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The production of rnesons in electron-nucleon collisions is treated by using the method of dispersion
relations, The result is analogous to that obtained by Chew, Low, Goldberger, and Nambu for photo-
production using the same method. Apart from the appearance of longitudinal and scalar components of
the virtual photon polarization, the important difference is that charge and magnetic moments have to be
multiplied by the appropriate nucleon electromagnetic form factors. Two formulas are given for the scat-
tering amplitude: one is a static approximation which is valid if the electron invariant momentum transfer
X is less than 500 Mev; the other takes account of the recoil effects, and may be trusted within 30% even
up to X 1 Bev. It is suggested that the measurement of the energy and angular distribution of the electron
can o8er an alternative method for the determination of the nucleon form factors.

1. INTRODUCTION

~'XPERJMENTS on pion production in high-energy
~ electron-proton collisions have recently been per-

formed at Stanford. ' This phenomenon is quite inter-
esting from a theoretical point of view because it offers
a further tool for the investigation of the electro-
magnetic structure of the nucleon.

The T-matrix element for the electro-pion production
is given by

where p~ and $r are the four-momenta of the initial
nucleon and electron, and ps, $s, and q those of the
final nucleon, electron, and meson, respectively; j„ is
the four-dimensional nucleon current in the Heisenberg
representation; and the I's are the electron spinors. '
l For the derivation of Eq. (1), see Appendix I.j

Equation (1) shows that the evaluation of the cross
section is reduced to that of the matrix element

&,=s(p.ql j.l pt&.

The right-hand side of Eq. (2) looks formally identical
with the matrix element for photomeson production.
The only differences are that in the present case the
"photon" momentum

h $1 $2 ps+/ pl

has a modulus X=(k')& different from zero, and that
the polarization vector e„, which is proportional to
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itt($s)y„g($t), can have transversal, longitudinal, and
scalar components.

In Appendix II we shall also show that, as in the case
of the photomeson production, the matrix element H„
has the phase of the final pion-nucleon scattering state
as a consequence of the time-reversal invariance. '

The first experiment performed by Panofsky et al.'
looked for the energy distribution of pions at a fixed
angle. To be compared with this experiment, the
differential cross section obtained from Eq. (1) must be
integrated over the 6nal electron states. In this process
the important contributions come from the matrix
elements corresponding to A 0 which are not much
different from those for the photomeson production.
Indeed, computations based on the static model4' fit
very well with the experimental data.

New experiments are being performed' in which the
Anal electron is detected, and which involve virtual
photons with X of the order of several meson masses.
In this case the matrix elements contributing to the
cross section are essentially different from those of the
photoproduction, One will first note that the appearance
of large momentum transfer makes the static approxi-
mation much less reliable than in the case of photo-
production. Indeed, due to the imaginary mass of the
virtual photon, its momentum lkl in the "center-of-
mass" system can be large even if the final nucleon is
produced in the resonance region. Quantitatively,

lkl = ()t'+kv')'*~&X t 2eres(1 —cosfl)]'*,

ks= (W' —3II'—)t')/2W
(3)

where e1 and e2 are the initial and final energies of the
electron in the laboratory system and 0 its scattering

' K. Watson, Phys. Rev. 95, 228 (1954); K. Aizu, Proceedings
of the International Conference on Theoretical Physics, Eyoto and
Tokyo, September, 1953 (Science Council of Japan, Tokyo, 1954);
E. Fermi, Suppl. Nuovo cimento 2, 58 (1955).' R. H. Dalitz and D. R. Yennie, Phys. Rev. 105, 1598 (1957);
quoted in the following as DY.' R. B. Curtis, Phys. Rev. 104, 211 (1956).' W. Panofsky (private communication).
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angle, M is the nucleon mass, and W= f—(pg+q)'7l
=f—(pi+k)'7' is the total energy of the meson and
nucleon in their center-of-mass system. Thus for e~ 500
Mev and at large angles, ~k

~

can easily be comparable
with M, resulting in large nucleon recoil.

In this paper we shall make use of the method of
dispersion relations. ' This will enable us to take into
account correctly the eGects of large A. and to evaluate
the most important recoil contributions.

The dispersion relations in our case are similar to the
ones given in 3 for photoproduction. A new feature is
the appearance in the inhomogeneous terms of nucleon
form factors, which depend on the invariant momentum
transfer X . The dispersion theory, which is believed to
be valid under very general assumptions, shows that
these form factors are exactly the same as the ones
obtained by Hofstadter' in elastic electron-nucleon
scattering. Since the electro-meson production process
involves both the proton and neutron form-factor
eGects, it can oGer an independent method, diGerent
from the electron-deuteron scattering, for determining
the neutron form factors.

The task of obtaining a scattering amplitude which
satisfies both the dispersion relation and the final-state
theorem is not easy unless nucleon recoils are neglected.
We shall therefore obtain the first approximation by
solving the dispersion relations in the static limit. This
solution takes into account the important eGects due
to the form factors, which are mainly caused by the
meson cloud around a nucleon, but neglects the appreci-
able nucleon recoil contributions. For X&500 Mev, the
solution cannot be trusted.

To obtain an improved solution of the relativistic
dispersion relation we shall proceed as follows:

First, we shall prove that the imaginary part of the
static solution multiplied by a X-dependent factor is
still reliable even for large X.

Then we shall insert this imaginary part in the right-
hand side of the dispersion relations to generate a new
real part. For large A. the new real part thus obtained
will account for the more important recoil eGects. It
will be rather diGerent from the real part obtained
directly in the framework of the static approximation.

2. RELATIVISTIC DISPERSION RELATIONS

In this and in the next section we shall follow closely
the method outlined in A and 8, to which paper the
reader is referred for all the details about the philosophy
and the mathematical procedure. Unless explicitly stated
otherwise, the notations used will be the same. I.et us
consider the product H e=—H„e„, where e„ is an arbi-
trary four-vector which at the end of the calculation
will be identified with eiuy„N/k . (We use the usual
convention that repeated indices are summed. ) Since

7 Chew, Low, Goldberger, and Nambu, Phys. Rev. 106, 1337
and 1345 (1957). These papers will be quoted as A and 3, re-
spectively.

'R. Hofstadter, Revs. Modern Phys, 28, 2j.4 (1956). Other
papers are quoted there.

{a,b}=a«fi k——a kb «. (4')

The last two invariants were absent in the photo-
production case. The signs in parentheses indicate the
behavior under crossing of the nucleon lines.

In terms of these invariant forms, H e is written as

8 «= MgA+. MOB+ +MvF.

Each of the invariant coefFicients can further be decom-
posed, as was done in 8, according to the isotopic
dependence:

A = —',{,,}A++-',fv, ,7A + A', etc. (5')

The 18 coefFicients 2+, 3, . F' are now functions of
the scalars

v= Pk/M, v—e——
q k/2M, and V= k'. (6)

These coefficients satisfy dispersion relations of the form

Rea, (....,~)=C,(.,;,V)+R, y, ) ~

&ve —v v+ve

1 f 1 1
+— dv' ImH, (v', ve, X')

I
+ I, (7)

7I~ 0 ~v v v+v)

where vo= +ve1+1/2M, ' the + sign depending on the
crossing symmetry. The residues R; of the poles turn
out to be

RfA v, e7 fev, e(X')/2—
Bv, s7 ye" (X')/4Mv„

RfC" s7=RfDv s7= fpv sP.')/2,

RfE7=RfF7=0,
where

ev, s(p 2) —efFiv ($2)~F np 2)7 for

p'v (li') =p„'F2v(X')~p„F~"(X'), + for 5 (8')

A =A+ or A, A—:A'; etc. f'/4~ 008.
J ~ and F2 are the form factors for charge and magnetic
moment distributions, respectively, as were introduced

9 The pion mass is put equal to '1 throughout this paper.

k'QO, and e„has longitudinal and scalar components,
the number of the fundamental relativistic and gauge-
invariant forms will be six. These are taken to be

M~= 2A'5(V T} (+)
Mri 2iy«——(P,q}, (+)
Mo ——ys(y, q}, (—)
Mn= 27«({v»}—2iM{v 7}) (+)
M~ =its {k,if}, (—)
Mv=y«(k, y}, (—)

where P= ', (pi+p-2) and an abbreviation is used for
the gauge-invariant combination
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Vs&V'g (e +rse 0 +ran

2psq —1 t 2 2

(ee+rsev

2

+»0 l sV' /Vs

2 ) 2pi q+1

[r,rs7 (e(2q —k) e e~—e
+— sgvsI + k e I. (9)

2 E(2q—k) k

The first two terms are the nucleon current, and the
third the meson current contributions. The last term has
been formally inserted in order to preserve the over-all
gauge invariance of the expression (9). Because of the
continuity equation k„ly„u=0 for the electron, how-
ever, this term does not have any effect on the electron-
meson production matrix element.

It is possible to understand Eq. (9) from a different
point of view. As will be shown in Appendix I, a
different representation may be given for H, leading to
a new type of dispersion relations in which the relevant
variable is v~. The bound-state contribution in these
relations is just the meson current term in Eq. (9).

The last auxiliary term in Eq. (9) is independent
both of v and s ~, so that neither of these representations
can fix it. We think this is more than a coincidence.

Concluding this discussion, the assumption (9) allows
us to write for the C's of Eq. (7)

by Hofstadter, and p,„' is the anomalous part of the
magnetic moment of the proton.

It is interesting that the coe8Rcients in Eq. (8) are
identical with those for photoproduction except for the
appearance of the form factors. The new invariants 3f~
and Mp do not have poles at v=&v~. The terms C;
in Eq. (7) are in general polynomials in the variable i,
which our dispersion relations leave arbitrary. In order
to determine these terms we shall use perturbation
theory as a guide. It is seen that H also contains a
meson current contribution which is independent of v,
and which does not have the nucleon form factor."
If we assume that the same result as the perturbation.
series can be obtained by iteration starting from the
inhomogeneous terms of the dispersion relation, these
terms must then be of the form SL,= 8~, Sp= 8—SL,.

The transverse part of H can be expanded in terms
of magnetic and electric multipoles in the same way as
for photoproduction. The longitudinal part gives rise
to new multipoles (longitudinal multipoles) which under
space and time inversion behave like the corresponding
electric amplitudes. Among the new terms, only the
longitudinal quadrupole of the form

s(3&.ltq. lr —ksp .q)Q. e/Qs (12)

can lead to a final I'~ pion-nucleon resonant state.
In order to solve the equations connecting the

different amplitudes, we shall use the same procedure
as in B. First we consider the equations obtained by
neglecting all nucleon recoils. This static approximation
allows the different multipoles to be essentially de-
coupled (except the mixing of the l& ,' states of-the
same multipole). '"

For the electric and magnetic amplitudes the results
of B can be largely translated to our case by (1) re-
placing e by er, (2) inserting the appropriate form
factors in the terms generated by the nucleon current;
and (3) using for lie and Ilier the expressions

2M (
I 1+

2 i2oi'+X') ~ v') A+M & 2v 1+v)

(4 2 1—v' 1—v)
I+ I' —v ——— ln I, (13)

Ikl E3 v v' 1+v)

3. STATIC APPROXIMATION

In order to give an explicit solution to Eqs. (7), it
is necessary to use the connection with pion-nucleon
scattering discussed in Appendix II. This can easily be
done only in the "center-of-mass" system in which
k+pi= g+ps=0.

As already pointed out in DV it is su%cient to
evaluate the matrix elements H for the case where the
polarization vector e has only space components; the
matrix element of the time component of the four-
current can be obtained by using the continuity
equation. In order to take advantage of the analogy
with photoproduction, it is convenient to split c into
a longitudinal and a transverse part:

C~=Cg=C=Cg) =Cp=0,

C~+=C~'= 0,
(10)

( M y ( 3 ~ (1~ ( 1—v' 1—vy

I I
—

I I 1+
(g+ M) (2oisy)ts) ( vs) ( 2v 1+v)

2Mf ( —2e evPs))c~-=
I +
(2(k—)t' qk )

One can easily see that in the limit X'~0 the equations
for photoproduction are reproduced.

"It should actually have other correction factors depending on
v1 and ), but this will be neglected here.

"The form of the dispersion relations depends on the transfor-
mation properties of the different multipoles under crossing. In
our case (unlike pion-nucleon scattering) one can only consider a
crossing of the nucleon lines, which involves a charge conjugation.
The simplest way of obtaining the static limit of this operation
has been suggested by G. Feldman and P. F. Matthews LPhys.
Rev. 102, 1421 (1956)g. One first applies a CFT transformation
to the matrix elements, and then one goes to the static limit.
The result is that the matrix element corresponding to —co is
obtained from the one corresponding to +co by transforming
0'~—EJ~ 'c~—v) k~ —k~ Q~ —Q.
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where

V=2lqj lkl/(2M'+1~'), Ql=(1+q')'*E=(M'+k')'*
The only longitudinal amplitude for which corrections

to the Born approximation are appreciable is the longi-
tudinal quadrupole. The equation for this amplitude
differs from the equation for the electric quadrupole
only in the inhomogeneous term

2—lkla/iql —2M (
l

4+-in—
6(2aP+1i3)m3 F+M L v 1+vi

lql (+ l
6—

lklo 4

Equation (14) is closely analogous to Eqs. (22.5)—
(22.7) of B.As in that case, the resonant terms coming
from the nucleon moments are much larger than the
resonant terms coming from the meson current. Indeed
the coe%cients F~, Fq, and Ill, decrease with increasing
X even more rapidly than the nucleon form factors. "
This means that here also the important terms are the
electric dipole, the resonant magnetic dipole, and the
Born approximation part of the meson current. Thus
a simplified version of Eq. (14) is

=-,'{2q k&&e+ia eq k —ia kq 3)

The procedure for solving the equation will, therefore,
be the same as for the latter.

The recoil corrections to the static solution will be
computed to the first order in 1/M and only for the
leading terms, i.e., the magnetic dipole and the Born
approximation terms. This enables us to use, also in
this connection, the results of B.

Our results can be summarized in the following
expression for the amplitude H.

We define H+ and H' as
H' 0.

p V(y2)
e' sin833,

2f2q3

H ia (k —q)(2q —k) 3
=ev(x3)ia 3+e

A,
'—2k q

,—{2—'q kXe+ia eq k —ia kq 3)

(15)

H /f=
1+(o/M

3a (k —q)(2q —k) F.

e (li )io" 3+e
(k —q)3+1

——',{2q k&&e+ia eq k —ia kq 3)

&({33' p, )/f q3j+ 33ieF33) e'3» sjn533

+-', {ia erq k+ia kq er)eFoie"»sinb33

+3i{3a kq k "k3cr .q}—(k 3/k')eFiie'333 sin833

a q(q+k) 3 ev(li') —e—iev(X') k. cia (k-q),

k' ia q&&(kXe)
H3/f= io epegP) ——— pe(X3)

e (V)
+ia qq 3 . (14')

(p ql3H el pi)=(23r) '(2') '(2l [~{3,r3)H+

+lL -, 3H +-H']l1). -
Then, with p(li3) =p'(1%,3)+e(1~3)/2M,

H+/f=33{2q. k&(e+io. eq. k —ia kq 3)

X{-,'Q (li')/f'q3j+33ieF33)e"" sin533

', {io —er-q k+io" kq er)eFoie*'" sinb33

——3'i{3a kq k —k'o" q}(k «/k')eFiie"» sin833

+ievPP) (a qq 3/2M(u), (14)

W'+M3+ 3 (X3—1)

(1—P') ~ 2Wi M3+ —'(g' —1—2M') j'*
(16)

where ve is the parameter defined in Eq (6). p ra.nges
approximately between (pi+p3)/2, depending on the
meson production angle, where Pi and P3 are the
initial and final nucleon recoil velocities in the center-
of-mass system. For large li, which means large Pi, P
will also be large.

Another trouble peculiar to the virtual photon arises
when its time component ko vanishes. ' According to

"With a root mean square radius of 0.8)(10 "cm, the corre-
sponding form factor will be reduced to —,

' for X~600 Mev.
"Of course the two systems coincide in the static 1imit.

The procedure followed in deriving Eq. (14) suffers
from the same kind of limitations as in A and B. A
Legendre polynomial expansion for unphysical values
of the nucleon momentum transfer (pi —p3)'= (q —k)'
has been carried out without a complete justification.
Recoil eGects are computed by assuming the conver-
gence of a 1/M expansion. As already remarked in the
Introduction, the k/M effects can become much more
serious than in A and B.This situation can be illustrated
by considering the difference between the "Breit
system" (Pi+P3 is at rest), which is the natural system
for the dispersion relations, and the "center-of-mass"
system (P&+k=P3+g is at rest), which is the proper
system for the phase-shift relations. " As A. increases,
this difference becomes more pronounced. The relative
velocity of the two systems, which is a measure for this
difference, can be obtained from the formula
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Eq. (3) and the fact that W&&M+1, this can happen
for )t'&~2M+1 or )t&500 Mev. In such a case the
longitudinal component of the nucleon current must
vanish according to the continuity equation, but it is
not satis6ed by our static results where ko and go=co
are not distinguishable. As ko becomes small, the time
component becomes predominant over the longitudinal
current in the ratio fk f/ho so that it will not be ad-
visable to compute the former from the latter by means
of the continuity equation. Rather we should have
calculated the charge component independently, and
derive the longitudinal part from it. However, since
the recoil correction is also large when this is necessary,
it seems reasonable to limit the validity of our results
to such regions where X is less than 500 Mev.

The procedure outlined ig. the next section will enable
us to drop this limitation, which is a very unpleasant
one since the form factors do depend on just this
quantity X.

4. EVALUATION OF THE RECOIL EFFECTS FOR
LARGE MOMENTUM TRANSFERS

The previous discussion has shown that Eqs. (14)
and (15) are not reliable for X&500 Mev because the
high momentum of the initial "photon"-nucleon state
produces considerable higher multipoles. However,
even in this case the 6nal pion-nucleon state is still at
low energy (in its center-of-mass system), and therefore
is completely dominated by the 33 resonance. This
means that the only amplitudes having an appreciable
imaginary part are still the three multipoles leading to
the resonant state. Thus if one introduces a multipole
expansion in the dispersion relations, one will obtain
three equations connecting the three amplitudes with
themselves; the remaining equations give the real
amplitudes of the other multipoles in terms of the
imaginary parts of the resonant ones. '4

Our procedure now will be as follows: first we solve
the equations for the resonant amplitudes, then insert
the imaginary part of the solution thus obtained into
the right-hand side of the dispersion relation to create
the real part of the whole scattering amplitude. This
procedure is successful because the recoil is more
effective in producing new multipoles than in any large
change of the resonant amplitudes, which would only
be of the order of 30%.

Let us fix our attention on the equations for the
resonant amplitudes. The effects of the recoil appear
only in the crossed terms of the form

R; f.1m', (v')
dv.

vg+v & v +v
The contribution of the second term is very small in

the static case because of the large denominator

'4The main simplification in the case of the static approxi-
mation was that only states of the same orbital angular momen-
tum are coupled. Here this is not the case because of the large
difference between the Breit and center-of-mass systems.

(compared to that for the uncrossed terms) and the
factor —', coming from the crossing matrix for the spin
and isotopic spin operators. It is easy to verify that
the situation does not change appreciably for large
recoils. It follows then that each 33 amplitude is
mainly coupled with itself and thus the only important
sources of recoil are the terms which constitute the
whole Born contribution to the 33 state.

We will neglect here the resonant terms created by
the meson current; they were evaluated in the last
section, and their effect as compared to the nucleon
magnetic dipole term was found to be even smaller for
large X. The electric and longitudinal quadrupole terms
generated by the nucleon current are purely recoil
effects. A direct calculation shows that they are
negligible as compared to the magnetic dipole.

In solving the equation for the nucleon magnetic
dipole term, the static approximation for the spinor
matrix elements of A, 8, C, and D does not introduce
an appreciable error. The main source of deviation
from the static approximation comes from the denomi-
nator

1 1
rr =

f
k

f f q f /Ea,
v~+ v 2Ero(1+n cos8)

the static limit of which was 1/2Mce. It is easy to take
care of the ratio M/E since (to within 5%) one has
E= (M'+k')f (M'+)')jl which is a pure parameter.
The eGect of the cos0 term is more dificult to treat,
since the coeKcient P depends on q/re which can vary
between 0 and 1. We shall here neglect this effect.
This will introduce an error of the order -,'o.', ranging
from 10% for )t=500 Mev to 25% for )t=1 Bev. In
this approximation the solution of the magnetic dipole
amplitude will dier from the static limit only by a
factor M/(M'+)t') '*.

The imaginary part of the scattering amplitude in
the c.m. system will be'5

(B.s -,'r r,)(3q—kXe —rr qe k&&e)

&(M (M'+)t') —~pv Ot') h(w) ) (17)

where

to= (W' M')/2M~re h—(tv) = sin'ass(ro)/q'

u and g are known functions of 8' or m.
In order to insert this expression in the right-hand

side of Eq. (7), we express the spin dependence in the
center-of-mass system in Eq. (17) in terms of the six
relativistic invariants. We then get

I5 The covariant form of the Pg projection operator in Eq. (17)
is givenby (3q'. (kXc)' —q' p(kXe)' y) ( r'P' y+M)/2W, where—
P'=pr+k=ps+q P"=—W' q '=q P'P' q/P", and (kXe—)„'.

r'e„zvk, s&P~'/M. Makin—g use of the Dirac. equation, the above
operator may be transformed into a linear combination of the
six invariants. In Eq. (18) only leading terms of the expansion
of 5; in

f q f
/M are kept.



334 PUB lNI, NAMB U, AND VVATAGHIN

ImH;=S, MpvPP)h(w)/(3P+X')l, (i=1, . 16)

5 =0,

Sg+= —25'- ——P w ——+6' (,)

( X'
Se+= —25' = —

] 1—
( M,

E 3%vii)

( 3X' qSc+=—25e = —
pPi 1+

simple formula (15) shows only two main differences
from the result of the Chew-Low theory:

(1) The S-wave term is multiplied by a nucleon
charge form factor.

(2) The form factors are functions of the relativistic
momentum transfer h' and not of k'. As already pointed
out, at higher X important corrections of kinematic
nature have to be taken into account. These corrections
have the main effect of producing higher multipoles.
The dynamics of the system, represented by the 33
resonance in the final pion-nucleon state, is still un-
changed.

SD+= —2SD ——-'
D 3)

5~+= —25~————
3Mp~

Sp+= 0.
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By substituting Eqs. (17) and (18) into Eq. (7), we
obtain for our scattering amplitude the final relativistic
expression

1 1a =c (., ~)+~ (v) ((vs —v vii+ v)

M 1
+ p vP. '} —E h(w')5, (w'+ va, va, X')

(M'+1'}2

APPENDIX I

We shall provide in this Appendix a formal derivation
of Eq. (1). The proof will be based on the Heisenberg
representation technique developed by Lehmann,
Symanzik, and Zimmermann. "

YVe can extend the definition given in LSZ for a
boson field to the case of a fermion field:

gp, (t) = i f—(„74$(x,t) d'x,

)( ~ + h(„„)I (19) where fp, (x,t) is a negative frequency solution of the
(w + vii —v w +vs+ v 2 Dirac equation for the electron

As usual, for practical applications, the upper limit of
integration has to be taken around 4p where the eft'ects

of the 33 resonance are no longer important.

5. DISCUSSION

Our results show that experiments on electron-meson
production for large electron angles can be very im-

portant for a measurement of the nucleon form factors.
More specifically, the terms eve) and trav(X') are

linear combinations of the proton and neutron form
factors. Experimental measurement of those factors can
give an independent check of the neutron form factors
obtained from deuteron experiments.

An advantage of the method proposed here is the
possibility of performing independent measurements of
the form factors by looking at the energy spectrum of
the final electron for different fixed scattering angles
(or better, for different fixed l%,).

In this way it is possible both to check experimentally
the physical assumptions upon which our theory is
built and to measure the charge and magnetic moment
distributions of the neutron. For P &500 Mev, the

(yr Bj8x m)fp, 0,— ——

with momentum k and spin s. The same definitions

apply to incoming and outgoing fields, which turn out
to be time-independent.

Using the equation of motion, one can easily obtain

f (x)O(x)d'x (A2)

Pp, (0) =Pp, '"— f p( )x0( )x(itxp)d'x, —(A2')

tt&, (O) =Pp, '"— 0(x)fp, (x)q( xp)d4x, (A2"—)

where

O(x) =icy A(x)P(x), O(x) =ief(x)y A (x), (A3)
(+renormalization terms).

"Lehmann, Symanzik, and Zimmermann, Nuovo cimento 1,
205 (1955); quoted as LSZ hereafter,
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Using Eq. (A2) and recalling that any incoming operator
is connected to the corresponding outgoing operator by
the transformation ip'"t=sip'"S ', we can write the
matrix element for electropion production of pions in the
form

To determine the nature of the constant terms in the
dispersion relations, it is helpful to give for B a different
representation by taking out the final nucleon instead
of the meson:

&P2g»lrl p»i)=t(P2~s2lo(0) I p,)~(»). (A4) &„=i8(p2) ((ql~(xo)Lg(x), j„(0)jl pi)e ' '*d'x

Using Eq. (A2") and the relation:

&p,~»l o(o) I p,)=(P2~i Lp 2'-, o(0)(+Ip,&,

we obtain

r—t'&P2q»l 2'I p»i) =~ &P2vl L0 2(x,o),o(0)3 I pi)d'~

+ f ~(*)&P2v I I 0(~),o(0)7+v( —~0) I
Pi&dt* (A5)

In the lowest order in the electromagnetic coupling
constant only the equal-time commutator gives a
contribution. Using Eqs. (A1) and (A3), this turns
out to be

&P2vl L4 2(x,o),~(0))+IPi)
= —28Q($2)r„(P2g I An(0) I pi). (A6)

With the aid of the field equations, the matrix element
(P2qlA„(0) I pi) can be expressed in terms of the current
j„generated by the nucleon and meson fields. We thus
obtain

&p2g» I
2'I p,»)

= —t~(p2ql j.l p»N(»)v, N(»)/(~i —~2)'. (A7)

The meson wave function in (P2gl j„lPi) may again be
"taken out" by using equations similar to Eqs. (A2)
for the meson fields g:
&.=&P2vl j.IPi)

i(qlLy4$(x 0) j (0)jl p,)e
—'i' } (A8)

where g(x) = (y 8/Bx+M)ip(x). The first term of Eq.
(AS') is a Fourier transform of a causal amplitude with
a Fourier variable P2+k. This will allow a dispersion
relation to be written down with respect to a variable
different from v, and its unphysical (crossed) imaginary
part will be related to the matrix element (ql j„ln), e
being any state with nucleon number zero. In particular,
the contribution coming from the one-meson state
gives rise to a pole which exactly corresponds to the
meson current term in Eq. (7) with the correct re-
normalized electric charge and mesonic coupling con-
stant.

APPENDIX II

The theorem which we are going to prove in this
Appendix is a general one of which the present case is a
particular application. Naturally it also contains as a
special case the theorem proved independently by
Watson, Fermi, and Aizu, ' on the phases of the photo-
production matrix elements.

The proof is carried out most conveniently in the
Heisenberg representation. In this representation, let
A(x) be an operator, and ln'") and Ip'") incoming
states as defined, for instance, in LSZ.

We shall make the following assumptions:

(a) Hermitian character of the operator A (x);
(b) unitarity of the S matrix;
(c) the usual transformation properties under time

reversal of operators and state vectors in the Heisenberg
representation.

Let us consider the matrix element

=t~.*(v) ((P2ln(»)l:j-(*),j.(0)ll pi)~ "*d'~

+&PERIL~-(x

o) jn(0) jl pi)~ "*d'~} (Ag)

&p' I~(o) I
'")*=( '""I~ (o) Ip '"'»

A t (0)= TA (0)T '. (A9)

Here lnt'"t) and
I p, '"') are the time reversed states of

In' ) and Ip'"), respectively; T is the Wigner time-
reversal operator.

Using the relation between "incoming" and "out-
going" operators,

where j =(—CI+iit')p and e (q) is the free-meson
wave function. The first term is a causal amplitude of
the familiar variety, whereas the second term, being
an equal-time commutator, does not depend on the
variable v used in dispersion relations.

The second term is therefore part of the constant
terms in the dispersion relations for B, and actually
corresponds, apart from a renormalization constant,
to the meson current contribution in the Born approxi-
mation.

SyinSt —pont

we can write Eq. (A9) as

(~' l~(0) Ip'")'=(~t' Ist4, (0)slpi'"&. (A1o)

Equation (A10) forms the basis of our theorem.
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We consider the case where ln'") is a state of one
nucleon,

I
p' ) a state of one nucleon and one meson,

and A(x) the four-current operator j„(x) for which

for @=0j.'(0) =e.j.(0), (A11)
0„=—1 for @=1,2, 3.

Equation (A9) then becomes:

(-'.
I j.(0) I

p'.)*
=& ««'

I Jp(0) I~' )(~'"ISIp~'") (A12)

where the
I

m' ) are a complete set of "incoming" states.
Retaining only those states

I
n'") with one nucleon and

one meson (which is certainly valid below many-meson
thresholds), and choosing a representation in which J,
I, and I.are diagonal, we obtain

(j',m', i"
I j„(0)I j, mi, l)*

= (—1)"' "0„(j', ™,i' -
I j„(0)I j, ™,&, i)

y e"'v*'. (A13)

Here we have made use of the fact that the S matrix
for pion-nucleon scattering is diagonal in this repre-
sentation, and that

2'I j,m, i)=(—1)"
I j, —m, i)

b, ;~ is the pion-nucleon scattering phase shift.
It will be sufficient to evaluate Eq. (A12) for p, =0

and 3; the relation for the other components can be
obtained by performing a rotation. In both cases the
only nonvanishing matrix elements are for m=nz'.
Performing an inversion of the y axis in order to
transform —m into +m, we finally obtain

(j,m, il jo(0) I j, mi, l)*=(j,mvil jo(0) I j,m i,l)e'*'v"', (A14)

(jm i
I jo (0) I jm, i,l)

(j,m, i I yo(0) I j,m—,i,l)e"'~"'. (A14')

APPENDIX III

In DY it is shown that the electropion production
cross sections can be obtained in terms of C „defined as

C,=-,'Trl (—ip, .~+M)H„(—ip, .~+M)a.]
X (b„„+SpS„/V), (A15)

where s„=(si+so)„. The evaluation of C, starting from
our expression for H is not an easy task because of the
interference terms between the different invariants.
We want to propose here a method which could simplify
such a calculation.

Let us introduce the following definitions:

(Shk~ (PSk ~
ai=l --

I
N', ao=I

I
N',

&P~k)

(PAS)
a, =

E Phk)

(Sky (nkvd
b, = I I ~, (A16)

E ~k)
'

&.kP)

(nk q
b, =

EP~i

(Phkp
No=

EPZk)

The notation (cicoco/didodo) means detlc,"d, I.
It is easy to verify that n, P, k, N form a complete

orthogonal set of vectors and that

n'= X'/N' p'= aibo+a—obi.

We can now introduce the six new invariants:

Mi=iyon e, Mo=iyoP e,

Mo=y Nn e, M4=y NP e,

(A17)

(A18)

3fs=iS e, 3f6=ysy SE e,

fi= I boA+2(2bo+b, )&'8+M'biC
+2~2 —2bih'E+ MbiF],

fo
—

L aoA——+ 2 (2ao+ ao)6'—8+M'aiC
Q2 2

2agLVE+MaiF], —

(A20)—2aih'D+(aiP k+aoA k)F],

f4= [ MbiA+(biP. q+—bod q)C
+2p2 —2bih'D+(biP k+boD k)F],

1
fo= (A+2D), ——

P2

and consider the expansion of the matrix T in terms of
those invariants:

T= fiMi+ foMo. (A19)

The new coefficients f; are related to the older ones by

6p —(pi po) p/2 Np —epvp Pvkp+

n=S NS N/N'=aiP+a—oh+a, k,

P =biP+boA+bok,

where e„„,is the Levi-Civita tensor and

(A16)

fo= [ MP kA+P'q kC 2P—kh'D+7t'P'F]—
g2P2

Introducing (A18) into (A15), we obtain

C' =
I
~'n'(1 —n'/S')

I
(fi'+ IN'I fo')

+ I
~'O'I (f '+

I
N'I f ')+ IN'P'I (f '+

I
N'I f ') (A21)


