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from the value of et+ es inferred from rr decay, because
the momentum transferred in E decay is considerably
larger and higher powers of P'/M' in the expansion of
the function. s h, of Eq. (6) may become importan. t.
However, there exists the possibility that the nonlocal
e6ects discussed here may increase the probability of
the electron mode of decay. As an illustration of this
point, if we make the naive assumption that the func-
tions h; are independent of P'/M' and we use the values
of et+es determined from ~ decay and a reasonable
value for P [we use the value of Eq. (13)j we get
1.3&10 '&R~&3.6&(10 ' which is smaller than the
present upper limit E~ p&002) but considerably
larger than the prediction of the local theory.

The nonlocal sects discussed here do not signi6cantly
affect the ratio (E +e+m+—v)/(E-+p+m+v) because in

's M. Gell-Mann and A. H. Rosenfeld, Annual Review of Su-
dear Physics (Annual Reviews, Inc. , Stanford, 1957), Vol. 7,
p. 407.

these three-body decays the contribution of the local
theory is relatively large [see discussion after Eq. (9b)].

In conclusion, we would like to mention that these
nonlocal eGects may change somewhat the predictions
of local theories on the lifetime of such processes as
Z~P+e+ v. For example, if the function f(P'/M') can
still be represented by the two terms of Eq. (7a) for
the range of energies involved in Z decay and the value
of Eq. (13) for P is used, then it is easily seen that the
prediction for the lifetime, as compared to the lifetime
obtained in calculations which treat the weak interac-
tion locally, is increased by a factor =-,'.
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This paper gives the quantization of a recently proposed theory for particles of arbitrary spin and zero
mass. An interesting result is that there is a connection between the spin and the statistics of the particles.
It is found that the spinor components of a boson/fermion field with integral/half-integral spin commute/
anticommute off of the light cone whereas the spinor components of a boson/fermion 6eld with half-integral/
integral spin do not. As in the unquantized theory, the two-component neutrino and the photon are special
cases.

I. INTRODUCTION

ECENTLY a wave equation for massless particles
was proposedi in which the Hamiltonian is'

H= (c/s)p s

(p being the operator —iAV and s being the angular
momentum matrices for arbitrary spin s), and in which
the wave function p is related to the spin or components

P of the field by

Also, as an auxiliary condition, only solutions with spin
parallel or antiparallel to the momentum are retained.
The purpose of this paper is to give the quantization
of the theory. Since a uniform treatment of all spins is
made, it is of interest to see how the spin and statistics

* This research was performed in the Ames Laboratory of the
U. S. Atomic Energy Commission.' C. L. Hammer and R. H. Good, Jr., Phys. Rev. 108, 882
(1957).

~ The notation throughout the paper is the same as in reference
1.

are related and to find operator assignments for the
number of particles, energy, momentum, and angular
momentum.

The quantization process can be carried out in a
straightforward way, using the coefficients of an ex-
pansion in plan. e waves. It is found that the spinor
components of a boson/fermion field with integral/
half-integral spin. commute/anticommute off of the
light cone, whereas the spinor components of a boson/
fermion field with half-integral/integral spin do not.
Also the diferent statistics lead to diferent expressions
for the operators when they are written in terms of
the wave function. For example, with Fermi-Dirac
statistics the quantized Hamiltonian corresponds to
the expectation value of the unquantized Hamiltonian,
whereas with Bose-Einstein statistics it corresponds to
the expectation value of the unquantized energy operator.

The equations for the spinor components P are a
special case of the general Dirac-Pauli-Fierz theory, '

' See, for example, H. Umezawa, Quantum Field Theory (Inter-
science Publishers, Inc. , New York, 1956), Chap. IV, Sec. 3.
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for which the quantization process was given by Fierz. 4

However, the connection between that general theory
and the one considered here is complicated for arbitrary
spin. Therefore, it is easier below to take advantage of
the existence of a wave function and to quantize by
using the coeKcients of an expansion in the plane wave
solutions. The connection between spin and statistics
given in Sec. III is similar to the one given by Pauli'
for bosons, but his argument for fermions does not
apply here since the energy is positive definite for all
spin s.

II. COMMUTATION RULES

A convenient starting point is the expansion into
plane waves of the solution of the wave equation and
the auxiliary condition:

g(x) = (2zh) l dp a+(y)u+(p) expfih '(p x—cpt))

+ (2z-A) I) dp a *(p)u (p)

&&expfih
—'(y x+cpt)7. (3)

The relation between the expansion coeKcients a+(y),
a *(p) and the quantities E~(p) of reference 1 is

considers space rotations. Since

exp( —i'. s)s; exp(g s) =a,,s;,

for space rotations, it is seen that

(c/s) s p' exp(ig s)u~(p) =&cp' exp(ig s)u~(p).

The uniqueness of the eigenvectors except for a phase
factor then implies that

exp(ig s)u~(p) =expfirl+(p))u+(p').

The generalization of this result to continuous Lorentz
transformations is

exp (8 s)p'ug(y) =exp firl~(p) )P"u~(p'). (10)

This equation is a consequence of the fact that a general
Lorentz transformation can be written as products of
space rotations and pure Lorentz transformations about
the 3-axis, for which Eq. (10) holds with g~ equal to
zero. ' The covariance of the wave equation and auxiliary
condition then follows from Eqs. (8) and (10) by a
proof similar to the one leading to Eq. (28) in reference
1.Also the transformation rule of Eq. (8), together with
the property of the delta function

P'~(y' —«') =p~(y —«),

assures the covariance of the commutation rules, Eq.
(5). With respect to the space and time reflections

a+(p)=P '&+(y), a-*(p)=P '&-(y) (4) /
+ip &4 4p (12a)

fa~(y), a~*(«)7= &(y—«),

fa+(p), a+*(«))=o,

fa+(y), a+(«))=o,

La+(y), a+(«))=o,

(5)

so that P(x) is the wave function operator for the field.
The covariance of the wave equation, auxiliary

condition, and commutation rules with respect to
continuous Lorentz transformations,

I
X~ —CtxPXP~ (6)

(7)

requires the transformation rule

To quantize the theory, one assigns a+ and a * to be
the destruction and creation operators fulfilling the
commutation or anticommutation rules'

and the operator relation is'

a~'(y) = a+(y), (14a)

a+'(p) =a~'( —p) (14b)

In summary, the wave equation, auxiliary conditions,
and commutation rules are covariant with respect to
the full Lorentz group uniformly for all spins and both
statistics.

The commutation rules for the wave function g(x)
are determined from Eqs. (3) and (5) to be

Ss Sj) g4 — g4~ (12b)

the covariance of the theory is assured if the spinor
components transform according to

(13a)

(13b)

P'a+'(y') = expf~'n+(y))P'a~(y), (8)

where p '=a spp and rl~(y) is some real function. To
see that this is the correct transformation rule one erst

f&-(x,t) A. (x', t)7+=o,

=(2~&) ' dyf(u+)-(u+). '

(15)

' M. Fierz, Helv. Phys. Acta 12, 3 (1939).
~ W. Pauli, Phys. Rev. 58, 716 (1940).
'The superscript asterisk indicates the Hermitian conjugation

oi the creation and destruction operators. The symbols L
7+, L g denote the commutator, the anticommutator, and

either the commutator or anticommutator, respectively.

a(u ) (u )„)expfiV-'p (x—x')), (16)
It is convenient to choose a representation in which a+ is real

except perhaps for a phase factor as introduced by Eq. (8). This
means that a+ differs from u+ at most by a phase factor.
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(2s) (Pi+iPs)' "(Pi—iPs)' "

(2s.i't)s" P 2"[(s+m)!(s—m)!(s+I)!(s—e)!)'(17)[P (x t) P (x t))=0

[4-(x,t)A (x t))

where the plus signs apply for fermions and the minus reference 1 using polar coordinates. One 6nds
for bosons. By operating as indicated by Eq. (2), one
finds for bosons/fermions the commutation/anti- [& (x&t) ~tP~ (x &t))

commutation rules for the spinor components 1t (x) to be

=Pif[Q(x)/c)" ')~i(2m. h) s)I dp
&&exp[i@ 'p (x—x'))

= 2m-(2rrt't) s8„„~~ sin8d8dp (2s)!

)&exp[i', 'p (x—x')), (18)

where the plus sign applies for fermions with half-
integral spin or bosons with integral spin, and the
minus sign applies for fermions with integral spin or
bosons with half-integral spin. These commutators can
easily be found from the explicit formulas for (N~)
given in reference 1.
[ ln the special case of spin -', fermions, the u~ form a
complete set and Eq. (18) reduces to

P [22s (s+m) !(s—m) !) 1P28+1 (sin28) s—m

&& [(1+cos8)'"~(—1)'"(1—cos8)' )
Xexp[i7i 'P

~

x—x'
~
cos8)

=8 „Pi, c/l(2$ j1,k). (24)

Here the minus sign applies for half-integral fermions
or integral bosons and the plus sign otherwise. The
integrals I are dered by

(x,t) ~P„*(x',t))+——8 „5(x—x'). f
I(2s+1, k) =, ~ sin8d8dP P"+' cos'8

&(exp[i' 'P~x —x'~ cos8), (25)

In the special case of spin 1 bosons the factor of II
permits the zero-eigenvalue function to be added in, so
there is again a complete set and the equation reduces
to and the c~ are numbers which can easily be found in

any special case. lt is seen that 2s+1 is even/odd for
half-integral/integral spin, and that only even/odd
values of k arise for Fermi/Bose statistics. When 2s+1
and k are both even or both odd, the integrals have the
value

(x,t),1t„*(x',t)) = [H(x)/c) „B(x—x'). (20)

One can see that this reduces to the usual commutators
for the Maxwell 6eld by specializing to the represen-
tations in which (s,),s= ie;;s an—d by expressing tP, in

terms of Hermitian operators E;, 8, according to

and otherwise they have the value

ds (1 dsa —s

E(2s+1, k) =(—1)'*&"+' s& —
~

— 8(n) ~, (26)(21) ss d~k (~d~2~—s )

(23)

Then it is easily verified that E;, 8, fulfil Maxwell's

equations and so are to be identified with the operators
of the electromagnetic field. From Eqs. (17) and (20)
their commutation rules are found to be

[E;(x,t),E,(x', t)) =[8,(x,t),B,(x', t)) =0,
[E,(x,t),B,(x',t)) =4vrictse, ;s(8/8xs')8(x —x'),

in agreement with the usual treatment. '

III. CONNECTION BETWEEN SPIN AND STATISTICS

To discuss the integrals in Eq. (18), it is convenient
to choose the 3-axis of the coordinates in the x—x'
direction and to substitute for N~(p) from Eq. (10) of

R. H. Good, Jr., Phys. Rev. 105, 1914 (1957).
9 See, for example, L. I. SchiR, QNantnm Jrt/lechanics (McGraw-

Hill Book Company, Inc. , New York, 1955),second edition, p. 377.

2 d' 1 d" ' ((P(n)q
I(2s+1, k) = (—1)'"' s' — —

( ~, (27)
i'dn" ndn"-'E n )

where rr is an abbreviation for 5 '
~

x—x'
~

and Heitler's
notation" for the (P function is used. One sees, therefore,
that [1t (x,t),p„*(x',t)) is zero when xWx' for half-
integral fermions and for integral bosons, and is not
zero when x&x' for integral fermions and for half-
integral bosons. Furthermore, for half-integral fermions
and integral bosons, [1t (x,t),p„*(x',t')) must be zero
for any two space-like events because the commutation
rules were assigned covariantly. Since

[1t-(x,t) it *(x',t'))

as a function of x, 3 satisfies the wave equation, it
follows from Huygens' principle that the commutator

jo W. Heitler, The QNaetlm Theory of Radiation (Oxford
University Press, London, 1954), third edition, Sec. 8.
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is zero for any two events x,t and x', t' which are not on
a light cone relative to each other. It is reasonable to
assume that all physical theories will have the property
that the commutator or anticommutator vanishes for
points outside the light cone because it follows then
that any local interaction which is linear in the spinor
components of the interacting particles

H; 4=g~fa +iP~*Ps*

E=J dxf Q, (33)

dx y*(H/I H
I )H@, (34)

In terms of the wave function operator P, the operators
above have the form

and which involves an even number of fermions, com-
mutes with itself when evaluated for two spacelike
events.

P, = dx y*(H/I HI) p, qb, (35)'

for Bose statistics (inflnite constants are disregarded
and a sum on the spinor indices is understood). For

The assignments for the number of particles X, the Fermi statistics the anticommutation rules introduce
energy K, and the momentum I'; are and additional factor of (H/IH I) so that

dp[a+ a++a a ]) dx y'(H/IHI)y, (36)

fX= dp[cPa~*a++cPa *a ], (29) X= ' dxg*HQ, (37)

P;= dy[p;a+*a++( —p,)a *a ].
J

(3o) P;=
J

dxg*p, p. (38)

One finds the q-number energy and momentum assign-'
ments by summing the number of particles operator
a*a times the eigenvalue of the c-number energy oper-
ator (H/IHI)H and momentum operator (H/IHI)p, .
From the transformation properties of the u~ given in
Sec. II, it is seen that E is a scalar with respect to the
full Lorentz group and that (P,,iX/c) is a four-vector
(a pseudovector under time reflection). It is interesting
that the states of negative eigenvalues of II are treated
the same way for both statistics although a hole theory
interpretation for the bosons is impossible.

In contrast to the c-number theory, the energy oper-
ator is also the Hamiltonian for the system since

One can also dehne an angular momentum operator
by using the c-number results as a guide. One Ands

"dx y*(H/
I
H

I ) (x&& p+ As),y, (39)

o"=—2 "d'P ~(p.p.)p'a*(p /IP I)

X (p,x„p„x„+AT„„)pia, (4—0)

for Bose statistics and a similar formula without the
(H/ I

H
I ) factor for Fermi statistics. The quantity

e,,i,g~ is the space-space part of

wli ere
[y,X] =iAcly/Bt,

a(p, p4) =a+(y) when —ip4) 0,
=a *(p) when —ip4(0.for both statistics. Also the momentum is the space

displacement operator since

P@,P,] = ik84|i/Bx, —
This is a Lorentz tensor, regular under space reflection

(32) and a pseudotensor under time reflection.


