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The interaction between a coherently oscillating radiation field, such as is generally encountered in micro-
wave experiments, and a number of similar atomic systems coupled to the field through their electric dipole
moments is analyzed for the case of resonance between atomic system and field, with both the field and
molecules treated quantum-mechanically. Expressions are derived for the expectation value of field strength
and the energy, and comparison between the two makes it possible to distinguish between coherent and
incoherent parts of the energy, the former having its counterpart in the expectation value of the field
strength, while the latter has no such counterpart. Terms corresponding to induced and spontaneous emis-
sion are identified, and it is shown that the latter includes both coherent and incoherent components. Special
situations related to masers and to the coherence of spontaneous radiation are discussed. The distinction
between the behavior of correlated and uncorrelated states is examined, and it is shown that both the co-
herent emission from uncorrelated states and the incoherent emission from correlated states may be propor-
tional to the square of the number of molecules. The phase of the field is predictable for the coherent emission
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but unpredictable for the incoherent emission.

N radio-frequency and microwave spectroscopy, one
generally deals with a coherently oscillating electro-
magnetic field,! as contrasted with optical spectroscopy,
for instance, where the field is incoherent. In those
cases where the behavior of the atomic system under
study is the only subject of interest, and the finer
aspects of the reaction of the atomic system on the field
are unimportant, the field is usually treated classically,
and considered to be a prescribed perturbation of the
atomic system. This is the method which has been used
most widely,? and takes proper cognizance of field co-
herence, since it consists of adding to the Hamiltonian
of the atomic system a sinusoidally time-varying
potential. In the cases, however, where the details of
behavior of the field itself, as affected by the atomic
system, are of interest, the field must be included as
part of the entire system under study, and treated
quantum-mechanically. This has been done, to greater
or lesser extent, with respect to such problems as noise in
masers,>~® and the coherence of spontaneous emission®;
but here, however, there has not been complete recog-
nition of the coherence properties of the field, since the
formalism used describes the field either by means of a
smooth intensity function of the frequency®*$ or as a
collection of independent photons.®
The purpose of the present article is to examine some
important aspects of the behavior of a coherently
oscillating radiation field when it is in resonance with a
group of similar atomic systems, no coupling existing
between the systems themselves other than through the
field. As a specific illustration of such a system, we may

! By coherent oscillation we mean a sinusoidal oscillation with
well-defined phase.

2 See, for instance, N. F. Ramsey, Molecular Beams (Oxford
University Press, New York, 1956).

3 M. W. P. Strandberg, Phys. Rev. 106, 617 (1957).

4R. V. Pound, Ann. Phys. 1, 24 (1957).
a ;557}3im0de, Takahasi, and Townes, J. Phys. Soc. Japan 12, 686

6 R. H. Dicke, Phys. Rev. 93, 99 (1954).

think of an ammonia beam maser.” The field is the
radiation field in the microwave cavity, and the atomic
systems are the ammonia molecules. The molecular
resonance is that of the inversion spectrum, and the
coupling to the field is due to the electric dipole moment
of the molecule. However, the analysis is in no way
specialized by any references to molecular structure,
and is presented only in terms of an electric dipole
moment.

The questions to be examined are those relating to
induced emission, spontaneous emission, coherence, and
correlation effects between molecules. In part I, ex-
pectation values for the field strength and field energy
are derived, and the physical origin of the terms occur-
ring in these expectation values is discussed. In part
II, we deal with the question of coherence. In part III,
situations associated with masers and with spontaneous
radiation from excited groups of molecules are analyzed.
In part IV, the distinction between correlated and un-
correlated states is studied.

L

We shall consider an idealized situation so that we
may deal only with the bare essentials of the problem
and concentrate on the principles involved, rather than
complicate it with details which do not affect the results
significantly but make the computation more difficult.
The atomic system, to which we refer henceforth as
“molecule,” is assumed to have only two internal energy
states with eigenvalues E; and E,, E;> E;. The motion
of the center of mass of the molecule is assumed to be
classical. The radiation field is contained in a resonant
cavity which is lossless. We consider only one mode of
the cavity, for which we assume a condition of exact
resonance with the molecule, namely, w= (Ey— E;) /%.

The field is described in the usual manner by

E=—4xcP, H=VXA,

A=QWu(r), P=P()u(y),
7 Gordon, Zeiger, and Townes, Phys. Rev. 99, 1264 (1955).

ey



4 I. R.

where Q and P are the quantum-mechanical variables
of the radiation field, obeying the commutation rule
[Q,P]=1h. The initial state of the field is described by
the wave function® (in the P representation)
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It is the choice of state of the field which determines
whether one is describing a coherently oscillating field®
(in the classical sense), and this is an essential aspect
of the present analysis. That such is the case for the
state described by Eq. (2) is shown in detail in refer-
ence 8. The molecules are described initially by the
state (in the energy representation of the free molecule)

V=Tl Lo e +ammem]l, @

where ¢1(m) and @»(m) are the two energy states of
the mth free molecule, and

[a1(m) [*+ | az(m) |2=1.

The electric dipole moment of the mth molecule is
specified by v, which, in the absence of the electro-
magnetic field, has no diagonal matrix elements (this
means that the molecule has no permanent dipole
moment) but only off-diagonal elements. The Hamil-
tonian for the combined system of molecules and
field is

N
H=Y H,—Y yu E(t,)+2rc2P2+
m=1 m

(3a)

w?

8mwc?

o, (4

where H,, is the Hamiltonian and r,, the position of the
mth molecule. H,, refers only to the internal energy of
the molecule, and not to the kinetic energy of the
center of mass, which we ignore. The Heisenberg equa-
tions of motion for the field variables are

P=—(*/4mc)Q,
Q=41c’P+47¢ X mrpm u ().

These may also be expressed as integral equations which
contain the initial values of P and Q explicitly:

=00 0+rc S [ by (1)

-u(r,) cosw(t—t),

P@:P(O)(t)—fzhftdh Y (t1)
c md,

-u(r,,) sinw(t—4#y),

8 1. R. Senitzky, Phys. Rev. 95, 904 (1954); 98, 875 (1955).

9 A quantum-mechanical system may also be described by a
mixture of states, in which the phase of the superposition con-
stants is random. The choice of a pure state rather than a mixture
is itself a step in the direction of coherence.

10 This is an uncorrelated state. Correlated states will be dis-
cussed in part IV.
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where
PO ()= P(0) coswt— (w/4mc®)Q(0) sinwt,

QO ()=0Q(0) coswi+ (4mc?/w)P(0) sinwt.

We see that P (¢) and Q© (¢) describe the behavior of
the field in the absence of an interaction with the mole-
cules. For future reference, we note the expectation
values of PO (f), P®2(s), as well as Q@ () and Q©@2(¢),
which are obtained from Eq. (2)3:

(PO)= — (Eo/4wc) sinwt,
(POY= (PO fico/8c?,
(Q®)= (Eoc/w) coswt,

(QO2)=(QO)+2mc/ .

The summations on the right side of Egs. (5) are due
to the coupling between the molecules and field. We
assume that the dipole moment of the molecule is
sufficiently small so that it may be regarded as a small
quantity of first order, and expand our dynamical
variables in powers of the coupling constant (which is
contained in ¥).
Setting
P())=PO (1)+PO ) +PO B+ -,

and using similar expansions for Q(#) and ¥ (¢), we have,
from Eq. (5),

O™ () =4me 3 f Aty ™D (1) - u(t) coso(i—t), (7)

(6)

P<">(t)=—92 tdtl Ym0 () - u(r) sinw(t—11). (8)

c my

We make a further simplification for the purpose of
disencumbering our analysis of complicating features
which have no bearing on the essence of the problem.
We will consider u(r) to be constant in the region of
the cavity where the molecules are located. The com-
ponent of v, along the direction of u will be designated
by ¥m, with matrix elements for v, ® (0) given by vym12
= Ymo1*= ¥m. We chose the phases of ¢1(m) and ¢s(m),
respectively, so as to make ¥, real.

The expectation values of Q@ (¢) and P® (¢) may be
calculated immediately. Since the formal equation of
motion for v, () is

ity (&) = Lym (0, H 1= [ym (), Hn (1) ], &)

the off-diagonal terms of y®(f) have the time de-
pendence of exp (Fiwt), respectively, so that

(Y@ ()= ar* (m)as(m)ye~* '+ a1 (m) as* (m) je'*
=2|a1(m)as(m)| 7 cos(wt-+0n), (10)

where 6,, is the difference in phase between as(m) and
a;(m). We thus obtain

(PO (1))~ (w/)2m| ar(m)as(m) | ut
Xsin(wi-+0n),
(OO ())=4wc Y| a1(m)as(m) | Fut cos(wi+6y),

(11)
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where, for simplicity, we have dropped terms in w™
compared to ¢. The individual terms of the summation
are the contributions of the individual molecules to
the field. Although the expectation values of P and Q
are, strictly speaking, quantum-mechanical averages
over an ensemble of similar systems, we may regard
them, in this instance, as an average over similar mole-
cules, since only molecular parameters are involved
on the right side of Eqgs. (11). We have here, in
the first order, spontaneous emission (referring now
only to the expectation value of the field; the energy
will be discussed later), each molecule acting (on the
average) as a (classical) oscillator of well defined phase,
6, and amplitude which is proportional to | a;(m)as(m)|.
We see that this amplitude is a maximum when | a;(m)
= |ay(m)| =2"% (that is, when the molecule is in a state
which is a superposition of equal amounts of both
energy states), and that the amplitude vanishes when
the molecule is completely in either one of the energy
states.

In order to evaluate P», we need an expression for
¥n® in terms of the zero-order (uncoupled) operators.
From Eq. (9) we have

@ () = [ym® (0, Hn® 4Ly (), Hn® (). (12)

An expression for H,® can be obtained immediately
from the equation of motion for H,,

’LhHm H=— E[Hmﬂ'm]y

dwe ot
H,(4) = Hy(0)+—u f At Hy(t1) v (61) 1P (1),
’Lﬁ 0

4drc ¢
Ha () =— f AL H,® 7, @ (1) JPO ().
7 0

We see that H,® contains only off-diagonal matrix
elements (with reference to the molecule), so that the
second term on the right side of Eq. (12) contains only
diagonal elements. On the other hand, the first term
on the right side of Eq. (12) contains only off-diagonal
elements, so that the equation for v,12® is the same as
for ¥Ym12®, namely Vm12® = —iwym12®. Since, however,
Ym® (0)=0, we must have y,12V=0. Similarly, vma:®
=0. The first term on the right side of Eq. (12) there-
fore vanishes. Noting that

Lvm® (&), Lvm® (00), Hin® T 1= 200607 L. cosco (1= 11),

-1 0
01
matrix for the other molecules, we obtain

where I,,= ( > for the mth molecule and the unit

8mc t
Yo () ==L f it PO(L) sinw(i—1) (1)
0

and
t

)
.P(Z) (l) =~h—u2372f dh P(O) (tl)
0

1
X[—%(f‘—h) cosw(t— 51)—2— sinw(t— tl)]z Im. (14)
w m
For ££>w™, this becomes

&o(d)
PO (O)=——PO ) 3. I, (15)
2hw m

where 8o(f)=2mw?u?%2. Similarly, we have
000005 1
~ 2o -

We recognize immediately that this is induced radia-
tion proportional to the zero-order field. For the ex-
pectation values, we have

(Y@ (1)Y= Euli 74 | ag(m) |2— | a1 (m) |*] coswt,

o e 20
T 8mc hw

Xsinwt Y[ |as(m) |2— |a1(m) [2].  (16)

We see that (on the average) the induced radiation of
each molecule is in phase (emission) or 180° out of
phase (absorption) with respect to the inducing field,
depending upon whether the molecule is mostly in the
upper energy state or lower energy state.

It is worth noting that if Eo=0, that is, if there is no
oscillating field initially in the cavity, and if the mole-
cule enters the cavity in either the upper or lower
energy state (but not in a superposition of both), then
the expectation value of the field remains zero. We have
shown this to be true up to second order, but it can be
shown by a general theorem to be true for all orders, as
follows: consider the Hamiltonian of Eq. (4). It is
invariant under a unitary transformation which changes
the sign both of E and ~. A state of the system for which
each molecule is in a definite energy state must remain
unchanged except for multiplication by a phase factor
(which has no physical significance). The expectation
value of the field should be invariant under the above
transformation. It must therefore be zero.

We shall now calculate the expectation value for the
energy of the field. This will give us information not
only about the energy itself, but also about the co-
herence of the field. We have

(H geta)=2mwc*(P2)+ (w?/8mc?){Q2).
Our calculation will include terms only up to second
order. Designating the individual terms in the sum of
Eq. (8) by P,™, we can write
P2= P24 2PO P4 2PO P

+ 2 P P @, (17)
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We need not symmetrize our products since P©@, P®,
and P® all commute.’t P®? occurs in both the first
and third terms on the right side of Eq. (17) [see Eq.
(15)7, and its expectation value is given in Eq. (6).
The expectation value of PP js just the product of
the expectation values of P® and P®, which are given
by Egs. (11) and (6). To obtain the expectation value
of the last term in Eq. (17), we must exercise a little
care. For m=m', (Pp® P V)= (Pr®)Pw®). For
m=m', however, we must go back to Eq. (9) and note
that

(Ym @ (0) vn (12))
=3 | a1(m) I2eiw(t2—t1)+ Idz(’m) [2e—iw(t2—t1)],

so that
2

w2
<Pm (1)2) =_2u2,y"2
C

t
f dtle"“"l Sinw(t— il)
0

w? 1 t 1
=——u?'y”2—( £—— sinwt coswi—+— sinwt

‘c? 4 w w?
&o(d)
= >t
8mc?

Combining the above results, we obtain for the part of
the energy due to the electric field

2mc®(P?)
_Eo n2t] 1 50(0 2 2
—gsmwt + ™ % [laa(m) |2~ |ar(m)| ]}

+ Eqoyut > | a1 (m)az(m) | [cosbn
— 08 (2wt~4-0,) ]38 () {X | as(m) |2

+ ; lax(m)az(m)| a1 (m")az(m’) | [cos (Om—0bm)
— 08 (20t~4-0,+0m') 1} + 100,

Calculating (Q?) in the same manner as we did (P?), and
adding the magnetic to the electric energy, we find
the double-frequency terms cancel, and we have

- _E02 E¢ 8(2) \ ,
( ﬁeld)—8—+-8—— o %[ldz(m)[ —la(m)|*]

T 7

+ Eqwyut Y | a1(m)az(m) | cosby,
+80(t) X |as(m)|?
4+ &(%) § '|(ll(m)@(m)”al(ml)az)(ml)[

X oS (0 —0m)+3hw. (18)

11 PO contains only field variables and P® contains only
molecular variables.

SENITZKY

The physical meaning of the various terms is as follows:
The first term is, of course, the energy of the initial
field. The second term is induced radiation, and is, in
the case of each molecule, emission or absorption, de-
pending on whether the molecule is mainly in the higher
energy state or lower energy state. The third term is the
interaction between the (initial) oscillation of the mole-
cule and the field which exists in the cavity. The fourth
and fifth terms are spontaneous emission, and the last
term is the zero-point energy of the field. Much more
can be said about these terms, especially for special
initial situations which are of interest, and we will
come back to a discussion of these terms after we have
discussed the question of coherence.

We write down, for completeness, the entire expres-
sion for the expectation value of the electric field
strength (up to second order), by combining Egs. (1),
(11), and (16):

(E)= Eou sinwt
()
2hw
+ 4wty % |ai(m)as(m)| sin(wt+6,). (19)

+Eou

Z [I dz(m) [2—' ]dl(m) l2] sinwt

As has already been indicated, the first term is the
initial cavity field, the second is an induced field, and
the third is a spontaneously emitted field.

II.

By coherent oscillation, as mentioned previously, we
mean a sinusoidal oscillation with a well-defined phase.
By coherent radiation from a molecule, we mean radia-
tion for which the field oscillates coherently, with the
phase being determined by the state of the molecule or
by the (coherent) field to which the molecule is coupled.
If the state of the molecule and/or coupled field do not
determine the phase of the radiation, then the radiation
is incoherent and the phase is a random variable. Obvi-
ously, only coherent radiation will contribute to an
average of the radiation field over many similar sys-
tems, but the incoherent radiation will show up in an
average of the square of the field or (essentially) the
energy. Thus, those terms which appear in the expecta-
tion value of the field energy but have no counterpart
in the expectation value of the field strength denote the
incoherent radiation. The other terms denote the co-
herent radiation. Another way of saying this is that the
dispersion in field ((E*)—(E)? is a measure of the
incoherence. However, it is more convenient to deal
with the energy, and we will examine the terms in

~ Eq. (18) from the point of view of coherence.

We see immediately that the first term in the ex-
pression for the energy corresponds to the square of the
first term in (E)(sin%¢ combines with cos’wt from the
magnetic part of the energy), and is just the classical
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expression for the energy of the initial field, or the
classical energy of the field in absence of the molecules.
It is, of course, coherent energy. The second and third
terms in (Hgeiq) similarly correspond to terms in the
square of (E£), namely, the cross-products, and therefore
also denote coherent energy. So far, the only term in
the square of (E) (up to second order) which has not
been accounted for in Eq. (18) is the square of the
last term in (E), for which the corresponding term in
the energy would be

8o(?) Z/ |a1(m)as(m)||as(m")as(m') | cos(bm—"0m)

= &(){ ;,lal(m)az(m)llal(m’)ag(m’)[ 08 (6 —01)
+2 [las(m) |2~ |as(m) [T},  (20)

where use has been made of Eq. (3a). Thisrepresents part
of the fourth term and the entire fifth term in (Hgeia),
and thus is the coherent spontaneous emission energy.
The remainder of the fourth term is

8o()) Tn| az(m) |4, (1)

and represents the incokerent spontaneous emission
energy. The last term in Eq. (18) which, as has been
noted previously, is the zero-point energy of the field,
is independent of the molecules, and, according to our
definition, would be classified as incoherent energy.
However, this is energy which cannot be withdrawn
from the field, does not consist of oscillation or fluctua-
tion in time, cannot be detected in a classical-type
experiment, and will be neglected for purposes of the
present article. In sum, the incoherent part of the
emitted radiation is given by (21); the remainder of
the radiation energy, whether induced or spontaneous,
is coherent, the former having its phase determined by
the inducing field, and the latter having its phase deter-
mined by the initial state of the molecule.

We can gain further insight into the spontaneous
emission, which will sharpen the differentiation between
the coherent and incoherent parts, and make our
definition more flexible. We note that the first-order
part of (E), and the coherent part of the spontaneous
emission energy, (which corresponds to the square of
the former), are the field and energy, respectively, of a
classical radiation field coupled to a classically oscillat-
ing dipole moment, {y(¢)). The incoherent part of the
spontaneous emission energy, on the other hand, is due
to the quantum-mechanical properties of the molecule
and field. Thus, the coherent spontaneous emission may
be regarded as of classical origin, while the incoherent
spontaneous emission is of quantum-mechanical origin.

It may happen that we do not know, or cannot
control, the initial states of the molecules, and are
faced with a random distribution of initial states. This
means that the “coherent” radiation of each molecule
has random phase and should more properly be called

“incoherent.” This is a classical type of incoherence,
such as would result if we had an assembly of classical
oscillators with random initial phase. As long as we are
aware of this possibility and take it into account when
necessary, we will not be misled by our definitions, and
will continue to use them as defined previously.

IIL

We return now to Eq. (18) to examine certain situa-
tions which are of interest. Suppose, for simplicity, that
|@1(m)as(m) | =|ai(m’)as(m’)| ; that is, the amplitudes
of oscillation of all the molecules are equal. Now con-
sider the case where half the molecules have one phase
(6n=0, m=1, -, 3N) and the other half has opposite
phase (n=0+m,m=%N-+1, ---, N). Then the coherent
spontaneous radiation [Eq. (20) for the energy or last
term of Eq. (19) for the field strength] vanishes. On
the other hand, if M molecules have one phase and the
remainder have opposite phase, then the coherent spon-
taneous emission energy is proportional to (2M—N)2,
and, of course, for the case in which all molecules are
in phase, the energy is proportional to N2 This last
situation, for the case where | a1(m)as(m) | =3, gives the
maximum possible coherent emission. It should be
noted, however, that the incoherent spontaneous emis-
sion is entirely independent of the phase of the molecule,
and even in the case where the coherent spontaneous
emission vanishes, there is incoherent spontaneous emis-
sion, the energy being proportional to the total number
of molecules, as is evident from Eq. (21).

A situation which is of interest in connection with
spontaneous emission is one in which the molecules are
subjected to a strong field for a short time, after which
the field is removed and the molecules are allowed to
radiate by themselves. To observe the effect of the field
on the molecules, we need consider only a single mole-
cule, since the interaction between molecules does not
enter in the lowest order necessary to study this effect.
For simplicity, we assume that the molecule is in the
ground state. From Eq. (13) we obtain

(Y D)= (Eou/?w) 7* (wt coswi—sinwt),
= (Eou/%) 7% coswt, £Dwl.

The expectation value of the energy absorbed by the
molecule from the field is just the negative of the second
term in Eq. (18), so that

Eq 8o(t)

8r hw

When the field is removed, at time 7, say, we have a
new set of initial conditions for the molecule, which is
now in the state ai,@1+as,¢2. Since the expectation
value of the dipole moment and energy of the molecule
suffer no discontinuity at {=r, we have

2| @1502,| ¥ cos(wr+0,) = (Ewu/%) 7% coswr,
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and
E¢ 8o(7)
l017[2E1+ [dzrl2E2=E1+— .
8 hw

Together with the equation
|as|*+ @z *=1,

we have three equations for the determination of
|ai;|, |@s-|, and 6,. The results are'?

|as; | = Eewyr/2%, 6.=0,
I alfl = 1—Eo250(7')/167r(hw)2.

We see that at time = we have an induced oscillating
dipole moment with a well-defined phase determined by
the phase of the inducing field. After the field is re-
moved, this will act as an “initial” dipole moment which
will give rise to “‘spontaneous” coherent emission. It
can be shown easily that no matter what the initial
state of the molecule is at the start of the pulse (except
for the case @i1=a,), it will have an induced dipole
moment at the end of the pulse (in addition to the
initial dipole moment, and a small random moment due
to spontaneous incoherent emission during the pulse),
which oscillates with a phase determined by the induc-
ing field and which is the same for molecules having the
same sign of (|az|2—|a1]?). We conclude, therefore,
that molecules excited by a coherent rf field will subse-
quently emit coherent spontaneous radiation, the phase
of which is determined by the exciting field.

Another case which is of interest is the one in which
the molecules are all originally in the upper state. This
is the situation in the ammonia beam maser, where
there is selection of states before the molecules enter
the cavity. In this case the molecules emit induced

energy given by

(22)

Eg? 50(0
N—
8r hw

and incoherent spontaneously emitted energy given by
N&(f). The ratio of induced, coherent, energy to
spontaneously emitted, incoherent, energy is

(Ed/8r)

ﬁw b

namely, the expectation value of the energy in the
cavity (ignoring the zero-point energy) in units of
energy of a photon. For the case in which the initial
state of the field is an energy state, it is well known that

the ratio of induced emission to spontaneous emission
is equal to the number of photons in the initial state.’®

(23)

)

(24)

12 The reason we can determine the state of a system from the
expectation values of two operators is that we are dealing here
with a very simple system, one which has only two energy
eigenvalues.

18 The transition probability from a state of # photons to a
state of #+1 photons is proportional to #+1, which may be
regarded as a sum of two terms, the term proportional to # being
induced emission and the remaining term being spontaneous
emission.
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Equation (24) is the corresponding statement for our
classical type state which cannot be described in terms
of an integral number of photons.

Expression (23) for the induced emission does not
tell the whole story, however. We see from Eq. (5) or
Eq. (7) that the field radiated by the molecule is due to
the oscillating dipole moment of the molecule (as is,
of course, physically evident). The only difference,
essentially, between induced emission and coherent
spontaneous emission is the manner in which the oscilla-
tions of the dipole moment are produced. For coherent
spontaneous emission, we assume implicitly a given
oscillation of the dipole moment in the initial conditions.
In induced emission, the oscillations of the dipole
moment are produced by the field acting on the mole-
cules. But it is evident from the formalism, as well as
from physical considerations, that the radiated field
should not depend on %ow the molecular oscillations are
produced, but merely on the phase and amplitude of
these oscillations. This is indeed the case.

First, let us look at Eq. (19) and compare the parts
of the field due to induced and spontaneous emission,
respectively. The field due to (coherent) spontaneous
emission increases linearly with time. This is certainly
to be expected for the case of a lossless cavity, an
oscillating dipole of constant amplitude, and exact
resonance. The induced emission field amplitude, how-
ever, increases as the square of the time. The explana-
tion is that the amplitude of the oscillating dipole
induced by the field does itself increase linearly with
the time. In fact, a comparison of the two terms shows
that the induced radiation field of a molecule at time ¢
is the same as the coherent spontaneous radiation field
of the molecule if it were, during the time 0—¢, in the
state described by a1/, ¢’ and @', such that §’== and

(25)

This is consistent with the result obtained in Eq. (22).

We now come to a more important matter in the
comparison of induced and coherent spontaneous emis-
sion. The induced emission of Eq. (23) is proportional
to the number of molecules, N. We have seen that in-
duced radiation comes from the induced oscillation of
the molecules which is of the same phase for all mole-
cules. In the case of coherent spontaneous emission, on
the other hand, when all molecules oscillate in phase,
the energy radiated is proportional to V2. There seems
to be thus, at first glance, a significant difference in the
nature of the radiation. This difference is only formal,
however. In the expression for the energy [Eq. (18)] we
have kept only terms up to second order in 4. In the
case of induced oscillation of the molecule, |ai/ay’| in
Eq. (25) is proportional to 7, so that if we wanted to
regard the induced emission in the same manner as the
coherent spontaneous emission, we would have a term
of fourth order in ¥. As a matter of fact, we can see
immediately that the square of P® [Eq. (14)] gives

|ar'as’| = FEouyt(| az|®— | a1]?).
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us an induced-emission term in the energy propor-
tional to V%

The present analysis, which is based on perturbation
theory, cannot be used without significant modification
to study quantitatively the case where higher order
terms are larger than lower order terms. It is apparent,
however, in a qualitative manner, that as the induced
oscillations of the molecule become large (our perturba-
tion theory is correct when these oscillations are small,
and, to the first order, these oscillations increase linearly
with the time) the term proportional to N?, referred to
above, will exceed the term proportional to V. In the
ammonia-beam maser the molecules spend a sufficiently
long time in the cavity for this to be true.

For the case in which there is no initial field in the
cavity, and the molecules come into the cavity in the
upper state, Eq. (18) tells us how the incoherent radia-
tion energy will build up. If a molecule spends a time 7
in the cavity, and M molecules per second enter the
cavity, then the rate at which energy is given up to the
cavity is M 8,(7). For ammonia molecules, perturbation
theory is entirely adequate in this case, since the time
a molecule spends in the cavity is very much smaller
than the lifetime of the upper state.”

Iv.

The initial molecular states we have considered so
far are products of one-molecule states, and are there-
fore uncorrelated states; that is, measurements of the
state of each molecule are, in principle, independent of
one another. There is, however, another class of states,
namely, correlated states. These are linear combina-
tions of products of one-molecule states.**

Before we discuss our N-molecule system, it will be
instructive to consider a system of two molecules, in
order to examine the significance of correlated states
from the present point of view. Let us consider the two

14 For purposes of the present article, we define any state which
may be expressed in the form of Eq. (3) as uncorrelated. All other
states are correlated in varying degree. A completely correlated
energy state is an energy state which is itself a superpositon of
linearly independent, uncorrelated energy states &bviously
belonging to the same eigenvalue), with superposition coefficients
satisfying certain relationships which need not be specified—for
present purposes—in general form, since the aim is not to discuss
the formalism of correlation (which is similar to the angular
momentum formalism), but, rather, to point out certain salient
features of simple correlated states which illustrate the effect of
correlation. The correlated states discussed specifically in the
following text are completely correlated. In justification of the
foregoing definition, it may be pointed out that in a correlated
state the result of an energy measurement on some molecule
cannot be predicted with certainty, but this uncertainty is re-
duced as soon as an energy measurement is made on some (but
not necessarily any) other molecule. In other words, the energy
uncertainties for some (all, in the case of a completely correlated
state) molecules are correlated. It goes without saying that this
is a quantum-mechanical type of correlation and should not be
confused with classical correlations (such as phase relationships
between oscillating expectation values of the dipole moment, for
instance) which may exist in an uncorrelated state.

possible correlated initial states!®

Ye=2" (1) ©2(2)+ ¢2(1) ?1(2)],
Ya=2"01(1) 02(2) — (1) 01(2) ]. 27

Any other correlated state may be considered as a
superposition of these two states and the states
e1(1) 01(2) and @3(1) 02(2).

We calculate the expectation value of the electric
field strength and of the energy for ¥, and ¢,, just as
we have done for the uncorrelated states. Noting that

<'Yl(0)+')’2(0)>a, «=0,

(26)
and

and that
I1t12)e,,=0,

we see, from Egs. (8) and (15), respectively, that
<P(1)>a.s=<P(2)>u-8=Oa

that is, the expectation value of the field strength
vanishes. As for the energy, we obtain, by methods
already used, the results

&o()

)
2mwc?

2
> (Pa®P,, V), =

m,m’=1

2
3 (Pa®P, ),=0.

m,m’=1

The expectation value of the other terms in Eq. (17),
except that of (P©)2, vanishes for both ¢, and y,. We
thus obtain, for the field energy due to the molecules,

(Heed)s=280(t), (Hfeta)a=0.

It is interesting to compare this with the field due to
two molecules in the uncorrelated state, Y= ¢1(1) ¢5(2),
for which the initial energy is the same as for the two
correlated states we have been considering. (All three
states are eigenstates of the energy with the same eigen-
value.) According to Eq. (19), the field strength due to
the molecules (both spontaneous and induced) is zero,
and the part of the field energy due to the molecules
[all but the first and last term of Eq. (18)]is

(Heed)u= 8o(2),

just half the energy for the symmetric correlated state.

Since the expectation value of the field strength
vanishes in all three cases, the molecular radiation, if
any, must be incoherent spontaneous emission. We see,
now, the meaning of quantum-mechanical correlation :
In the correlated states, the incoherent oscillation of
the molecules is correlated, being equal and in phase
for the symmetric state, while equal and out of phase
for the antisymmetric state. In other words, although

15 The two correlated states being considered are symmetric
and antisymmetric, respectively. This has no relationship, how-
ever, to the Pauli principle, since the molecules are assumed to
be sufficiently separated so that there is no overlap of spatial
wave function.
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we cannot predict the phase of oscillation of the mole-
cules in a correlated energy state, the phase relationship
between the molecules themselves is well defined. Here,
again, it may be somewhat strange to label the same
phenomenon by the words ‘incoherent” and “corre-
lated,” but there will be no difficulty if one bears in
mind our definition of incoherence, namely, that the
phase is an unpredictable (random) variable, as one
examines similar “systems.” In the case of uncorrelated
states, the “system” is a single molecule, while in the
case of correlated states, the “system” is the group of
molecules which are correlated. (The word ‘“‘system”
is used here in a different sense than when setting up
the Hamiltonian.)

We consider now a group of NV molecules, and set up
a correlated state with # molecules in the lower state
and N—m in the upper state. The particular correlation
we choose is such that the wave function is symmetric
with respect to the internal coordinates of all the mole-
cules, and is the generalization of the symmetric state
for two molecules considered above. We thus have

Yo=C2pPei(1): - @1(m) o2(m=+1) - - - 02(N),

where P is the permutation operator and the summation
is over all permutations which have the effect of inter-
changing (different) states of pairs of molecules. Since
there are N [m!(N—m) | ]! such permutations,

(i)

We are interested in obtaining an expression for the
spontaneous emission, so we assume E,=0, for sim-
plicity. The expectation value of the field strength, then,
vanishes, since (y®)=0. In evaluating the expectation
value of the energy, we note that the only contribution
of the molecules to (P?) [see Eq. (17)] is through the
term . {(P;VP;®), The molecular operator in P,,®
is vm®, so that we need to calculate

Y200 7@ ()7 @ (1) W,

where #; and {; are variables of integration. Those
operators in the summation for which 7=j7 connect
only those terms in ¢, and ¢,* which correspond to the
same arrangement of states. There are thus

N!
N———— (29)
m!(N—m)!

—2
b

(28)

such terms in (28). The operators v;@y;®, i<, con-
nect terms in ¥, containing the factors ¢2(2)¢1(5) or
¢1(2) p2(7) with the terms in y* containing the factors
o1*(2) 0a*(7) or ¢2*(2) p1* (), respectively. There are
N?— N such operators and each operator connects

(N—2)!
(m—1) ! (N—m—1)!

SENITZKY

terms in ¢ and ¢*. There are, thus,

(N—2)1
2(N?—N)
(m—1){(N—m—1)!

=2m(N—m)C? (30)

such terms in (31). Each one of these terms [referred
to both in (29) and (30)] has the value C%4?
Xexp[ iw(t1—1s)], the sign of the exponent depending
on 7 and 7, and being of no consequence since ¢ and £,
are variables of integration. Doing a similar calculation
for the magnetic part of the field energy, we obtain,
as the contribution of the molecules to the energy of
the field,
(Heta)s=[EN+m(N—m)]E(2).

This is a maximum when m= 3N, for which we obtain

an energy
ENHLIN) 80 (). (31)

For an uncorrelated energy state with half the molecules
in the upper state and half in the lower state, the spon-
taneous emission energy is, from Eq. (18),

IN&o(h).

Both of these energies are incoherent, and we see that
for the correlated state chosen, the energy is propor-
tional to /V2, while for the uncorrelated state it is pro-
portional to N. This, of course, is due to the fact, as
brought out in the discussion of the case of two mole-
cules, that the molecular radiation, although not having,
in this instance, a well defined phase, has the same phase
for all the molecules in the case of the correlated state,
and random phase relationships between molecules in
the case of the uncorrelated state.

It is interesting to compare the above spontaneous
emission energies with the spontaneous emission from
N molecules which are oscillating coherently. Consider
the state (3) with |a1(m)|=|as(m)|=2"% 6,,=0. This
means that all the molecules are oscillating with the
same (well-defined) phase and maximum amplitude.
(Actually, in this state and the last two considered, the
expectation value of the molecular energy is the same.)
From Eq. (18) we have for this case a total spontaneous
emission energy

$(V+N)&(0). (32)

Of this, as can be seen from Egs. (20) and (21), the
N? term is coherent, the electric field varying as
sin(wi+6), and the N term is incoherent, having ran-
dom phase. For large N, Egs. (32) and (31) give the
same energy, but it is important to note the physical
difference between the type of radiation in the two
cases. The incoherent radiation proportional to N? is
due to a quantum-mechanical correlation between the
molecules, all the molecules forming part of one
“supermolecule,” while the coherent radiation propor-
tional to V2 is the same as that coming from a collection
of classical-type oscillators, all having the same phase.

It should be mentioned that there are other corre-
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lated states with the same number of molecules in the
upper and lower states as the one considered above, but
having different correlations. Some of these states
correspond to the antisymmetric state we have con-
sidered for the case of two molecules; that is, the corre-
lation is such that the radiation of the various molecules
cancels out completely. And there are intermediate
cases. Dicke® has considered these states in detail, and
has called ¥, with m~2N, and those states which are
almost like it, ‘“‘super-radiant.” He calls the radiation
from ‘“super-radiant” states ‘“coherent” because the
energy is proportional to N?, but does not differentiate
between radiation of well-defined phase and that of
random phase.

One might ask if it is possible to superpose correlated
states of different energies in order to obtain coherent
oscillation. A simple illustration, using the case of two
molecules again, will illuminate this problem. To the
symmetric state of Eq. (26) we add amounts of the
states ¢1(1)01(2) and ¢2(1)¢2(2) in the following
manner:

Y=A4101(1) 1(2)+A205(1) 02(2)
+ALe1(1) 02(2)+ 02(1) 01(2)]. (33)

Now, if we choose the coefficients in such a way as to
obtain the maximum coherence, that is, maximum
amplitude for the (coherently) oscillating dipole-
moment expectation value, then it can be shown easily
that Eq. (33) becomes a special case of Eq. (3), namely,
an uncorrelated state. In other words, maximum co-
herence implies zero correlation. We have already shown
that maximum correlation implies zero coherence, or
incoherence. (Actually, we have shown this only for
the symmetrically correlated state, ¢,, but the same
reasoning applies to any other completely correlated
state.) Thus, coherence and correlation are mutually
exclusive. Of course, it is a question of degree, and there
can exist, in principle, some of both ; but it can be shown,
generally, for IV molecules, that the more we have of
correlation, the less we have of coherence, and vice
versa. This also follows, generally, from the uncer-
tainty principle.

The question now arises: in the physical situation in
which the spontaneous emission is proportional to NV?,
which is the correct description, one in terms of uncor-
related states or in terms of correlated states? A
phenomenological answer to this question suggests
itself immediately. If the phase of the spontaneous-
emission field can be predicted, then it is the former,
while if the phase is unpredictable, it is the latter.
Another way of trying to answer the question is to
examine the dynamics of the situation under considera-
tion. One may assume initially an uncorrelated state
(not an unreasonable assumption for a thermodynamic
system; in the case of the ammonia beam maser, where
there is state selection, we know exactly what to
assume) and then let the dynamics tell us what happens.
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Actually, this is what we have done, except that we
have not carried our analysis to high enough order to
exhibit correlation effects. We note, for example, that
P® [Eq. (15)] contains the operator P®3_,.I,. The
fourth-order term in the energy, therefore, will contain
the operator (P®)%Y_,, mInln. This operator exhibits
quantum-mechanical correlation effects, or correlation
between the incoherent oscillations of the molecules,
since ((P®)2) does not vanish for E,=0, and we obtain
cross-terms for incoherent radiation. Similarly, it can
be shown that there are other operators in the fourth-
and higher-order terms of the energy which exhibit
quantum-mechanical correlation effects. There are no
such effects in terms of lower order than the fourth.

We apply the question posed in the last paragraph to
the case of a large number of molecules excited by a
strong rf pulse of short duration, a case which was
treated earlier within the framework of uncorrelated
states. Is the subsequent spontaneous emission coherent
emission or incoherent correlated emission? It should
be noted that in both instances the energy emitted and
the instantaneous emission rate may be the same, as
can be seen from Egs. (31) and (32). From the above
discussion it is clear that quantum-mechanical correla-
tion will come about (if it does not exist initially) from
the interaction of the molecules with one another
through their radiation. An externally imposed field
will not bring about such correlation directly. On the
other hand, it will generate an (oscillating) electric
dipole moment in each molecule, the expectation value
of which bears a definite phase relationship to the
field. We may conclude, therefore, that the subsequent
spontaneous emission is of the coherent type possible
with uncorrelated states. The well-known fact that the
spontaneous emission bears a definite phase relationship
to the exciting field indicates that our conclusion is
correct, and we were therefore justified in treating
the problem by means of uncorrelated states, in part ITI.

For the sake of simplicity we have assumed all along
that the molecules are all exposed to the field at time
t=0, which is also (for the initial state of the field
which we have assumed) the time at which the phase
of the expectation value of the field is zero. This
assumption of special entrance phase is no limitation,
however, since we have considered times such that
>, and have considered only secular effects (such
as changes in the amplitude of oscillation occurring
during times long compared to a cycle) which are
independent of the entrance phase, discarding terms
which are essentially transient effects, depending on the
entrance phase, and significant only during the first
few cycles.
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