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A fermion field is investigated with the interaction Lagrangian density equal to g($0;P) ($0;tf) Th. is
point interaction is considered as a limit of an extended one, where it is supposed that the interaction vanishes
if the momentum of a particle exceeds A and/or if the momentum transferred in a collision of two particles
exceeds X. The relation between A and k is such as to make the quantity X'/in(A/X) arbitrarily small as
X~~ and A.—+~. This choice of the limiting procedure considerably simplifies the investigation of the
theory. It is shown that in the limit X—+~, h.—+~, the physical interaction between particles vanishes in
all types of four-fermion interactions. The case of two interacting fields If| and X with different isotopic spin
is also considered. Going over to the local theory, the physical interaction vanishes in this case as well.

This result shows that in the cases considered no strongly interacting fermion theory can be constructed.
In the case of the weak interaction, although no logically consistent theory can be built up, there does exist
the perturbation theory, as in electrodynamics, which is valid for su%ciently small energies.

1. INTRODUCTION

HE transition to the limit of a point interaction
in electrodynamics' or meson theories' entails a

di%culty which is connected with vanishing of the
renormalized charge and the disappearance of physical
interactions between particles. It would seem to be
of interest to ascertain whether this difhculty can be
overcome by replacing the Yukawa-type interaction
gp($0;f) po, between fermions and bosons by other
types of interactions, such as that between bosons alone
or that between fermions alone. The difFiculty created
by the vanishing of the renormalized charge remains
in the case of a system of bosons whose interaction is
determined by the operator

gp t

po4 (x)de.

In this case the dependence of g. on gp and A (A is the
cutoff momentum) has the form'

gp
gc=

1+-,'gp 1n (A'/is' )

and g. vanishes for A~ ~ and any arbitrary dependence
of gp on A, providing that gp is positive. Negative
values of gp (for which, in the limit A—+~, g, may not
vanish) are in general inadmissible because no stationary
states of a boson system exist for gp(0. Indeed, for
boson fields a classical limiting case exists in which each
state may contain many particles. For gp(0 the energy
of the classical field q,

(c)pl gp(+f'P' +—s'(~),
&gg„) 4 I

'L. D. Landau and I. Ya. Pomeranchuk, Doklady Akad.
Nauk S.S.S.R. 102, 489 (1955).

2I. Ya. Pomeranchuk, Doklady Akad. Nauk S.S.S.R. 103,
1005 (1955); 104, 51 (1955); 105, 461 (1955).

'Pomeranchuk, Sudakov, and Ter-Martirosyan, Phys. Rev.
103, 784 (1956).This formula was derived for go&1; if, however,
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is not positive definite and can decrease indefinitely
with increase of the field amplitude p. Physically this
means that it should be energetically possible for an
infinite number of particles to be created from vacuum.
Thus the vacuum cannot exist for gp(0.

The constant gp for the Fermi interaction

V= 2sr'gp ($0,$) ($0,$)de (2)

(where the 0; are the ordinary spin and isotopic spin
operators for fermions) can have any sign, since the
occupation numbers cannot exceed unity and stationary
states exist for any sign of gp. In the given case, the
turning on of the interaction simply leads to a redistri-
bution of the levels of negative and positive energy.
The new stationary state with minimal energy which
arises after the interaction is "turned on" is the one
of a physical vacuum.

Hence if the relation between g. and gp in this case
were also determined by a formula analogous to (1),
the renormalized charge g. would not vanish for gp(0.
Meson theories could be based on interaction (2) and
the mesons from the very start would be similar (in
the sense of the Fermi-Yang concept') to nonlocal
formations of fermions.

In the following we shall consider the possibility of
setting up a theory of this type. '

2. EQUATION FOR THE VERTEX OPERATOR

If the interaction has the same form as (2), the
matrix elements will contain quadratic and logarithmic
divergences. We shall cut off the diverging integrals
by assuming that interaction (2) is somewhat "smeared
out": it will be assumed that the interaction vanishes
in the momentum representation if momenta I' and

two cutoff momenta are introduced it can be shown that it will
be valid for an arbitrary positive value of go.

4 F. Fermi and C. Yang, Phys. Rev. ?6, 1739 (1949).' An interaction of the same type as (2) has been discussed in a
number of papers. See for example, B. Jouvet, Nuovo cimento 5,
t (&9S7}.
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FIG. 1.Simplest four-
fermion vertex.

The in6nite sum of quantities corresponding to the
graphs in Fig. 2 satisfies the equation (see Fig. 3)

h2

I'r(P, Q,P) =as —i) apG(/ —P)G(l)I'i(/, Q,P)d l, (3)

where
as ——gp(O, XO,) (3a)

Q, directed along the fermion lines according to Fig. 1,
exceed some limiting momentum A or if the momentum

p transferred from one line to another exceeds ),
where X«A.~ In order to go over to the limit of a
point interaction one should put A—&~, A.—+~, the
relation between A and X being arbitrary.

If the theory is internally consistent, one may expect
the result of the limiting process to be independent of
the nature of the transition. The latter, however,
should not violate the general conditions required by
any physically reasonable theory, such as the general
theorems regarding the behavior of Green's functions, '
gauge invariance, etc. %e shall restrict ourselves to
the case of a limiting transition in which )t/A remains
arbitrarily small, since in this case the analysis is
considerably simplified.

It will be shown that if g0 is assumed in general to
depend on the cutoff limits, one finds that for any
form of this dependence, the exact solution yields in
the limit of a point interaction the result that no
physical interaction exists between fermions.

Of those graphs which de6ne the vertex operator
I'(E,Q,p) (at which the momentum arrangement
corresponds to that drawn in Fig. 1), the largest
contribution comes from those in which integration
over virtual momenta is performed along closed loops
(that is, up to A') and in which the degree of divergence
of the integrals is maximal. This is the loop chain
shown in Fig. 2.

We shall now find the total contribution (I'i) of all
of these graphs to the vertex operator and show, by
using the value of the vertex operator thus obtained,
that the contribution of the remaining graphs (Fig. 4)
to F is, for sufficiently small X/A, arbitrarily small, and
that the Green's function of a fermion is identical with
the function Gs= (—iP —m) '=//P for a free fermion. '

In the figures, line discontinuities signify that a large momen-
tum (exceeding X but smaller than A) cannot be transferred at
the point of discontinuity.

r This corresponds to writing (2) with a form factor Fs y:
J-'.+"1'(1)«= 2~'goi'(4'(*)o tk (*'))(1/'(r)orat (r'))

XPh, p(x —x', y —y', x—y)dxdh'dydy',

in which the width of the distributions with respect to x—x' and
y —y' are identical and equal 1/h. , whereas the width of the
distribution with respect to g —r is 1/X.

H. Lehmann, Nuovo cimento 11, 342 (1954).
Or is equal to PGO where P is a constant, the value of which

can be determined from the equation for G (see below). We have
employed the following notation here: P =p„p&, p„=p&.

is a quantity which corresponds" to the simplest
graph in Fig. 1; d4/= (2w) 'd/id/sd/sd/4. The spinor
indices are arranged in the integral term in accord
with the closed loop in Fig. 3; that is, the integral
contains a trace. It is easy to verify that a consequence
of this is that no interference occurs between the
various interactions (3a) in (3).

(P)=go 1+g ) SPLOG(l —P)o G(/)d'6

Inserting G(l) =Gs(l) = i//, we evaluate the quadratically
divergent integral involved:

where"

f', PsP.
=-', Sp(0,~„0,'~„)

~

-', J,S„„y J, (, (4)

g r
s' k' —(pk)'/p'

~0 d k
(k sp)'(k—+sp)'

8 (1—x') ~dx
(k')'dk' '

3~~ "o (k'+-'p')' —p'k'x'

=-'A' —-'P' ln(A&// &P&)

Pp P

V, do

Q+p Q g,p g

FIG. 2. Chains of closed loops, corresponding to the largest
contribution to the vertex operator.

"Apart from a factor (2s)'z which is neglected everywhere.
"The variable / has been replaced by k=l+ —,'p and the transi-

tion from pseudo-Euclidian to Euclidian metrics has been carried
out: (4/i )d4k = (2/s. )ksdks(1 —H)'dx, where gs= (pk)'/p'ks. Terms
which remain finite for 5~00 have been neglected in the calcula-
tions of Jo and J1.

3. SCALAR INTERACTION

Equation (3) possesses a solution which depends
only on p; in the simplest case of scalar (0,=1) or
pseudoscalar (O, =its) theory the solution is Fr=n(p)
X (O,XO,), where
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4 l
"-'(L(pk)'/P'3 —-'k') —-'P'

Jl d k
(k —

s p)'(k+ s p)'

4
t

a' (' sak'(x' —-', )——,'P'
k'dk' (1—x') '*dx

J (ks+rps)2 ppksxs Q+p Q

+ p-e

= —-', P' ln(A'/f PP'), Fin. 3. Graphical representation oi Eq. (3). (Note Fol.—lowing
the plus sign, "p—l" should read "t—p.")

and t p and pi are constants whose exact values are of
no significance for the following. Substituting these or for L))ln(gs/yg&)
values of Jp and Ji in (4), we get

~(p) =gp{1+gpP '—lP'ln(A'/|P') j) ',
ln PP/p')

where f=(fp'ti)~ Th.e quadratic divergence in the
denominator cancels out if gp

———1/A' (or if 1+gpA'
is a quantity which decreases with increase of A'); if,
however, gpss

—1/A', rr(p) will be practically independ-
ent of p' (it may be recalled that p'& V«A') and for
A—+oo it vanishes as 1/A. '. Postponing the analysis of
this case, we shall erst assume that

Hence for suKciently large values of L Land for
L))ln(X'/m')), the difference between p and unity is
arbitrarily small.

In a similar manner, we consider the ratio of the
integrals corresponding to Figs. 4(b), (c), (d), and (e)
Lnot included in Eq. (3)$ to cr(p). For Fig. 4(b) this
ratio is

~(p)~(f)
d4f. —

(P—f) (Q+f)

1+gpA'= p'/As,

where p, is a quantity of the order of the lower cutoG
limit. Neglecting ii'/A' compared with unity, we get
from (S)

~(p) = 1/(p'L+I")—

where L=ln(A/X) D p' has been replaced by X' as a
result of which n(p) simply increases). With the aid
of this value of n(p), we shall estimate the magnitude
of the contribution from the graph in Fig. 4(a) which
determines the difference G—Gp, where G—:GpP; that
is, the difference between p and unity.

The spinor indices can be neglected in estimating the
integral corresponding to Fig. 4(a), since it is only the
order of magnitude that matters. The integral for
Fig. 4(a) has the following form (n being a function of
f' in the given case):

ln (X'/p')X' P ln(X'/p')
or

PQL Q L

In any of the cases considered the ratio can be made
arbitrarily small.

For the diagrams in Fig. 4(c), we get (see reference 6)

~A pA

d4l i d4/' d4k(p)»» (&+p)(i+k)

Depending on the magnitude of the momenta P and Q,
(Sa) vis. , X«P Q«A, Q«X«P«A, or p P Q«X«A,

we obtain, respectively, taking into account (Sa),

~(fp)dpf ~a d4i

P f »(i+f)— X a'(p)o. (k)n(p k)—
i (f +k)(i p)

1 1 1

f ff
n(p) k'n(k)n(p —k) [in(A'/k') j'd'k

1 ("'d4k

psL J ks psLIntegration of the first term yields zero; if (Sa) is
taken into account, the second term yields (1/L)
Xln(X'/p') after integration. Taking into account that Figure 4(d) leads to the following integral:
gp= —1/A. ', we get

Integration over i yields A' (inasmuch as f'&~~ &A To calculate the integral over i (and i') it should be
and the integral over i diverges and therefore i+f=i). ex&anded;n k and p sh~~ld be set equal to zero
For integration over f, the factor (p —f) ' should be
expanded into a series in p:

ln ()P/p')
G ' —Gp ' ———ip

I.
d4/ ~ d4k ~'(p)~(k)

i (l+p) (i+k) (i+p+ k)
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P p-

~ g~k
ll

~ttk~(

Q«P

(c)

FIG. 4. (a) Graphs contribut-
ing to the deviation of p from
unity. (b)—(e) Graphs contri-
buting to the deviation of a
from the v'alues given by
Eq. (5).

Integration over l yields ln(A2/k2), and we obtain

1 t
"' (A2~

n(k) ln! —
!
d'k-

p21 J L, k2) p2I.

Finally, we shaU consider Fig. 4(e). The integration up
to a small limit performed in Fig. 4(b) is repeated
twice in this diagram. One may therefore expect that
it will be smaller than Fig. 4(b). The corresponding
ratio is

d'l d'k d'k'
rr(p)J J J

n(k)n(k')cr(k —p)n(k' —p)
X

l (l+p) (l—k) (l+k') (P+k) (Q+k')

Depending on the magnitudes of P and Q, namely,
X«P Q«A, p Q«X«P, or p P Q«X, we cor-
respondingly get

p' t'inX2/p'y '
p 1nX2/p2 1

or
PQ& I. )' P I.2 ' I.2

These quantities can be made arbitrarily small if
the limiting procedure is carried out in such a manner
that X2/22221. remains sufficiently small for
More complex graphs of the vertex operator not
indicated in Fig. 4 are proportional to higher powers
of the same ratio X2/22221. (or of a smaller quantity)
and hence are certainly small.

The expression (Sa) obtained for n(p) is thus an
exact solution.

The physical interaction between two fermions is
determined by the product F2. The results obtained
above indicate that nP2 vanishes for A—+~; that is,
physical interaction between point fermions is absent.

The case when 11gph.
2 is negative should be excluded.

Indeed, if 1+geX2 is negative and equal to —1, by
order of magnitude, the logarithmic term in the expres-
sion for F can be neglected. Evaluating the additional
term in the Green's function G with a negative F, we

see that P would exceed unity, and this is inconsistent
with the general theorems of field theory. '

If the absolute value of 1+g&2 is less than gs)t', a
pole in the space values of p' will arise in the formula
for F. Since, in treating the interaction between
fermions as an interaction between bosons, F has the
meaning of a boson Green's function, it is evident that
this pole corresponds to an imaginary boson mass.
Such bosons would yield a term —!222!2q' in the
Hamiltonian and this would point to nonstability of
the vacuum in this case.

Returning to the case gee —1/h2, we note that
Eq. (3) should be solved simultaneously with the
equation for the Green's function G(p),

go f
2p I uoG(p ——f)—1'r(f)G(l)G—(l+f)d'ld'f G(p) = 1,

2 J
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go
~(p) =

1——',gop' »(A'/p')
(7)

If go behaves as 1/m'L for A~oo, the difference
between P and 1 will be of the order of ) '/m'L. Indeed,
in formula (6) the integral over I now does not contain
a quadratically divergent part and hence is equal to

f'1 (h.n'/f'). The remaining integral over f yields
goh'P (P'/m'L)P, if one takes into account that
c4 1/f'L and expands in a series in P.

If go is not small, the equations for n and P should
be solved simultaneously. The equation for P can be
satisfied in this case by assuming that P is independent
of p. Then, instead of (7), we get

l the order of the spinor indices corresponds to Fig. 4(a);
that is, the integral term contains an integral over 1 of
the same type as (4)].

Neglecting terms of the form p' ln(h. '/p') compared
with A' and taking into account that in this case the
integral (4) is equal to A', we obtain the following
solution:

r, (p) = (O,XO,); G(p) = p/p,

where n=goL1+goP'l1') ' and P=L1+—,gP, 'A'nP') ' are
quantities which do not depend on p. Inserting n in
the formula for P, we obtain an equation of the fourth
degree with respect to P. Its solution can easily be
found in the cases when gQ'((1 or golV 1, goX'((1.
In the first case we get P= (4/goX')l (1+&goX')~—1j,
and in the second, P—1. In both cases (which include
the complete range of values of gp which are of any
interest), the quantity (=nP'A', in the limit for A—+~,
remains of the order of unity. Now it is easy to demon-
strate that the unaccounted graphs of the type depicted
in Fig. 4 are much less than o.. For example, the ratio
of the quantities corresponding to the graphs in Figs.
4(b) and (d) to n is nP'(X4/EQ) = P(X4/EQA') and
e'P4A.9.'= P P '/A') . These quantities are arbitrarily
small when X'/A' —+0. It follows that the solutions
obtained for r and G are exact ones, and since nP'cV 1,
the physical interaction 4lp' vanishes as 1/A' for A'—+ ~ .

A point which was important for the foregoing
analysis was that the integral Jp contains A'. The
magnitude of the quadratically divergent integral,
however, may significantly depend on the form factor
employed in computing this quantity. Suppose, for
example, that the quadratically divergent integral is
made to vanish by using an oscillating form factor.
Then instead of (5) we get

For a suKciently large L, when goP9'L))1, this integral
equals gopvp and the following equation is obtained for

Hence
Pl 1+4'ogoP~'3=1.

4. VECTOR AND TENSOR INTERACTION

Consider now the vector interaction theories (O, =iy„,
or 0;=i&op„) We s.tart with the pseudovector theory.
According to (4), insertion of ri in the form n(p)
X(iyop„xiyop„) into (3) leads to the appearance of a
new sPinor form, (1/P ) (iyoPxiyoP), in the right-hand
part of the equation. Thus the solution of (3) should
be sought in the form

1
r, = (P) (i~,~„X'~,~„)+,(P) (A,PXi&,P)—. (8)

Inserting (8) into Eq. (3) and separately equating
the coefficients in each spinor form, we get

u(p) = go
—go(&o+Ji),

~i(P) = 2go~l~ (P) —go(~0-~l)~l(p)
or

go
~(p) =

1+go(+0+~1)

go
A 0!y

1+go(&o—A)

that is, P is independent of L. It therefore follows from
(7a) that for a sufficiently large value of L,

np'-1/p' L

t if p'~0, formula (7a) should be refined by taking
into account the finiteness of the mass; then aP' 1/
nz'L j

It can readily be verified that in this case the diagrams
of Fig. 4 and the more complicated ones are small
compared with 44 in (7a).

Thus the conclusion drawn above regarding the
vanishing of the interaction of point fermions does not
depend on whether the quadratically divergent integral
is considered equal to A' or to zero. This confirms our
viewpoint that the physica/ results of the theory (in
the given case, the vanishing of the interaction) should
not depend on the form of the cuto6 factor.

go
~(p) =

1—-'gop'p' ln(A'/p')
(7a)

The integral in the equation for P has the following
form:

r~(f) t" ~'~ t ~(f)
goPo d4f =goP'P ' d4f. f'ln" P f " I(f f) — " f' — f'

Taking into account the values of the integrals Jo
and J~, we get

go
~(p) =

1+goL-;go —ipo ln(Ao/po) ~'

go
Q Qy

1+ogoA,'
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c$g

ip'
FIG. 5. Simplest graph corre-

sponding to the second-order
interaction arising from the term
ln 2f '). go

~(p) =
1+go(&o+&i)

go+ fo
CE CKy

1+(go+fo) (Jo—A)

(11a)

diagrams created from the simplest one in Fig. 5)
can be taken into account in calculating F~ if instead of
(3a) we insert in (3) the expression

&o'= go(iyA'„Xiyov )+ (fo/pp) (iyopX'vpp).

After simple transformations, the following results
can be derived from Eq. (3):

that is4r(p) has the same form as in (5) and for decreases
with increasing A.' as 1/L for go 1/h. ', whereas 4rt(p)
does not contain ]n(A'/p') in the denominator and does
not tend to zero for A.'—+~.

The term containing 4rt(p), however, does not
correspond to any real interaction, as it can be excluded
with help of a transformation similar to a guage
transformation. Let us examine, for example, a system
consisting of fermions and of scalar bosons not interact-
ing with the fermions. The Lagrangian of the system
has the form

/=g (o)+g to)+@ (il

where J'Z~&'&dv= —V, Zp&o& is the Lagrangian of the
boson free field, and Zrto&= tP(y„B—/Bx„+no)4P is the
Lagrangian for free fermions.

The fermion system can be characterized by a wave
field 4Pi related to P by the relation

4Pi= exp(imp e44p(x) $4P; 4' = ij expt iyo epp(x) ), (12)

where pp(x) is a quantized boson field and e is an
operator defined in the momentum representation by
the function e(p') fi.e., e=e(—8'/Bx„')j. Under this
transformation of the field 4P(x), the Lagrangian Zr&'&

fi.e., interaction (2)j remains constant, whereas Zr&'&

changes:

Thus, in order to exclude the term 4ri(p) in the expres-
sion for I'i, it is sufhcient to choose e(p') equal to
L(p'/3A4)Lj&; it is arbitrarily small for A~pe. It was
thus sufhcient to consider the fictitious interaction V'
in the lower approximation, the Lagrangian Z2 dis-
appearing for A~~.

Formula (11a) for rr(p) is in all respects similar to
the expression (5) obtained in scalar theories and
therefore, as in the latter cases, it leads to the dis-
appearance of physical interaction for A—+~.

We shall now consider the vector interaction theory.
In this case the quadratically divergent integral can
be considered to equal zero. Indeed, in vector theory
the integral (4) can be written in the following form:

&(i ( )j (y))o '"'* "'d'*~'3, (14)

Inserting the upper equation in the lower, we note
that 4ri(p) vanishes if

fp
—2go'J——i/(1+2fpji). (13)

The expression for 4r(p) is identical with (11);it yields
the result that the interaction is maximal if gp

———2/h'.
From (13) we then obtain

where

g&(o) = gy, (p)+g,+g,

Bp
~1 tf'&i yp75e 4'1&

Zp= m4p&(exp) —2ippepo(x) j—1}iti.

where j.(x) =4P(x)&,4P(x) and" Bj„(x)/c)x„=0. If we
put p=0 in (14), we formally obtain a quadratically
divergent integral. Its structure is the same as that of
the integral which in electrodynamics determines the
photon mass (since in electrodynamics j„satisfies the
continuity equation), and it therefore must vanish. "

The Lagrangian Z~ corresponds to the addition to
(2) of a fictitious interaction

f 8p
V'=J' pisa„yoe 4pidn

BXp

In second order, it leads to scattering of fermions by
fermions, (fo/Ps) (iyoPXiypP) corresponding to the
simplest diagram in Fig. 5. Here fp= e'(Ps)/pr &~0.
The presence of this interaction (that is, of al] the

'~This equation is valid not only for free operators but for
coupled operators as well.

"A formal proof, not based on the analogy with electrody-
namics, can be given, for example, in the following way. Consider
the integral

fI'(j.(x)j b)) S
d4xd4y=

S
T(j.(xj)(y))v (x)d4x~43-sp(x), , 8

P V

J„(3) 4 (~)&'~d'x
Bj„(x).

V

The first integral on the right-hand side is zero ifj„(x) vanishes
at infinity; the second integral is zero because Bj „(x)/Bx„=0
If Bq(x)/8x„ is a sufficiently slowly varying function of the
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In vector theory the term ni(p)(ipXip/ps) appears be characterized by the column matrix
in I'i, and formula (10) is valid as before; however,
instead of (11), we have f'4

~(p) =goL1 —sgop'»(A'/p')7 ',
-(p)+-.(p) =g.. (»b)

We now take notice of the fact that for real particles
the interaction rrt(p) (ipXip/p') is identically equal to
zero. Indeed, p is the difference between the final and
initial particle momenta. Since the wave functions of
the initial and final states obey the free Dirac equation,
the matrix element of iP will vanish. "As n(P) in (11b)
is practically identical with (7), the reasoning and also
the results obtained in Sec. 3 for scalar theory (in
which the quadratic integral vanishes) are also valid
in the given case.

It remains for us to consider tensor theory. Replacing
0, in (4) by o„,= ,'i (y„y„—.p„p„-), we see that

Then in interaction (15),
3

as= P g,V,
where

v, =e, xe', v.'=e'xe';
V,'= et'Xes'+Qs'Xet',

pi Oq )0 Oq
Q. =0,

i i; Q.'=0,
I

&0 0) EO 1i

will correspond to the simplest diagram in Fig. 1 and
Eq. (3) will have a solution of the type

Sp(~-uv ~i.v ) =o I'i= 2 ~'(p) V''.

Thus no quadratic divergence is involved in tensor
theory. The new spinor forms for I"& arise, but in tensor
theory ni(p) contain lnA'/p' in the denominator. The
considerations do not differ from those applied in the
case of scalar theory (in which the quadratic integral is
assumed to be zero).

Consequently, if only a single fermion field is con-
sidered, physical interaction will be absent in all types
of four-fermion interaction.

S. INTERACTION OF SEVERAL FIELDS

The interaction between several fields will now be
considered. If two types of neutral particles exist
(the respective fields being designated by iP and)f), we

arrive at three types of interaction:

V = 2 ') [g (lt 0,$) (lf 0,|P)+g (xo,x) (xo;)r)

+2gs ($0,lt ) (xO,x)7ds, (15)

the respective constants being g~, g2, g3. One may
inquire whether these constants can be chosen in such
a way so as to cancel out the logarithm in the dernon-
inator of the expression. for tr(p), which is of the same

type as (5).
For convenience, the field of the two particles will

coordinates, it can be written before the integral; and since the
vector 8rp/Bx„ is arbitrary, we obtain

f7'(i. (*)i~(y))d'*&'y =o

"See the similar arguments in R. Feynman's paper )Phys.
Rev. 76, 769 (1949)g.At small p' the denominator of the expression
(ipXip)/p' will not vanish if finiteness of the mass is taken into
account. Vanishing of the interaction a1 can also be proved by
employing a transformation similar to (12).

We shall consider scalar theory (0,=1, 0;=i»),
similar results obtaining in the other theories.

Inserting the foregoing expressions for ao and I'~ in

(3), we obtain, after equating the coe%cients before
t/', the following set of equations for e;.

(1+gtI)rrt+gsrrsI= gi,

(1+gsI)rrs+gstrsI =gs,

—,'ger iI+-', ger sI+L1+-', (gi+g, )I7ns= g„
(16)

where I=2Js+Jr=A' —p'I. . The solutions of these
equations are

gi+ f'I gs+f I
(17)

where 6= 1+2gI+f'Is, g= -,'(gi+gs), and f'= gigs gss-
Taking into account only terms linear in p'L (it can
easily be seen that these are the leading terms if the
g;A' are of the order of unity), we obtain

A'3, = (1+Fs)A.'—Fip'L

where Fs 2g+f' and Fi————2 (g+f'). The dimensionless
constants g =A'g and f=Asf have been introduced;
in the case of interest these quantities are of the order
of unity. In the expression A 6 )that is, in the denomina-
tor of the rr;(p)7 there will be no term proportional to
A', and the quantity L will cancel out if 1+Fs——0 and
F~= 0. Inserting the values of Fo and F~, we get g= —1
and f'= 1; that is, gi+gs= —2 and gigs —gss= 1,
where g;=A'g;. Hence gi= —2 —gs and —gss= (1+gs)'.

Thus quadratic and logarithmic infinities can be
removed from the denominator of the expressions for
n; only when the constant gs is imaginary (if the
numerators of the expressions for n; are multiplied by
A' they will be of the order of unity, providing g, 1).
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Therefore, for Hermitian I.agrangians, physical inter-
action will vanish in this case also if A'—&~.

If the quadratic integral vanishes (vector and
tensor theories), the same type of reasoning as that
used in Sec. 3 for a single field should be applied. No
physical interaction will arise in this case either.

We now turn to consideration of charged fields.
Care should be exercised in using form factors to
analyze the charged field. Thus if the form factor is
introduced simply as the integration limit in momentum
space, a contradiction with Ward s identity will
arise when X'«A' (in particular, because of the inter-
action, a neutral particle acquires a charge). In order
to avoid this inconsistency, a form factor should be
introduced which has, for example, the form

g2 y2

&(p—~)2—~2)

where A is the electromagnetic potential. " Gauge
invariance will apply to the relation between 0 and A',
and hence the methods employed above may be used.

Consider now the interaction between two fields
with isotopic spin —, (field P) and isotopic spin 1 (field
Z). Instead of (15) we obtain

V= 2'' [gi(~) (~)+g2(ZZ) (ZZ)+2g (~) (ZZ)

+2gggT p) (zT.z)+g'i(ZS.&)(ZS.p) jd~, (18)
'5The authors are thankful to H. L. Ioffe for pointing out

that a form factor of the indicated type removes the contradiction
with Ward's identity.

where the 7. are operators of isotopic spin —,
' and T

of spin 1, and S p=T T~+TpT 38—s-, for the sake
of brevity, the operators of ordinary spin are not
explicitly included. To compute the integral (4), the
trace over the isotopic spin variables should also be
taken. It can readily be verified in this case that
interaction (18) splits into three independent sets:
(1) gi, g2, g&, (2) g4, gz, g6, and (3) g7. The first two can
be reduced to the case of interaction of two neutral
fields, discussed above, by changing the notation.
Thus, in the first case, the following substitution should
be made: 2g~= g~, 3g2= g2', 6'g3= g3, 2o.~=o;~', 3n~=e2',
and 6:0.3=F3'. In the second case, we obtain the previous
equation (16) by performing the substitution 2g;=g, '.
In the third case, only one field is involved.

More complicated cases of interaction may be
considered, such as the interaction between three
different fields. Then, besides interactions of type (18),
an interaction of the P-decay type (PP)(px) can be
set up. These cases may be handled by the same

methods, but the problem becomes more unwieldy.
There are no apparent physical reasons to expect
other results to be obtained in these more complex
cases, although a study of them would seem to be of
interest.

Thus the expectation expressed in the introduction,
that choice of the sign of the interaction constant might
lead to a result differing from that in other cases of
local interaction, is not confined.

In all of the simplest cases of local interaction
considered up to the present, physical interaction
between the fields is absent.


