on the invariant nucleon momentum transfer; they can be thought of as Fermi
interaction form factors. Moreover, two additional kinds of terms can appear in the 5-matrix elements: one
which simulates a direct pseudoscalar coupling and one which simulates a direct coupling involving deriva-
tives of the nucleon wave functions. The latter is probably too small to have any experimental significance.
The former, though negligible in P decay, may be appreciable in p capture. We estimate the effective
pseudoscalar coupling coeKcient there to be about eight times as large as the axial vector coeKcient. More
generally, we investigate the structure of the various form factors; and we also reconsider, in further refine-
ment, a recent quantitative discussion which we have given of ~—+p, +v decay.

I. INTRODUCTION

HE validity of the two-component theory of the
neutrino' and of the principle of lepton conserva-

tion appears to be reasonably well established at the
present time. ' Beyond this, comparison of P decay and

p decay discloses a remarkably detailed "universality":
in the standard way of describing such processes, both
seem to be characterized by vector (V) and axial vector
(A) couplings'; and in particular, the vector coupling
coefhcients in P decay and p decay appear to be almost
identical. ' As for the other well-known Fermi process,
p-meson capture, one at present knows only that the
dominant coupling coefFicients must have about the
same magnitude as in P decay, ' although the types of
coupling which occur are not yet established. It does not
seem unreasonable to suppose that the universal V, A
interaction extends also to the process of p capture.

The similarity between P decay and p decay, although
very striking, is apparently not quite a precise one. In
the latter process, the V and A coupling coefficients
appear to be identical in magnitude —as they must be
on the two-component neutrino theory. In P decay the
axial vector coefricient is slightly larger than the vector
coeKcient. This need not be surprising. Even if one
assumes a V, A interaction Lagrangian which is truly
universal, as between P decay and p decay, there is a

' A. Salam, Nuovo cimento 5, 299 (1957); L. Landau, Nuclear
Phys. 3, 127 (1957); T. D. Lee and C. N. Yang, Phys. Rev. 105,
671 (1957).' The experimental evidence comes from many sources. For a
recent compilation see the forthcoming report of the International
Conference on Mesons and Recently Discovered Particles, Padua,
1957 LNuovo cimento (to be published)g.

3 Goldhaber, Grodzins, and Sunyar, Phys. Rev. 109, 1015;
Hermannsfeldt, Maxson, Stahelin, and Allen, Phys. Rev. 107, 641
(1957).

4 This quantitative agreement, within the framework of the two-
component neutrino theory, was first remarked by R. P. Feynman
and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

5 See, for example, T. N. K. Godfrey, Princeton University
thesis, 1954 (unpublished).

'A. Winther and O. Kofoed-Hansen, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. (to be published).

profound difference between the two processes. The
point is that where some of the participating particles
are strongly interacting —as is the case for the nucleons
in P decay and p capture —the 5-matrix element may
have a much more complicated structure than the
Lagrangian. Indeed, what is surprising is that any kind
of S-matrix universality can persist under such cir-
cumstances.

As regards the vector coupling, Feynman and Gell-
Mann4 have suggested that there may be operative a
principle analogous to that of gauge invariance in
electrodynamics, where all charged particles interact
with static electric fields with the same coupling strength.
One could in this way understand that even after
"renormalization" the vector coupling coefFicients are
the same in p decay and P decay (the nucleon mo-
mentum transfer in the latter process is essentially zero;
i.e., the situation is analogous to interaction of a charged
particle with a static electric field). The slight dis-
crepancy between the axial vector coupling coefficients
in p, decay and P decay would then be attributed to
"renormalization" e8ects in the latter process.

Even if these views are correct, the U and A coupling
coeScients in the S-matrix element would in general be
expected to be functions of the invariant nucleon
momentum transfer. In analogy with the problem of
nucleon electromagnetic structure, they could be
thought of as Fermi interaction form factors. Thus, in
the process of p capture, which involves a not inap-
preciable momentum transfer, the U and A coeflicients
might be somewhat different than in P decay, though
the variation is very likely small as we shall see in the
present paper.

%hat is more interesting, however, in connection
with the role of the strong interactions in Fermi
processes, is that coupling types not contained in the
Lagrangian may appear in the S-matrix element. As we
shall discuss, even if one starts with a Lagrangian which
contains only U and A coupling terms, these can
generate in the S-matrix element two additional kinds
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of terms: a pseudoscalar coupling, generated by 2; and,
generated by V, a term which simulates a direct
interaction with derivatives of the nucleon wave func-
tions. This latter coupling is in fact identical in structure
with the anomalous magnetic-moment term in the
nucleon electromagnetic current. Quantitatively it is of
no consequence —it is probably too small to be detected
in either P decay or p capture. *The pseudoscalar term,
however, though negligible in P decay, may be quite
appreciable in p, capture. In fact, we estimate that the
eRective pseudoscalar coupling in p, capture is 8 times
larger than the axial vector coefficient that generates it.
This estimate, and our quantitative discussion in
general, is based on dispersion relation techniques of
calculation. In the approximation actually adopted, the
dispersion relation result concerning the pseudoscalar
coefficient is equivalent to what one obtains' in lowest
order perturbation theory for the sequence ~zz+zr+~
+zz++v, where the amplitude for the last step is ob-
tained from the known rate of pion decay, and where the
unrenormalized pion-nucleon coupling constant is re-
placed by the renormalized one. We invoke the more
elaborate dispersion relation methods to show to what
extent the approximation is valid, not only for the
momentum transfer involved in p captur- - where the
approximation is probably quite justified —but also for
very large momentum transfers. The reason for our
interest in the latter situation has to do with a quanti-
tative discussion of zr—&zz+v decay which we have re-
cently given. ' In this problem the pseudoscalar term
plays a decisive role; but in our earlier discussion,
although very large momentum transfers are involved,
we made use of results which are presumably only valid
at small momentum transfer. We reconsider the problem
here, taking into account additional relevant eRects;
and we 6nd that our earlier result on pion decay is
essentially unaltered.

II. STRUCTURE OF THE S-MATRIX ELEMENT

A

We suppose that P decay and zz capture are described
by a direct interaction Lagrangian of the Fermi type,
with axial vector and vector couplings,

&r=Zpf~gizy) yp(1+yp)fpfzzy) gpss~

+Zzfvfty), (1+yp)tP. /zygo +c c , (1)..

where f~ and fv are the unrenormalized coupling con-
stants, Z2 is the nucleon wave-function renormalization
constant (a corresponding constant for the lepton is set

* Note added in proof.—It should be emphasized that this state-
ment is based on the assumption that one is dealing with a con-
ventional Fermi interaction theory, described, for example, by
the Lagrangian of Eq. (1). In the theory of Feynman and Gell-
Mann, 4 the presence of additional terms such as a direct pion-
lepton interaction would cause the anomalous moment to be very
much larger; experimental tests to detect it have been proposed
by Gell-Mann, Phys. Rev. (to be published).' S. steinberg, Phys. Rev. 106, 1301 (1957).

M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(19S8).

equal to unity, since we will treat the weak interaction
to lowest order and also neglect electromagnetic effects);
P~ is the electron or u-meson field. We shall consider the
processes

(e l
I+p~m+~

(zz
—)

To lowest order in the weak interaction, the S-matrix
element is given by

S=i (2n.)45(zz+p„p p—))M—, (2)
where zz, p„, p, and p, are, respectively, the neutron,
neutrino, proton, and electron (or zz meson) four-
momenta; and

M=u (1—vp)z~n»~(ul ~~(o) I p)
+u„(1—&,h,u,(ulv, (o)lp); (3)

I
zz) and

I p) are the physical neutron and proton states,
and

Pz=Zpf~g zpngkz„

Vg Zzfrg ——v&4„

For simplicity, the lepton spinors are normalized ac-
cording to

u,p,u, =u,p4u. =1. (5)
If we were now to neglect the strong interactions of

the nucleons, the matrix elements (zz I E&, I p) and (zz I
Vq

I p)
would have exactly the same structure as the lepton
covariants with which they are, respectively, contracted.
The actual expressions, however, may be more com-
plicated. Nevertheless, from general invariance prin-
ciples which concern the strong interactions we know
that the structure of the matrix elements must be given
by

t m'q~
(ul ~~I p) =

I I u-(az»» —&(p—N)»p)u. ; (6)
Cp, ,f
~zzz' ~*

(ul Vgl p)= I I u„(cyg id~a„(—p zz)„}u„—; (7)
p p'sp

where nz is the nucleon mass and the nucleon spinors
have the invariant normalization IN=1. That the mo-
mentum factors zz and p appear above only in the com-
bination (p —zz) follows from charge independence and
time-reversal invariance for the strong interactions. For
the rest, the indicated structure of the matrix elements
is determined by the requirement of Lorentz invariance.
Finally, we note that the coefficients a, b, c, and d may
in general be functions of the invariant nucleon mo-
mentum transfer (zz —p)'.

Collecting terms, and using the Dirac equation and
momentum conservation to carry out reductions, we
find for the matrix element M

M =
I I (au„(1 y, )ipgy, u—)u„iygy, u,
& p,u, i

+zzz&bu, (1 yp)cpu«n+puz, +—cu. (1 yp)v&u&unp) uz, —
+zduv(1 'Y p)7) (pl pv)t ulun&xl uz (g)
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The functions a and c are evidently the usual axial
vector and vector coupling coefFicients and for zero
value of the argument (e—p)' are to be identified with
the coupling constants gz and gv of P decay; for p-
capture the argument (io—p)' has the value m„'. The
second term in Eq. (8) has the form of a conventional
pseudoscalar coupling, with eGective pseudoscalar cou-
pling coefficient ns~b. The last term has the form which
one would obtain with a direct interaction involving
derivatives of the spinor fields. It is well known that
terms of this type are not present to any appreciable
extent in P decay. We shall indeed see in the follow-
ing section that, although there is no theoretical
reason to doubt the existence of such a term, the
coeKcient d is probably extremely small, of order
(1/2m) (m„/2m)'(G'/4s)gv, where G is the pion-nucleon
coupling constant. On the other hand, the effective
pseudoscalar coefficient m&b may well be appreciable in
p capture (mi ——m„), though it is presumably quite
negligible in P processes (mi ——m.).

B

It may be of some interest to consider how the matters
discussed above would apply in the case of Fermi
interactions involving a hyperon. For ease of comparison
with the foregoing, consider for example the process

mental information on the form factors over a wide
range of momentum transfers, so that there is a strong
motivation for detailed discussion. In the Fermi inter-
action case one has experimental information only at
zero momentum transfer (P processes) and, to some
extent, at the momentum transfer (e—p)' m„' of p
capture. It is only for processes where Fermi inter-
actions play an intermediate role, as presumably in
~—+@+i decay, that large momentum transfers are of
significance. We shall then only indicate in outline how a
dispersion relation treatment of the full problem could
be carried out; but in detail we attempt only approxi-
mate quantitative estimates.

A

We start with a discussion of the matrix element
(eI P&,

I p). Following standard procedures, "we write

(po+ol * (pol '
& mo) &m)

XJ~d4xc '"'*(0IT(PgF(x) ) I p), (9)

where T( ) denotes the Wick product and F(x) is the
source of the neutron field, defined by

8
I+2+~m+ i .

( 8
+m Iy„(x)=F(x).

E "ax„

Suppose that such a process is described by a direct V, A
Fermi interaction Lagrangian. In this case the matrix
elements analogous to (eIPqI&) and (n

I
VqIZ) would

again contain terms similar to those in (6) and (7), with
the proton momentum p, of course, replaced by the
hyperon momentum Z. But there can now appear
additional terms, which before were ruled out by the
principle of charge independence and the observation
that p and e are members of a charge multiplet. In
(e I

P&, IZ) there can appear a term l„ib'0&„(p+Z),„pouz;
and in(eI VqIZ) a term N„id'(2 e)iez —This lat. ter term
can be reduced, by use of the Dirac equation and mo-
mentum conservation, to yield in the over-all S-matrix
element a contribution which simulates a direct scalar
coupling. We do not pursue the discussion of hyperon P
processes any further, however. There is as yet no
experimental evidence for hyperon P decay. '

III. DISPERSION RELATION APPROACH

A dispersion relation discussion of the Fermi inter-
action form factors a, b, c, and d of Eqs. (6) and (7)
could be carried out in a manner similar to that for the
electromagnetic form factors of the nucleon. For the
latter problem there now exists considerable experi-

J. Steinberger t'private communication). The upper limit on
beta decay of the cV is experimentally an order of magnitude below
the rate expected if the Fermi couplings are the same as in nucleon
beta decay.

We have dropped an equal-time commutator term
which would have ultimately yielded a constant addi-
tion to our expression for the form factor a. This is
permissible since we will eventually write down a dis-
persion relation for a in which a constant is subtracted.
The equal-time commutator contributes nothing to the
coefficient b, however, and for this coeKcient we shall
assume a dispersion relation with no subtraction. We
now observe that

T(PgF (x) )= [P)„F(x)$0(—x)+F(x)Pg. (11)

The second term makes no contribution to the matrix
element. In the first term 8 is the step function. Thus,
we have that

(po+o) *

I(~IP fp)
&m &

=oI —
I &- I d'xc '"'*(0I[P~,F(x)je(—x) Ip) (12)

. (po't *

(m)

We shall not discuss in detail the difficulties of giving
a rigorous derivation of the desired dispersion relations
for the form factors u and b. But we notice that the
integral of Eq. (12) has the form of a Fourier transform
ILehmann, Symanzik, and Zimmerman, Nuovo cimento 2, 425

(1955).
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of an advanced commutator —a structure which at least
makes plausible that u and b are analytic functions of
p= (n —p)' in the upper half P plane. At this point we

simply state the dispersion relations which we shall use.
For b we assume that no subtraction is necessary and
we have

Imb( —~')
b(&) =-

or &o $'+$ i—o
(13)

where the instruction "—i e" shows how the function is
delned for negative $. For a we make one subtraction
and write

Ima( —P')
a(k) =a~ —— '

~'(~'+~-' )
(14)

where g~= a(0).
Our next task is to evaluate the imaginary parts of c

and b To do. this we return to Eq. (12) and express the
absorptive part, call it A &„as a sum over states; A ~ is the
coeKcient of oi in ie( xo) =—2i oio—(xo). We find

Ai=m. (po/m)'* Q, u„(0iP), is)
&&&s IP(0) I p)b(p +n —p) (»)

The term with F and Pq interchanged makes no contri-
bution. The spatial part of the 5 function must, with our
normalization, be regarded as a Kronecker 5 symbol. In
order to maintain the proper reality conditions at all

stages of approximation we shall understand, though we

do not write it explicitly, that the sum over intermediate
states is one-half the sum over "in" and "out" states.

The states Is) which contribute must have zero
nucleon number. For low-energy phenomena like P
decay and p, capture the most significant states are ex-

pected to be those of smallest mass. One can see this
from Eqs. (13) and (14), where $' represents the square
of the mass of the intermediate states is) in Eq. (12).
The state of lowest mass is just the one-pion state. Next
comes the three-pion state (the two-pion state is ruled
out by charge independence and charge conjugation
invariance). Ultimately one encounters nucleon-anti-
nucleon states, hyperon pair states, etc.

The one-pion state, as it turns out, contributes only
to the coefficient b. Its contribution can be easily ex-

pressed in terms of the renormalized pion-nucleon
coupling constant and the experimental lifetime for

orlop, +v decay. In the latter process we can write the
S-matrix element, to lowest order in the weak-interac-
tion Lagrangian of Eq. (1), in the form

~=i(2~)'~(p.+p p-)—
y (m„/p„o) &u„iyiy, (1+go)u„&0

I
Pi

I
or) (16).

It is clear that &0 I
Pi

I
or) must be proportional to (p )i

and, in terms of our earlier notation, ' we write

&0I P I )= —(p-) P(p-')/(2p. o)', (17)

where, of course, p '= —ns ' for actual pion decay. The
numerical value of P(—te ') is known from the'experi-
mental pion lifetime.

The other relevant matrix element is &oriFip) and
here, where (n —p)'= p '= —m ', we may express this
as

(no) * 1
u.&~ IF I p) =

I

—
I vrG -„op,u„

po] (2p-o)*
(18)

Ima(P) =0,
Imb ($)= —or&2GF (—ns~') b ($+ni~').

(20)

Since the next least massive state which can contribute
is the three-pion state, our dispersion relations may now
be written

Ima( —$')
a(() =a~ ——

g'(]'+ g oo)—
(21)

—v2GF( —m. ') 1
+—

$+m '
W 4(3m )2

Imb( —f)
dg' —. (22)

$'+ $—io

We now want to obtain some idea of the contributions
from states of higher mass than the one-pion state
already considered. The next state which properly
should be considered is the three-pion state, but this
appears to be too dificult to treat in any meaningful
way. Since in a perturbation expansion sense the Fermi
interactions always proceed through direct couplings of
leptons with nucleons, we instead turn directly to the
nucleon-antinucleon intermediate state as representa-
tive of the important higher mass states.

It becomes convenient now to consider, in place of
&niPiip), the matrix element &OIPiinp), where n
denotes an antineutron. In terms of the coeKcients a and
b already defined in (6), we have

(pono/nz') 1(0
I Pi

I np in)
= r) „-Laiy) yo —b(p+n) )yoju„(23)

where ~ is the antiparticle spinor and the coeKcients a
and b are now regarded as functions of $= (n+ p)'. For
an "out" state one simply replaces a and b by their
complex conjugates. We again form the absorptive part
Ay, introduce a sum over intermediate states, and this
time select the contribution from intermediate nucleon
pair states

I
NP). We then have

(pol ~

~,=~I —
I P v„-&0IP,INP)

( no)
X&NP i

F
i p)b(N+P n p), (24)——

where G is the renormalized pion-nucleon coupling
constant. We now substitute (17) and (18) into (15)
and compare the result with the definition (6). We find,
as regards the contribution from the one-pion state,

&),=orv2GF( —m ')
)& (p —n) iu„youve((n —p)'+m '); (19)

and thus, with P= (n —P)o,



358 M. L. GOLDBERGER AND S. B. TREIMAN

where as usual one-half the sum over "in" and "out"
states is understood.

Now the first factor, (0~ Pq INP), can be expressed as
in (23). The factor (EP

~

F
~ P), on the other hand, is-

for IMP) an "out" state —just the matrix element for
proton-antineutron scattering; and the delta function in
(24) is just such that we require this matrix element
only for physical values of the momenta. In fact, by
evaluating (24) in the center-of-mass system for the
nucleon pair, one sees that only the 'P& and 'Sp scat-
tering amplitudes are relevant. The matrix element
(O~P&, ~IEP in) is proportional to the S-matrix element
for production of a lepton pair by a nucleon pair. It
turns out that the coefFicient a is proportional to the
amplitude for production by a nucleon pair in the V'»

state; and the combination (a—$(zz+p)'/2m]b) is
proportional to the 'Sp amplitude.

Let us denote by 6& the complex 'I'& phase shift and
by 8s the complex 'Ss phase shift for zz, P scattering. We
express (SP I F

~ P) in terms of these phase shifts and
now carry out the operations implied in (24).

For the nucleon pair contribution to Ima, we find

(Ima)pan = fimfr Ima+Refr Reg]8( —(—4ms), (25)

where fr e'"s——inst. The left-hand side denotes the
nucleon pair contribution to Ima; on the right-hand side
the true coefIIcient a is involved. The step function is
inserted to remind us that the pair state contributes
only for values of g corresponding to physical scattering:
$~& —4m'. In the present case, since the one-pion state
considered earlier makes no contribution to Ima, we can
write (Imrz)n„„=imu, and therefore

Ima(() = tanyr( —$) Rea($)8( —$ 4ms), —(26)
where

00

a(() =g4 exp —— dy
+ 4m& y(y+$ ze)

1
b(~) = —V2GF (—m. ')

$+m '

(30)

rr m. '+$ ) Z s(y)
Xexp —

~ [ dy) ~4m2 (y—m~')(y+P —ze)

Z r(y)2m
+ A exp ——

~
dy

zr 'i4m~ y(y+( —ze)

Z o(y)
(31)—exp —— dy

zr ~4m2 y(y+f Ze)—
To evaluate these at the momentum transfer P=m„'
relevant for p capture, it is legitimate to expand in
powers of P and retain only the first nonvanishing terms.
One finds

a(m„')=g~ 1— I' dy
~ 4m& y~

(32)

b(m ')=—V2GF( m')—
m„'+m. '

(m. '+m„') (
" ps(y)X1—

I

"I dy

We can now substitute the nucleon-pair contributions
into the dispersion relations (21) and (22) and, treating
these as integral equations, solve for a and b. The solu-
tions are readily obtained and one finds" "

Ree"1 sin8~
tang t(—P) =

1—Ime" sining

(27)
2mgg Z s(y) —

Z t(y)
(33)

The argument of ir& has been set equ'al to —
P for later

convenience. The phase shift 8& is to be regarded as a
function of the center-of-mass wave number for zz, p
scattering: k= (—r4$—m') l.

Proceeding in the same way for the combination
(u —($/2m) b] which is involved in 'So scattering, we find

(
Imfu — bi

2m') pair

Ree'~o sin8p
tangs( —g) =

1—Ime 0 sln8p
(29)

(
2m & )

X8(—P
—4m'), (28)

where fs= e'" sin8s. For later reference we define

We notice that the value of F(—m '), as determined
from the experimental pion-decay lifetime, can be
represented by'

F(—m ') = —0.13~2Gmgg/(2zrz) (34)

if we identify g& with the Gamow-Teller coupling con-
stant of P decay. (The algebraic sign follows from our
earlier discussion of pion decay. ) Now from the defini-
tions (27) and (29) one sees that, provided there is

"These solutions are more easily obtained than might at first
appear to be the case. Consider for example the form factor a(().
%e know this is a function analytic in the complex ( plane, cut
from 4'' to —~. We also know fr—om (26) that just above the
cut lmc=tanyI Rea; and we know that a(0)=gg. Finally, we
demand that the dispersion integral. (14) shall exist. These de-
mands fully specify the solution given. One proceeds likewise to
solve for the combination Lo —(f/2m)bg, except that here there is
an additional requirement: namely, b has an isolated singularity at
(=—m ', that is, Imb must have the 8 function singularity indi-
cated in (20).

"See also Federbush, Goldberger, and Treiman (to be pub-
lished).
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always some absorption in the nucleon-antinucleon
interaction, the phase angles pq o are confined to the
range —~x to ~x. Furthermore, on physical grounds we
expect p(4m') =0.

One sees then that at the momentum transfer of
p, capture the contributions from the intermediate
nucleon-pair state are of order (m„'+m ') jm' relative to
the contribution from the one-pion state; i.e., the
coeKcients a and b are well approximated by the leading
terms in (32) and (33). This result is not surprising. H
the complex phase shifts Sp and 5~ were better known
than is the case we could, of course, compute the small
corrections, but too little is known to justify any de-
tailed calculations.

The effective" pseudoscalar coupling constant in

p capture is just given by m„b(m„') = "gp". From (34),
we find

nucleon vertex function according to

(epoutI(m '— )P I0)

)m'p~
I ~-iv».-EL(~+8)'3 (3&)

I N,Poi

In reference 8 both a and b were real in the approxima-
tion considered there. In a certain approximation whose
validity is not here under discussion, we found that

((+m '~
E(t) =v2G exp

so(y)
X dy, (38)

~4m~ (y—m~ ) (y+P iE)—I

0.S ~G'q ~ mm„

, Ig~=8g~
~ (4 ) km„'ym. ') (35)

where q»(y) is the same phase angle as in (29).
Collecting all our present results we find for E the

expression

This is large enough so that the pseudoscalar contribu-
tions to p,-capture sects should be comparable to those
coming from the axial vector and vector couplings.

(m ' ~" yo(y)R= gp expI dy( m &4mm y(y —m '))

R=—Re E*(g) a(g) — b(P)
2m

(36)

where a and b are the same form factors considered in
the present paper, and E(P) is related to the pion-

B
One of the purposes of the present paper is to in-

vestigate the validity of certain assumptions which we
adopted in a recent quantitative discussion of ~—+@+v

decay. ' We pictured this process as occuring through
pion dissociation into a nucleon pair, the latter anni-
hilating to produce the leptons. Only the axial vector
and pseudoscalar couplings in the Fermi interaction
Lagrangian are relevant here and, as in the present
discussion, we assumed that the Lagrangian contains no
pseudoscalar coupling. However, as we have seen, the
S-matrix element does contain a pseudoscalar term, as
well as an axial vector term. In the discussion of pion
decay, a knowledge of the form factors a(() and b(() is
required for values of g&~ —4m'. Nevertheless, in our
earlier discussion we adopted for these the expressions
obtained in the one-pion intermediate state approxima-
tion. What we want to show now is that our results on
pion decay are essentially unaltered if we adopt the
more complicated expressions (30) and (31), which
include also the nucleon-pair contributions. These latter
expressions are, of course, still not guaranteed to be
accurate for large values of momentum transfer, since
we are still neglecting a great many other intermediate
states in computing a and b, But we feel that the pion
decay discussion can now be put on a more firm footing.

In our work on pion decay we encountered an ex-
pression

vZCa( —m ') H(g) (39)
2m $+m '.

where
2

H(() =%2G exp ——(P+m ')P

co(y)
X I dy, (40)"4- (y m-') (y+—5)

the symbol P denotes a principle value integration. The
expression (39) differs in two respects from the one
adopted in our earlier discussion, where we neglected the
nucleon pair contribution to the form factors u and 6:
(1) The exponential which multiplies g~ in (39) was
previously in effect set equal to unity; but the expo-
nential is in fact not very different from unity, so this
correction is quite insignificant. (2) The factor H($) in
(39) was earlier replaced simply by ReE($). For the
relevant values of P, namely g&~ —4m', we have

f8+m~"t
ReE (()=cosy 0(—$)v2G exp

I & )

X dy
(y —m-') (y+5)

~ (41)

The two functions, H(&) and ReE(g), certainly differ
significantly. But our final expression' for the pion
decay rate involves a certain integral over H($); in the
earlier treatment, over ReE($). Provided only that the
value of this integral is large compared to (G'/2m') '
=0.1, the decay rate expression is in fact essentially
independent of the value of the integral in question. In
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our earlier discussion, in which H($) was replaced by
ReE(g), we showed that, for reasonable assumptions
concerning the complex phase shift 50, this circumstance
obtains. A similar discussion can be made to show that
the same holds true if we use the more accurate expres-
sion H((). To summarize: in our earlier formula for the
pion decay rate, ReE must be replaced by H; but the
final answer —for reasonable behavior of bo—is inde-
pendent of either. The numerical result quote~ earlier
stands unchanged.

We now turn to a discussion of the form factors c
and d de6ned in Eq. (7). There is no strong motivation
here to make a very careful analysis, since we expect
that the form factor d is in any case too small to be
detected in P decay or p capture and that the coefficient
c does not differ appreciably in p capture from the value

gz relevant in P decay. After briefly setting up the
problem, we shall therefore resort to rather crude ap-
proximations to estimate the magnitude of the eGects
involved.

As in (12), we can write the matrix element (e I
Vq

I p)
in the form

ImW( —$')
W($) = —— d$'—

7r ~ (2m~) I f ($ +$.
—Zp)

(47)

encountered in a study of the electromagnetic form
factors for nucleons. The only difference is that V& is
there replaced by the isotopic vector part of the current
density operator. The matrix element (k,q, I Fl p) is an
analytic continuation of the pion-nucleon scattering
matrix element; in connection with the problem of
nucleon electromagnetic structure it has been shown
that it may, with sufhcient accuracy, be treated in
lowest order perturbation theory. ""We shall so treat it
here. The vertex (0 I

V&, I k,q,) may itself now be studied
via dispersion relation techniques, again in analogy
with our treatment in the electromagnetic structure
problem. The only difference is that here we assume that
there is no point interaction analogous to the direct
production of a meson pair by a photon. "The general
structure of the matrix element is given by

(4kpqp) '(0
I
Vz

I
k,q, in&

=( )' —,"( k) WI ( +k)'3 (46)

where e, „=p~, , i p2;—; We .take for W(() the dispersion
relation

l(~lv fp)
(pyzpp '

The assumed dispersion relations are

Imc( —&')

and
1 ( Imd( —P')

d([)=- I d~'
vr & $'+$ ip—

(43)

(44)

where again we assume that no subtraction is required
for the form factor d. In these expressions $= (I—p)', as
before.

The absorptive part of (42), call it Bq, has the same
structure as in (15), and with one half the sum of "in"
and "out" states understood, we have that

&~=~(pp/m)' *2 ~-(0 I v~ls&(sIF I p»(p +~—P) (45)

ln the present case, since Vq transforms like a four-
vector, the state s of lowest mass which can contribute
is the two-pion state; and for the small momentum
transfers relevant for P decay and p capture we expect
this lowest mass state to be the most significant one. To
evaluate this two-pion contribution, we need to know
the matrix elements (ol Vzlk;q, ) and (k;q, lFI p), where
k and q denote the momenta of the two intermediate
pions and the indices i and j are charge labels.

The present situation is similar in structure to the one

which is in line with our assumption that there is no
direct interaction coupling two pions to a lepton pair.

The absorptive part of (46), call it Cq, can be obtained
in the standard way and we find

m (2qp) &

C,= Z(OI V, ls&(sly;lq;&b(p, —
q
—k), (48)

2 8

where Jj is the source of the pion 6eld. We shall now
content ourselves with evaluating this in lowest order
perturbation theory, in which case the only relevant
intermediate state is that consisting of a nucleon-
antinucleon pair.

To effect the evaluation of (48), we substitute for the
matrix elements the following perturbation approxi-
mations:

(x~p/m )&(0I V,
I
e'er) =g,;~~,~~, (w)

—G' iy (q
—k)

QNg 7 z) 7j &N

(2qp)'

X +, (50)
. (1V—k)'+m' (N q)'+m'—

where X and E denote nucleon and antinucleon (the
charges are not specified here since we are now including

"Chew, Karplus, Gasiorowicz, and Zachariasen, Phys. Rev.
110, 265 (1958).

I4In the model of Fermi interactions recently discussed by
Feynman and Gell-Mann (reference 4), a direct point interaction
is assumed to exist. This would imply in Eq. (47) an additive
constant, W(0)) of known strength.
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4 ~f'&
~(g) =g, 1+—

1

—1(0.24)
9ir (4~) m '

pG'~ pP
—4m'~'

ImW( —()= —
gv1

—
11 1 8($—4m'). (51)

L4 i & p j gv 16 (f' )
d(g) = 1.7 X—

1

—
1

1—-', (0.12) + (54b)2' 37r (4z) m '

isotopic-spinvariablesinoursumoverstates). Carrying Making the replacement e—+—2(8/3m)(f'/4n)gi, we
out the operations indicated in (48) and comparing the find
result with (46) we find, with neglect of terms of order
(4' /m)', (54a)

From (47) we now 6nd

ReW( —$) =
—2) (P ) 4m'

mm. i4 )
(1—P/4m') l

1—
(P'4m2)&

(p/4m') &

&&tan-i1 11, (5,)
E (1—$/4m') ' I

We have introduced (P/4m) = (G'/4ir) (m '/4m') =0 08
The above result holds for P(4m'. For P) 4m' the arc
tangent is to be replaced by a logarithm. We now have
from (46) and (52) the matrix element (01Vi1k,q;)
required for evaluation of the two-pion contribution to
Bi in (45). For the other matrix element, (k;q, 1F

~ p), we
adopt the perturbation result, which, except for trivial
changes, is given by (50). We now evaluate B&, and
hence Imc and Imd. Finally the form factors c and d are
obtained from the dispersion relations (43) and (44).
Although in these dispersion integrals the variable $
runs from (2m )' all the way to infinity, the important
contributions come from values of P near the lower limit
(2m )'. We therefore approximate the complicated ex-
pression (52) by evaluating W at $= (2' )' and treating
it as a constant in the dispersion integral. Furthermore,
the behavior of ReW( —g) for large P is undoubtedly
given incorrectly by our perturbation approach: it goes
as ln) instead of to zero as one would expect.

If one makes the above replacement of ReW( —$) by
its value at $= (2m )', the problem is reduced to exactly
the one that has already been treated for the electro-
magnetic structure. " One needs only replace in the
isotopic vector charge and magnetization density form
factors, at the appropriate places, the charge e by
2 ReW( —4m '). The factor of two arises from the
differences in isotopic-spin structure. We record here for
convenience the electromagnetic form factors as com-
puted from perturbation theory, calling Pj the charge
density and F& the magnetization density:

We return here brieQy to the basic dispersion relation
(14) for the form factor a. If one supposes that a
subtraction is not required, then the previously neg-
lected contribution from the equal time commutator
must be taken into account and one would have that

1 I- Ima( —g')
~i($) =f~+

$'+ $—ie
(14')

However, there still remains the possibility of an addi-
tional additive constant in the above equation, even if
Ima( —f') approaches zero as $'~+ ~.The presence or
absence of such a constant cannot be argued. If, for
example, one says that both the real and imaginary
parts of a approach zero at infinity, the constant must,
of course, be precisely fz If Im—a al.one is supposed to
approach zero, but Rea is allowed to approach a con-
stant, then, unless this limiting value is specified, the
problem of an additive constant above is still unsettled.

If one were to conjecture that Rea~fz as $—+~, the
solution of (14') would be, in our approximation of
taking into account only the one-pion and the nucleon-
pair intermediate states,

, vi(Y)
~(h) =f~ exp

& 4m~ f'+ $ i4—(14")

We see that for the values of $ of interest in P decay and

p capture, c($)=gi and d($) =d(0). Further, the value
of d(0) is exceedingly small. Reference to Eq. (8) shows
that d(0) is multiplied by lepton momenta which even
in p-capture are no larger than m„. Hence m„d(0)
=1/100, which is far too small to have any measurable
sects.

It is our feeling that in spite of the crudity of these
estimates they are not in error by the several orders of
magnitude which would be required to make the e6ects
significant.

e
F,(P)=1.7

2m

(0.12)
5+

ns~ 2
t

e e (0.24)
& (q)=——,(+

2 12 m' (53a)

(53b)

For our practical purposes we have avoided these
speculations by using the subtracted dispersion relation
(14). We have therefore made no attempt to evaluate,
in any sense, the renormalized coupling constant in
terms of the unrenormalized f~


