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It is therefore necessary that such contaminations be
less than 0.18s (which is 0.1%%u~ for 8=0.1) for a 30%
accuracy in the determination of P.

Since different isotopes capture p, mesons with
approximately the same rate, contamination of the
stopping substance with its isotopes can be shown to
produce relatively small curvature in the logarithmic
decay curve, and consequently can be well tolerated. An
isotopic contamination of a few percent will be quite
harmless.

(c) A curvature measurement, however, does not
allow for a determination of the sign of 5, even if one
knows the population of the two hyperfine states. A
measurement of the change of curvature, or a study of
the time dependence of the angular asymmetry of the
decay electrons if the p, meson is not completely

depolarized in slowing down, is necessary to determine
the sign of 6. Both of these seem to be very dificult.

(d) For a nucleus with an even number of protons
the difference X+—), if it exists, should be very small.
Also, if I=O, there should be only one lifetime. These
obvious conclusions offer convenient "controls" in any
experimental setup to detect P+.—)
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The conservation laws are examined from the transformation properties of the Lagrangian. The energy-
momentum complex obtained has mixed indices, T„, whereas a symmetric quantity V" is required for
the definition of angular momentum. Such a symmetric quantity has been constructed by Landau and
Lifshitz. In the course of examining the relationship between these quantities, two hierarchies of complexes
T'(„)„"and g"(„)t""are constructed. Under linear coordinate transformations the former are tensor densities
of weight (I+1) and the latter of weight (++2).For I=0 these reduce to the canonical T„"and the Landau-
Lifshitz K"', respectively.

By requiring the energy-momentum complex to generate the coordinate transformations, and the total
energy and momentum to form a free vector, one can identify the canonical complex T„' as the appropriate
quantity to describe the energy and momentum of the field plus matter. Similarly, by requiring the total
angular momentum to behave as a free antisymmetric tensor, one can construct, in the usual manner, an
appropriate quantity from T& 1)"".The angular momentum complex so defined differs from that proposed
by Landau and Lifshitz as well as from an independent construction by Bergmann and Thomson.

1. INTRODUCTION

~CONSERVATION laws in general relativity were~ first formulated by Einstein in 1916.' By exam-
ining the behavior of the Lagrangian of the theory of
gravitation under infinitesimal translations of the
coordinate system, he was led. to the canonical energy-
momentum pseudotensor of the gravitational field.
Because of the nontensor character of the pseudotensor,
the local energy density of the field does not have a
covariant significance. Indeed, Schrodinger criticized.
this formulation of the conservation laws because he
found a coordinate system in which all components of
the pseudotensor vanished for the Schwarzschild metric.
This criticism was answered only when Einstein' showed

' A. Einstein, Berlin Ber. 42, 1111 (1916).' E. Schrodinger, Physik Z. 19, 4 (1918).
A. Einstein, Berlin Ber. 448 (1918); W. Pauli, Relatr'sextets

theoric (B. G. Teubner, Leipzig, 1922), Enzyklopadie der Mathe-
matische Wissenschaften, Vol. 2, p. 740.

that total energy and momentum, the only physically
meaningful quantities, are constants of the motion and
transform as a free-vector4 under linear coordinate
transformations.

Except for a further examination of the relationship
between conservation laws and transformation prop-
erties, little has been added to the analysis by Einstein.
However, in order to discuss angular momentum, a
symmetric quantity for energy-momentum is desirable, '
although not necessary. ~ The canonical pseudotensor
has mixed indices, and raising one with the metric
tensor does not yieM a symmetric quantity. Recently

4 A free-vector is a set of quantities which are not defined at a
particular point in space, yet which transform together as a
vector under linear coordinate transformations.' P. G. Bergmann, Phys. Rev. 75, 680 (1949); P. G. Bergmann
and R. Schiller, Phys. Rev. 89, 4 (1953).' W. Pauli, Revs. Modern Phys. 13, 203 (1941).

r P. G. Bergmann and R. Thomson, Phys. Rev. 89, 400 (1953).
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Landau and Lifshitz' have succeeded in constructing a
symmetric pseudotensor. However, following Einstein's
analysis, ' one can show that the total energy and
momentum defined by L-L (Landau and Lifshitz)
transforms as a vector density rather than a vector as
is the case for particles.

Therefore, it is of some interest to examine the
relationship between the L-L and the canonical pseudo-
tensors. In the course of this examination a whole
family of mixed and symmetric pseudotensors will be
constructed. The various pseudotensors have different
weights. All of the mixed tensors have the same physical
content (total energy and momentum) whereas the
symmetric ones are all diferent in their physical
content. Of the symmetric quantities, only the L-L
pseudotensor has the same total energy and momentum
as the canonical one. However, it has the wrong
transformation properties.

In the next section an analysis of the relationship
between covariance and conservation laws is presented.
This material is essentially the same as that of Berg-
mann and Schiller' and is presented only for complete-
ness as the results are needed. The translation of these
results into the general theory of relativity is carried
out in Sec. 3. Here, too, the hierarchy of pseudotensors,
both symmetric and mixed, is constructed. Finally, in

Sec. 4 we discuss angular momentum.

2. COVARIANCE AND THE CONSERVATION LAWS

Consider field equations which may be derived from
a variational principle. The Lagrangian L may contain

up to second derivatives of the field variables y~. In
order to assure covariant field equations, L should

transform as a scalar density under coordinate transfor-
mations. Therefore, with respect to an infinitesimal

coordinate transformation,

obtain the following set of relations"

t„"„+LyA, „=O, (2.4a)

v Q AvLA —p [vrl (24b)

Lvr+Lrv 0

QpA"8""L+Q p8 '"L+Q A 8 "pL=O
)

(2.4c)

(2.4d)

where the following abbreviations have been used:

LA gAI (gApJ) +(gAprL) (2.5a)

[vp] —P vgAprL g pgAvrL]y (2.5e)

In (2.4a) use has been made of the following identity

gAvrLy — ~ [vrj (gAvrL) y

+~„"(8""LyA„),p, (2.6a)

in (2.4b) we have used the relations (2.4d) and the
identity

)QpA"8 p Ljs(QpA 8 "pL Q pB " L)]—, pr

= [n„A"8A p L], ,. (2.6b)

Equation (2.4a) results from the translational invari-
ance of the theory alone. Therefore, t„"may be identified
with the energy-momentum pseudotensor. ' When the
field equations are satisfied, L~= 0, the "weak" conser-
vation law for energy and momentum results:

t„",„=0. (2.7)

1p" = 3p"(L —(~""L—yA, .) p]+L~'"L
(~"—"pL), p]yA, . (~'—" Lp), .yA. , (25b)

U'[vpl I [vpl s['Q vgAprL Q pgAvrL]

+E ["" (2.5c)

L„["p[= Q„A"8A pL+2Q„A" .8A prL —8"pvLyA, „, (2.5d)

we have

sp=xp+p,

SL+(L~ ),„=0.

(2.1)

(2 2)

If the Lagrangian is linear in the second derivatives
and. 8~p L depends only on the y& one can de6ne an
equivalent function

Let the held variables obey a linear transformation law':

5yA Q»"p„——yA„p, ,
—Q», " FA„"y&, (2.3)——

where the F~„' are certain constants. ' Expanding Eq.
(2.2) with the help of (2.3) and equating to zero the
coeKcients of the various differential orders of P, we

'L. Landau and E. Lifshitz, The ClassicaL Theory of Fields
(Addison-Wesley Press, Cambridge, 1951), p. 316, English trans-
lation.

'The $ transformation compares the Geld variables at world
points with the same coordinate value rather than at the same
world point. That is, 5yA=gA(x) yA(x)=syA yApp The- — .
advantage of the $ transformation is that it commutes with
ordinary di6'erentiation.

Z=L —(8 "LyA, .), p. (2 g)

Second derivatives of the field variables no longer
occur in Z. In general 2 will not be a scalar density.
However, the field equations which result from a vari-
ation of the action dined by 2 will be the same as
those obtained through use of L. The canonical pseudo-
tensor then takes the familiar form

tp= 8 2+&3 "gyA (2.9)

The remaining relations in Eqs. (2.4) follow from
covariance with respect to arbitrary coordinate trans-

' The following abbreviated notation is used: 8 L=BL/By&,
8"pL=BL/By+, p 8 L BL/By+, p . Square brackets around two
indices indicate antisymmetry in the two indices: Lt" & = —L 1 "&.
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formations. Defining the quantity T„v through

(2.10)

we obtain from Eq. (2.4b) a strong conservation law

(2,11)

(2.12)

(2.13)

TP", v=—0.

In the presence of matter the 6eld equations become

where I'~ describes the distribution of matter. Thus,

V —] V I VjpA

and we may say that T„' is the energy-momentum
complex" for both field and matter.

Since t„" does not have tensor transformation prop-
erties, the distribution of energy between matter and
held is dependent upon the choice of coordinate system.
This result was first obtained by Einstein, ' who also
showed that under certain conditions (essentially, no
radiation) the total energy and momentum in a closed
domain of space is independent of the choice of coordi-
nates within the domain. This latter result can be
shown very easily by use of what Pauli" has called the
"Rux theorem. " The total energy and momentum is
given by the spatial volume integral

From the transformation properties of the La-
grangian, we have been able to construct a quantity
with mixed indices which satisfies a conservation
relationship. However, in order to define an angular
momentum complex, a contravariant symmetric quan-
tity is required. Such a quantity cannot be found from
the transformation properties alone because the coeS.-
cients describing coordinate transformations always
involve mixed indices Lsee„::Eq. (2.3)7. If one has,
however, a symmetric quantity I'&", one can always
construct a quantity V&" which is symmetric and
which satisfies

namely"
1" =0

p V

q pv —(Ppvgpp PpoPvp)

(2.16)

(2.17)

Note, however, that with respect to linear transfor-
mations t„", and hence T„", transforms like a tensor
density of weight +1. On the other hand, with the
above examples for I'&", V'&" will transform like a
density of weight +2. Therefore, in the same manner
one proves that the total energy and momentum J„,
Eq. (2.14), transforms as a free vector, ' one can show
that

Quantities which are suitable for the I'p" are easy to
find; for example,

(gApaJ)y& (fldpf)BpI)/Ay

J„= T„4d'x. (2.14)
' V'p4d'X (2.18)

By Eq. (2.4b) this may be rewritten as a surface
integral

J„= U„t4']~,d5 (2.15)

"H. A. Lorentz, Collected Papers (Martinus Nijhoff, The Hague,
1937), Vol. 5, p. 246 8. Lorentz used the term comptex to denote
a quantity which does not have tensor transformation properties.
However, he used a different definition for energy and momentum
of the gravitational Geld. He obtained Eq. (2.4a) but did not
wish to identify the pseudotensor with the gravitational energy
and momentum. In our notation, he then observed the validity
of Eq. (2.11) and since t„",,= (siped"L"), „he identiGed N„z"1." as
the energy-momentum tensor of the gravitational field. It follows
from Eq. (2.12) that the energy density for matter and Geld
always vanishes (W. Pauli, reference 3). Therefore, this deGnition
is not as satisfactory as the usual one discussed in the body of
this paper. On the other hand, t„"and hence T„"are a%ne tensors;
that is, they have tensor transformation properties with respect
to linear coordinate transformations.

"W. Pauli (privately circulated letter). However, the
"theorem" has been known without a name for some time. The
first explicit use of the theorem was by H. Zatzkis, Phys. Rev.
Sl, 1023 (1951},based on the work of P. von Freud, Ann. Math.
40, 417 (1939).Further discussion of the theorem may be found
in Bergmann and Schiller, reference 5, and J. N. Goldberg,
Phys. Rev. 89, 263 (1953);99, 1873 (1955).

Thus the total energy and momentum is determined
by the Qux of some quantity through a closed surface.
It follows that an arbitrary coordinate transformation
which reduces to the identity on the surface sufficiently
rapidly will not acct the total energy and momentum.

3. THEORY OF GRAVITATION

The Lagrangian density in the theory of gravitation
is just the curvature scalar density

%=(—g)iR=gp"E
'-' R. Sachs (private communication).

(3.1)

transforms as a vector density. Similarly, the angular
momentum defined from Eq. (2.17) will transform like
a tensor density rather than a tensor. We shall return
to this question in the next section.

In order to satisfy (2.16), I'""need only be symmetric
and need not be either of the above-mentioned quan-
tities. For example, consider simply the Lorentz-
covariant scalar meson theory. It is easy to show that
in this case the energy-momentum tensor defined
through Eq. (2.9) is symmetric if the lowered index is
raised. Using this symmetric quantity for F&", a short
calculation shows that 9"~" does not vanish identically.
Although E&" has a vanishing divergence one would
not identify it with the energy and momentum in the
6eld. Therefore, before claiming any physical signi6-
cance for the quantity defined through Eq. (2.17),
one must examine its relationship to the T„v de6ned
by the transformation properties. Unfortunately, this
comparison cannot be carried out in the generalized
notation of this section.
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For the purpose of computing the explicit expressions
in Eqs. (2.4) and (2.5), it is convenient to use the
following expanded form:

l(gcKg gptv +2gcK ) +g (3.2)

&= l(2A "Ai.g- —
g "A-gi.—43. 3"A-)g'", .g', ' (3 3)

It is clear from Eq. (3.2) that R satisfies the necessary
condition for the existence of a suitable erst-order
Lagrangian which is defined in (3.3). A somewhat
tedious, but not dificult, calculation gives

As was noted at the end of the previous section, under
linear coordinate transformations, T„"and t„"transform
like tensor densities of weight one, whereas 1&' and ~""
transform like tensor densities of weight two. It follows
that the total energy and momentum transform like
free-vectors and free-vector densities, respectively. The
question naturally arises whether one can construct a
symmetric quantity with a weight one. Indeed, one
can construct a symmetric quantity of arbitrary weight.
Multiplying Eq. (3.11a) by (—g) "/s, we have

2( g)i +i)/&Qp =H'& )[/cp][ ] r cc (3 12)
U fvpl = rr &II'f)a]fvp]

Av& p [r7

Qf)[.a] fvp] gkvg po. gXpgv[r

(3.4a)

(3.4b)

with

and
fpp]fvv] = (—[V)VC/&H[/Cp][vv] (3.13a)

fp"= s&)p"L2A"A) A- g"A Kg).
—4&K &)pgcvjg", pg";v+KL2A"'g& cgKK

g Vtlg g 4$ V&) Ilg fg)CV g
CK (3.5)

[-)""=(—g)""( ""+l~L(lnlgl), -
+-,'n (ln ( g (), ,(ln i g ()„gH[p'] ["]
+-,'e(ln(g))„PH["']["']+H["'][K']j ). (3.13b)

v+2 —2( g)VG v 2Q v (3.6)

Therefore,
T"=f "—2$" (3 7)

At first sight the minus sign in the above equation is
disconcerting. However, in the presence of matter we
have'4

6"'= —Sm'KP"", (3.8)

where P'I"" is the matter tensor. Therefore, the total
energy will be positive.

The quantity defined in Eq. (3.4b) permits the
construction of a symmetric energy-momentum complex
in the manner of (2.17)":

/IPv = II[Po] fvPl (3.9)

2@ v P fvv] (3.10)

This quantity is just that proposed by Landau and
Lifshitz. ' In order to see the relationship between this
quantity and the mixed quantity defined by Eq. (3.7)
we use (3.7) and (2.4b).

Note that except for the L-L quantity (is=0) the above
defined pseudotensors depend on the second derivatives
of the field variables. One can now define a total
energy-momentum complex by

c7 pv —II' f/[f pl f vol (3.14)

Smilarly one can define quantities of arbitrary weight
with the mixed quantities:

P [VCV] —( g)CC/SP [VV] (3.15a)

"=(—g)""L[ "+-,'nU ["'l(ln(gt), pic (3.15b)

7T fvolT(~)/ ~ (&)~ (3.15c)

Note that for all e the pseudotensor thus defined
contains only first derivatives.

Which of the infinite number of quantities de6ned
through Eqs. (2.14) and (2.15c) are meaningful P

Certainly the local distribution of energy and momen-
tum has no physical significance in general relativity.
The quantities which can have a meaning are the total
energy and momentum dehned through

2gcc)ctN v —H[/cP][vtt] r/cv
p Prr 7

rCvg /Vlcc Q [vtv] +g
/c)tf v

(3.11a)

(3.11b)

In view of the symmetry of I""and 1'p", it follows that
the quantity v-&" is also symmetric and is just the L-L
pseudotensor. It is clear that the L-L pseudotensor is
homogeneous quadratic in the first derivatives of the
A~", just as is 3„".

Raising the covariant index with the contravariant
metric tensor density, we obtain

or

1
T(7[,)P d XJ( )w

1&r~&

8& )"=
16xI(:~

U(„)„f4']e,dS,
167rz

(3.16)

'4P. G. Bergmann, Introduction to the Theory of Relativity
(Prentice-Hall, Incc.v Englewood Cliffs, New Jersey, 1947), Chap.
12.

"Indeed, we have (S~pvL)y~=3gp' and (S~pei)KL)y~ye
3gp[r

tv~] f4~]

167rl(
(3.17)

In order to make these integrals meaningful, the
surface of integration must be taken at infinity. We
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but the derivatives of the metric must not be neglected.
Under these conditions, it follows that for all n, the
J(„)„areequal:

(3.19)~( ).=J'
On the other hand, from Eq. (2.13a),

1 s
A( )"= 8«)"+ — ( g). I:rf'"2)"

16'-~ 2 —q"q4 ]is,dS. (3.20)

For m=0, we have the satisfying result

'vs p pl (p) (3.21)

In general, the surface integral in (3.20) will not
vanish. If we wish all ri(„)" to be equal, then we require
the additional assumption that in physically acceptable
coordinate systems, for large r,

g, 1/r'. (3.22)

Let us consider the Schwarzschild solution in two
coordinate systems which satisfy the conditions of
Eq. (2.18):

( 2((m)
(I)": ds'=

I
1— I(dx4)'

r

2am ) x" x'—'-+
I I

——dx'dx'
Er—2xm) r r

(II)":ds'=
1—xm/2r '
1+xm/2r

(GÃ4)2

( xm)'—
I

1+
I

L(dx')'+(dx')'+(dxs)'3
2r i

assume that the metric approaches the Minkowski
metric at least as 1/r. Therefore, at infinity we may set

g~"=qs" (—1, —1, —1, +1), —g=1, (3.18)

of a physically interesting quantity. In this case we
have shown that in the theory of gravitation there are
an infinite number of divergences which are related to
the conservation of energy and momentum. From the
relations of the defined complexes to the field equations,
it appears that all are equally good for a qualitative
description of the properties of energy and momentum.
Nonetheless, it is desirable to have a unique quantity
define the physically interesting properties of the field.
In order to pick out a satisfactory quantity we propose
two guiding principles: (1) the energy-momentum
complex should geii.crate the infinitesimal coordinate
transformations, and (2) the total energy and momen-
tum should transform as the energy and momentum of
a free particle, hence, as a free-vector. These require-
ments are satisfied only by the quantities defined
through the transformation properties of the La-
grangian" as in Sec. 2. Thus, we may say that t„",
Eq. (3.5), describes the energy and momentum of the
gravitational field, while T„", Eq. (3.7), describes the
energy and momentum of the field plus matter. The
argument presented here is hardly conclusive. It may
be possible to find other arguments which will permit
a different choice or, perhaps, no choice at all.

4. ANGULAR MOMENTUM

The definition of angular momentum is usually based
on a symmetric energy-momentum complex' although
a nonsymmetric form was used by Bergmann and
Thomson. ~ In the previous section an infinite number
of symmetric complexes were constructed. Thus, an
infinite number of quantities which are suitable as
angular momentum complexes may be constructed:

M „["'l"=x"V ( )'"—x 1 ( )""(n) (n) (n)

(n)Xvjg( )
[«l[) ~] X~LE [v~] [wa]

, c (n)

+Q [vv] pg)

The total angular momentum corresponding to the
above quantities is given by

In solution (I), g= —1 everywhere, so that all rl(„)&

are equal. However, in solution (II)

As a result,

Since

( zm) 2 ( mme iP

I I
1+

2r) 4 2rj

)~= g(P)~ 222(v)„4m.

g(o)"=()„m,

(3.23)

(3.24)

(3.25)

it follows that for m=2 the total energy vanishes,
while for e& 2 it is negative.

Clearly, the existence of a complex with a vanishing
divergence is insufhcient evidence for the conservation

'6 Reference 14, p. 203.
'VR. C. Tolman, Relativity, Thermodynamics, and Cosmology

(Oxford Ur)iversity Press, Oxford, 1934), p. 205.

5R [" ] = M ["']'d'x(n) (n)

Xv+' [o' c] [48] X(rII' [v f,] [4g]
2 t

+H( )'"'(4'))rs, dS. (4.2)

Because of the differentiation occurring inside the
brackets, the value of the total angular momentum
will depend on e. As in the case of the total energy and
momentum, the total angular momentum is unchanged
by coordinate transformations which reduce to the
identity transformations on the surface of integration
sufFiciently fast. Furthermore, with respect to linear
coordinate transformations BR( )[" ' transforms as a
tensor density of weight (22+1).
"Bergrnann and Schiller, reference 5 and W. Pauli, reference 3.
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All of the above complexes may be equally good for
a description of angular momentum. However, as in
the case of energy and momentum, a unique quantity
is desirable. Since a symmetric form does not arise
naturally from the transformation properties of the
Lagrangian, the only heuristic principle available is
that the total angular momentum should be an anti-
symmetric free-tensor, corresponding to the transfor-
mation properties of the angular momentum of free
particles. This requirement picks out M~ «~

I"'» as the
appropriate quantity to describe angular momentum.

Landau and Lifshitz take %~0~ t' » to be the angular
momentum. The total angular momentum defined in
this manner will transform under linear coordinate
transformations as a tensor density of weight one.
However, as is shown by Eqs. (3.4), (3.9), and (3.21),
the L-L quantities are more simply related to the
canonical energy-momentum complex than the other
symmetric quantities. Moreover, of the symmetric
pseudotensors constructed, only the L-L ~&" does not
contain second derivatives of the metric tensor. It is
this property which leads to (3.21). Therefore, from
an ae'sthetic point of view, one would prefer to work
with the L™Lquantities. However, if one is to make a
choice based on transformation properties, the L-L
quantities must be rejected. In the case of angular
momentum this type of argument is even less convincing
than in the case of energy and momentum. It is to be
hoped that better arguments will be developed.

However, the quantity 3f~ «~t"» can be compared
with the angular momentum complex 0&" » obtained
by Bergmann and Thomson. '

Thus the diGerence between the two quantities is the
divergence of an antisymmetric form. For the total
angular momentum we obtain

where Z&'"~ t&"' is the term in the brackets on the right-
hand side of Eq. (4.3). It is tempting to say that the
surface integral vanishes and that Mt «)

&"» describes
the same physical quantity as 0'" '&. However, from
Eq. (4.1) it is clear that M[» ["'&itself is the divergence
of an antisymmetric form. Furthermore, we recall from
Eqs. (2.15) and (3.16) that the total energy and
momentum can be written as surface integrals. In
general, we cannot expect that any of these surface
integrals will vanish. Therefore, we cannot conclude
that M( «~t" » and 0'"'» describe the same physical
quantity.

5. CONCLUSION

By considering the transformation properties of the
total energy-momentum and angular momentum we

have chosen certain quantities for the corresponding
aKne tensors. However, the proof of these transfor-
mation properties follows from the strict conservation
of the total energy-momentum and angular momentum:

Jp 4 BR,4 0«

If radiation occurs these conditions and the proof of
the transformation properties break down. However,
in all physical situations the same quantities should

dehne the content of our space, so that the existence
of radiation should not alter what we call energy and

angular momentum. Therefore, the choice made here

is not as suspect in this regard as might otherwise

appear. We wish 'to emphasize again, however, the
tentative nature of the choice made here for the

physically meaningful quantities. The fact that a choice
can be made on the basis of transformation properties
does not mean that this point of view is fruitful, or
even meaningful.

m i [" l= "M(,)["'&4d'x

Di-' «.yg«i. «« t«.««, (4 4)
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