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TaBie ITI. The differential cross section and asymmetry parameter for the case Z=48, v/¢=0.2.

0 15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165°
o (barns) 2200 150 35 12 4.6 2.0 0.90 0.48 0.31 0.24 0.22
a/ao 0.98 1.04 1.18 1.14 0.93 0.69 0.48 0.35 0.28 0.25 0.24
100 S(6) 0.0 0.3 0.3 —0.5 -2 —4 -7 —-10 —11 -9 -5
100 So(6) —0.0 0.4 1.2 0.08 -3.7 —8 -1 —12 —11 —8.2 —4.4

Tasre IV. The differential cross section and asymmetry parameter for the case Z=48, v/c=0.4.

0 15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165°
o (barns) 130 8.6 1.5 0.37 0.10 0.031 0.010 0.0044 0.0027 0.0023 0.0022
a/ao 1.05 1.04 0.83 0.56 0.34 0.18 0.098 0.059 0.047 0.048 0.052
100 S(9) 0.06 —0.2 —0.9 —1.6 -2 -3 -5 -9 —14 —13 —8
100 So(6) 0.2 0.2 —1.2 —43 —8.3 —12 —15 —16 —15 —12 —6.3

fact polarization effects are expected to be large. The ACKNOWLEDGMENT

cross section falls off sharply with increasing energy,
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Extending earlier measurements, we have studied

yields and asymmetries in the scattering of a highly

polarized proton beam by Bef?, C'2, Al?”, and Ca%. In the work on Be? and Al??, the beam was monochroma-

tized through the use of a regenerative deflector; its

mean energy on striking the targets was 219.6 Meyv,

and its standard deviation in energy (including the effect of short time fluctuations) was less than 1.1 Mev.

With this technique, together with a refined procedure

for the analysis of the distribution in range of scattered

protons, we have been able to separate elastic from inelastic scattering in Be? at angles from 8° to 37.5°, and
to estimate the inelastic scattering involving the excited state at 2.4 Mev. The separation of elastic scattering
in Ca® could also be made, although the regenerator was not used. The results are compared with approxi-
mate calculations based on the optical model with @ L coupling ; a potential is found such that, with variation
of the nuclear radius alone, good fits are obtained to measurements on the four nuclei.

INTRODUCTION

OLARIZATION effects in the elastic scattering of
high-energy protons have been studied intensively

at this laboratory' and elsewhere? over an energy in-
terval extending from 60 Mev to 660 Mev. It hasbecome
clear from the experiments that the polarization can be
very large, and can in fact approach 1009, under certain
conditions. The first strong maximum in the function
P(6) is usually found when 2kR sin(6/2)~2.2, k and 6
being the wave number and scattering angle in the

* Research supported by the U. S. Atomic Energy Commission.

1 Chesnut, Hafner, and Roberts, Phys. Rev. 104, 449 (1956);
referred to in the text of this paper as CHR.

2 An excellent bibliography of most of the experimental and
theoretical work in this field is found in the review article by L.
Wolfenstein, Annual Review of Nuclear Science (Annual Reviews,
Inc., Stanford, 1956), Vol. 6, p. 43.

center-of-mass system, and R the nuclear radius. Some
experiments'® have also revealed subsequent minima
and maxima in P(f) at large angles, but only after
careful elimination of inelastic events that can compete
strongly with elastic scattering in the angular region
beyond the first maximum in the polarization. Measure-
ments in which such separation has been accomplished
have given data on polarization effects involving one or
more of the lowest excited states of the target nuclei.
Most theoretical accounts? of the qualitative features
of the elastic polarization have been achieved through
the addition of a spin-orbit term to the central potential
of the usual optical model. Tt was the purpose of the
present work to extend our original measurements at
220-Mev to a variety of nuclei, and then to investigate

3 Alphonce, Johannson, and Tibell, Nuclear Phys. 3, 185 (1957).
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F16. 1. Schematic plan of the double-scattering experiment.

the possibility of discovering a potential that gives
quantitative descriptions of the elastic scattering in all
cases. In carrying out the analysis, we wished specifically
to stipulate that all parameters of the potential be held
constant except for the range, which was to be varied in
proportion to the nuclear radius. The nuclei chosen for
the comparison were Be?, C2, Al*’) and Ca¥, giving a
significant range of mass number and a variety of
ground-state spins.

The separation of elastic from inelastic scattering at
220 Mev is the most formidable technical problem
confronting us in this work. In Be® for example, the
inelastically scattered group corresponding to excitation
of the state at 2.4 Mev differs from the elastic group by
only 1.09% in energy and 0.6%, in momentum. The
requirements for a successful study of the scattering, in
the event that inelastic processes play a significant role,
therefore include a narrow energy spread of the incident
beam and a second-scattering detection procedure of
high resolution. As will be seen in subsequent discussion,
we have been able to achieve the necessary sharpness in
beam energy by regenerative deflection of the cyclotron
beam before the first scattering. In the hope of replacing
the distribution-in-range methods developed in CHR
for detection of second scattering, we investigated the
response of several scintillation spectrometers to this
beam and concluded that, with the detectors of this type
available to us at present, the required resolution cannot
be achieved. At the same time it became apparent, from
independent work®* on C'? at lower energy, that the
polarization data reported in CHR is in excellent
agreement with the results of more direct methods.
(Figure 16 shows a comparison of the results for inelastic
scattering.) In view of this agreement, and of the im-
provement in incident energy definition that had be-
come available to us, we were encouraged to devise a

4 Tyren, Hillman, and Johannson, Nuclear Phys. 3, 336 (1957).

refinement of our previous methods that could be ex-
pected to cope with some more difficult problems.

FIRST-SCATTERED REGENERATED BEAM

Following the theoretical work® of Le Couteur on the
regenerative deflection of synchrocyclotron beams, we
undertook an investigation of the technique with our
machine. Careful measurement of the cyclotron mag-
netic field and a study of Le Couteur’s nonlinear theory
led us to devise regenerator parameters and to develop
semiempirical methods® for designing the physical re-
generator and its correcting shims with a minimum of
down-time on the machine. The regenerator was suc-
cessfully tested, with the conclusion that about 309, of
the circulating beam could be deflected into an area
representing the entrance of a proposed magnetic
channel. At the same time we were made aware, from
results with similar apparatus at other laboratories, that
the deflected beams were considerably sharper in energy
than the circulating beams from which they arose. Now,
the best extracted currents available in these machines
were about 59, of internal currents; it was therefore
possible that at least some of the improvement in energy
definition was the result of momentum selection in
magnetic channels. Since it was also at this time that the
importance of energy resolution in double nuclear scat-
tering became clear, we thought it interesting to look at
the energy spread of our regenerated beam before
extraction.

The method used for this investigation is shown in
Fig. 1. A polarized proton beam is normally produced by
15-degree scattering from a fixed first scatterer at a
radius of 58.5 inches. After traversing a steering magnet,
a monitoring ionization chamber, and several defining
slits, it is analyzed by a second scatterer and a counter

5 K. J. Le Couteur, Proc. Phys. Soc. (London) B64, 1073 (1951);

66, 25 (1953); Phil. Mag. Ser. 7, 46, 1265 (1935).
6§ E. M. Hafner and K. J. Le Couteur (unpublished).
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telescope. With the regenerator in place, the first
scatterer was made movable through a suitable range of
radii, and along a line closely approximating the usual
scattered orbit. The similarity of scattering angles and
subsequent ion optics for all target positions made
possible a realistic comparison between the normal
scattered flux and the flux obtainable under a given con-
dition of regeneration. In addition, the analyzer tele-
scope was equipped to measure distributions in range
and in time of particles reaching the second scatterer,
and thus to give comparisons of energy spread and duty
cycle between the two beams.

Curve 4 of Fig. 2 is a Gaussian fit to the distribution
in energy deduced from a typical range measurement on
a double scattered unregenerated beam. The energy
scale refers to the beam striking the first target. Curve B
is a fit to a range measurement on a beam that had
undergone regeneration before the first scattering. The
standard deviation used in drawing this curve is taken
from a calculation of the straggling to be expected in the
absorbers of the analyzer telescope, and in residual
thicknesses of material (targets, counters, and air)
through which the beam passed. It is clear that the
beam itself contributes little to the width of the distri-
bution. The departure of the data from the curve on the
low-energy side is attributed to inelastic scattering at
the first target, which was carbon. The dotted correction
to the curve shows the effect of assuming a 7%, admix-
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Fic. 2. Differential range data. The absorber thickness for each
measurement is the mean range corresponding to the energy at
which the point is plotted. The points on curve 4 were obtained
with the normal cyclotron beam; those on B with the regenerated
beam. Curve B is the expectation from straggling in range. The
correction shown as C takes account of inelastic scattering by the
first target (see text).
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ture of scattering involving 4.4-Mev excitation of C'2. A
contamination of approximately this amount might be
expected from the fact that the Uppsala group’ has
obtained a corresponding figure of 109, for 16-degree
scattering at 155 Mev.

The total flux observed in the regenerated beam by
this method indicated no loss due to regeneration;
indeed, the integral of B in Fig. 2 exceeds the integral of
A by about 209,. We believe this to suggest that the
energy spread of the normal beam is in fact greater than
the measurement in second scattering indicates, and
that the steering magnet serves to some extent as an
analyzer.

The distributions in time of the two beams also re-
vealed a striking difference. The measurements were
made by observing the number of second scatterings
that occurred within a 6-microsecond gate opened at
variable times after the cyclotron oscillator passed a
preset frequency near the bottom of the FM envelope.
The distribution corresponding to curve 4 of Fig. 2 was
about 60 microseconds wide at half-maximum, and
correlation was found between time of arrival of a
proton and its range. The distribution of the regenerated
beam was 24 microseconds wide, and showed no range
correlation. Also, a width of 80 microseconds was ob-
served for neutrons produced by the unregenerated
beam. Since the entire circulating beam contributed to
this distribution, the increase in width suggests once
more that the steering magnet and slit system reject
part of the proton spectrum.

From range data accumulated during these experi-
ments, interpreted by means of procedures discussed in
the following section, we have deduced the mean energy
of protons at each of several points along the beam.
With the regenerator in operation, the energy striking
the first target is 231.1 Mev; the energy leaving the
target is 223.4 Mev; the energy at the steering magnet
is 221.5 Mev; and the energy striking the second target
is 219.5 Mev. Departures of the energy from the mean
were seldom greater than 0.3 Mev. The polarization of
the first-scattered beam was reported in CHR as 0.89
+0.02. Remeasurements of the polarization during the
present work have confirmed this result.

The flux available to us in the first-scattered beam can
be computed from a knowledge of the p-C'* cross section
and of the subsequent ion optics. A study of orbits
carried out on a Burroughs E-101 computer indicates
that the mean ray accepted externally is produced by
scattering at 14.7 degrees, and that the solid angle de-
termined by external apertures is 7.5 107% steradian at
the target. Using a differential cross section for C?
obtained from analysis of the data in CHR, we compute
a flux of 2.3)X108 protons/min for a circulating beam of
0.3 microampere, the current at present available. The
flux calibration has been confirmed with fair accuracy
by the counting rates obtained in several independent

7 A. Johannson et al., Nuclear Phys. (to be published).
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Fic. 3. Integral range data. Curve 4 is taken from the earlier
work of CHR. Curve B was obtained in the present work with the
regenerated beam. Also shown are two range settings of the
counter telescope used in the present measurements on Be?.

double-scattering measurements, and by direct measure-
ment? of the flux density with small counters.

DOUBLE SCATTERING TECHNIQUE

The basic procedure used in the present measure-
ments is a refinement of the ideas developed in CHR.
We shall emphasize in this discussion only such aspects
of the method as have been significantly changed. It is
usually to be assumed that the regenerated beam was
used to produce a first scattering although some of our
data were obtained with the normal beam. Our starting
point was a carefully measured integral range curve,
taken either in the first-scattered beam or in the second-
scattered beam at a small angle. We found good
agreement between the two curves if, for example, the
second scatterer was Be? and the second angle was less
than 8 degrees; at larger angles, inelastic scattering
introduced significant changes. Figure 3 shows the range
curve used in analysis of the asymmetry measurements,
and includes data taken over a period of time com-
parable with the length of asymmetry runs. It therefore
includes the broadening contributed by random energy
fluctuations. The curve is a fit to the data, obtained by
combining a gaussian centered at the full energy with a
7% admixture centered at an energy lower by 4.4 Mev.
The contribution of the incident beam energy spread to
the standard deviation of the Gaussians is less than 1.1
Mev. The admixture of energies is in conformity with
the results of differential range measurements (Fig. 2);
it is also found to be required for an adequate fit.
Nuclear absorption and geometrical losses were taken
into account by an empirical factor, adjusted to the
slope of the range curve ahead of the final falloff.
Included for comparison in Fig. 3 is the integral range
curve of the unregenerated beam used in the measure-
ments of CHR and in the Ca® measurements of the
present report; its standard deviation is about three
times as large.

The telescope used in detection of second scattering
consisted of five counters (Fig. 4), whose signals were

8 Roberts, Tinlot, and Heer (private communication).

E. M. HAFNER

detected in conventional coincidence circuitry. The
function of the first two counters was only to define the
solid angle of acceptance, which was approximately
0.005 steradian. The last three, which we shall denote by
1-2-3, were thin plastic scintillators (0.16 g/cm?; energy
loss 0.9 Mev at 220 Mev) between which thin absorbers
could be placed in order to space the counters appro-
priately on the range curve. In front of these three
counters we placed a thick copper absorber chosen, for
a given angle of scattering from a given target, to make
up a total copper equivalent thickness R; (measured in
inches) between the cyclotron beam and counter 1. The
absorber was adjusted in every run to take into account
energy losses due to ionization and nuclear recoil in the
second scatterer, and thus to guarantee that the distri-
bution-in-range of elastically scattered protons arriving
at counter 1 was at least approximately the same for all
measurements. In careful analysis of the data, it was
then necessary only to correct for small deviations of the
primary energy from the value corresponding to the
standard range curve of Fig. 3. The extent of such
deviations, and the way in which they were accounted
for, will be described presently.

The thin absorbers placed between the last three
counters were chosen so that AR, the increment in range
between successive counters, corresponded to the energy
loss for inelastic scattering leaving a nucleus of the
second scatterer in its first excited state. AR, measured
again as an equivalent copper thickness in inches, in-
cludes the thickness of one counter. Calibrations of the
relative efficiencies of the counters were made, so that
the rates in counters 2 and 3 could be compared with the
rate in counter 1. The efficiency of a counter relative to
the preceding one was found to be about 909, when AR
was set for an energy increment of 2.4 Mev, appropriate
to the case of Be’. When the efficiency correction had
been made, the relative rates for elastic scattering into
the three counters could be compared with what was
expected from the range curve of Fig. 3. In our pro-
cedure, it was this comparison that revealed rather
precisely any possible deviations of the primary energy.
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F16. 4. Schematic plan of the second-scattering counter tele-
scope, set for scattering to the left. The solid angle accepted by the
counters is, for the narrow beam width shown here, determined by
the target illumination and counter B; the angular resolution in 8
is approximately 2.5°. Ty and T, are thick absorbers; T3 and T4
are thin absorbers separating the -inch scintillators 1, 2, and 3.
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As an example of the way in which the primary energy
can be monitored, consider the range settings denoted
by I in Fig. 3. The total copper equivalent ahead of
counter 1 is 2.119 inches, and the subsequent counters
are separated by 0.035 inch of copper equivalent, corre-
sponding to increments of 2.4 Mev at 220 Mev. We now
adopt a notation introduced in CHR. Let ¢; be the rate
(after correction for efficiency) in the ith counter and
let ¢i;, with j=1i41, be the difference between the
rates in 7 and j. Further, introduce the ratios x;=¢;/¢;
and xi;=¢;r/di;, with k= j+1; we impose the restric-
tion that the a’s are defined only when the telescope
is in the first-scattered beam, or when it is detecting
second scattering at an angle small enough to insure that
inelastic events do not contribute significantly to the
count. The three thin counters in our telescope can then
give x1, 212, and x5 directly. If, in a given run, the pri-
mary beam energy happened to be the same as the mean
energy that led to our standard range curve, and if the
spread in energy was also the same, then the observed
ratios were expected to agree with those read from the
curve of Fig. 3 at the actual range positions of the
counters. But if, for example, the energy had drifted
upward, we could expect ratios that corresponded to an
apparent decrease of Ry; this shift could then be used to
deduce the change in energy. We show in Fig. 5 the
distribution of ratios observed in a sequence of runs on
Be® at small angles. The curves are computed ratios,
based upon the fit to the data of Fig. 3 and taken as
functions of R;. (The ratios x3 and «x; are included for
later reference.) The results of each small-angle run are
plotted at the value of R; that gives the best fit to the
curves; the upper scale then gives our best estimate of
the primary energy at the time of each run. These runs
covered a period of ten days, and it appears that the

primary energy
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F16. 5. Counter ratios, x;, observed in small-angle scattering
from Be?. The curves are deduced from the range data B of Fig. 3.
The effective R, and the primary energy for each run are found by
fitting the data to the curves.
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F1c. 6. Hypothetical ¥; vs x; data. The solid line is obtained
when energy and range are compatible; a small uncorrected shift
of Ry, equivalent to a 0.6-Mev change in energy leads to the points
on the dashed lines.

energy was remarkably stable during that time. It also
appears from the accuracy with which most of the runs
can be fitted, that the energy spread of the beam did not
change significantly over the period of the measurements.
Since the most critical point in the analysis of our
asymmetry measurements is concerned with a precise
knowledge of primary energy, we have sought inde-
pendent ways of verifying the correctness of the pro-
cedure outlined above. The most straightforward of our
checks were made by varying the energy of the primary
beam by predictable amounts, and observing corre-
sponding changes in counter ratios. For example, we
predict that an outward radial shift of the first scatterer
by 0.15 inch will give an increase of 0.7+0.2 Mev in
energy, the uncertainty arising from lack of precise
knowledge of the # value for the cyclotron field. When
this shift was made, the counter ratios were observed to
indicate an energy increase of 0.803-0.05 Mev. In
another test, the cyclotron field was raised by 0.23%,
leading to an anticipated energy rise of 0.96=4-0.05 Mev;
the increase indicated by our counter technique was
0.934-0.05 Mev. These checks have given us confidence
in the sensitivity and the accuracy of our procedure.
Apart from refinements already mentioned, the steps
taken in the reduction of our experimental data are
similar to those described in CHR. The procedure for
separation of elastic and inelastic scattering is, in
particular, the same. It is based on the fact that, if «;
and ¢; are defined as above, if ¥;,=N,/¢;, where N; is
the counting rate in the ¢th channel with the telescope
at any angle, and if the scattering is a mixture of elastic
events and inelastic events involving only the first
excited state of the second scatterer, then a plot of
V; vs x; produces a straight line whose intercept is the
elastic yield (denoted by Ao) and whose slope is the
inelastic yield (denoted by A;). The need for accurate
knowledge of ¢;, which depends on good monitoring of
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Fic. 7. Observed Y;—x; plot in a test run. In small-angle
scattering from C12, 579, of the detectible solid angle was covered
by a thin absorber in which an additional 4.4 Mev was lost.

the incident energy, becomes apparent when we con-
sider the effect of a small error on the appearance of the
Y:—x; plot. A hypothetical example of the effect is
given in Fig. 6. Here we assume that the true energy
corresponds to an absorber thickness R; of 2.100 inches,
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F16. 8. V;—x; plots for left and right scattering from Be® at 10°.

and that the scattering involves a 509, admixture of
inelastic events in which 2.4 Mev is lost. The solid line
is the plot that should result from a measurement with
three counters. Now, if the R; chosen for the analysis
were larger by 0.010 inch, corresponding to an energy
shift of 0.63 Mev, the same measurement would lead to
points on the dashed lines; the error in estimating yields
would be considerable. The example serves also to show
that such an error reveals itself by the failure of points
to form a line.

A direct experimental test of the accuracy of the
¥ ;—ux; plots was carried out in the following way. The
telescope was set with R;=2.003 inches and counter
separations of 0.065 inch, the spacing appropriate to
measurements on C'2. Yields and efficiencies were
measured for second scattering from C* at 10 degrees to
the left. A 0.065-inch copper absorber covering 57%, of
the scattered beam was then added to R;; this had the
effect of simulating a predictable admixture of inelastic
scattering with energy degradation of 4.4 Mev. The

Fic. 9. Y;—=x; plots
for Be? at 17.5°.

YV .—x; plot derived from the run is shown in Fig. 7;
from it one reads an “elastic” yield of 46% and an
“inelastic” yield of 579, with uncertainties of about
29%,. The major factor contributing to the accuracy of
the result is the relative sharpness of the range curve,
which has the effect of producing a much greater spread
of ratios x; than was available to us in earlier work.

EXPERIMENTAL RESULTS
Be?

The most recent precise study of the level structure of
Be® has been carried out by Bockelman et ol.% In addition
to showing the well-known sharp and prominent level at
2.43 Mev their work confirms the existence of a weakly
excited level at 3.05 Mev; a possible level at 1.66 Mev,
suggested by other work, appears to be most probably
the result of three-body breakup. The reactions studied

9 Bockelman, Leveque, and Buechner, Phys. Rev. 104, 456
(1956).
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were Be®(p,p")Be? and B (d,a)Be?, with a bombarding
energy of 7 Mev. The spectra of inelastic protons at high
bombarding energies have not yet been carefully studied.
In beginning our asymmetry measurements, we could
only guess that the 2.4-Mev level might continue to be
responsible for most of the events in which little energy
is lost. Contributions from the 3.0-Mev state cannot be
resolved by our method, nor can protons in the continu-
ous background covering the same neighborhood of
energy. We set up the measurement with thin counters
separated by 2.4 Mev at 220 Mev, and anticipated that
admixtures of inelastic events with significantly differ-
ent losses would appear as curvature in our ¥ ;—x; plots.
The measurements extended from 4 degrees to 37.5
degrees (laboratory), and it is only at the largest angles
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R
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that we have had any difficulty in deciding that the
plots are in fact linear.

Typical plots from this run are shown in Figs. 8-10.
The data are most extensive at 10 degrees (Fig. 8) since
we repeated this measurement frequently for calibration
and for tests of consistency. The 10-degree data, as well
as those at several other angles, include measurements
with both of the counter settings shown in Fig. 3. The
Y scale of each of the plots is the yield relative to
leftward scattering at 6 degrees, the angle at which the
standard range curve was obtained.

The angular dependence of yields and polarization in
elastic scattering, taken from the intercepts of the
Y ;—ux; plots, are shown in Figs. 11 and 12, respectively.
The curves included in Fig. 11 are smooth fits to the C*2
data of CHR, the angular scale having been trans-
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Fic. 11. The points are the left and right elastic yields from Be?;
the curves are the corresponding data from CHR on C%, with
angular scale adjusted to the radius of Be®.

formed to take account of the difference in nuclear
radius. The vertical scale was adjusted arbitrarily. The
C®2 results are included in order to provide a comparison
of relative cross sections for the two nuclei. A qualitative
similarity is apparent, and the deviations in the neigh-
borhoods of 20 and 35 degrees ought not to be regarded
as necessarily real. The elastic polarization data (Fig.

Beryllium 220 Mev

F1c. 12. Polarization in elastic scattering from Be®. The curve
is the prediction from a model adjusted to the polarization data
on C2, In this, as in all subsequent theoretical curves, the angular
resolution of the counter telescope (Fig. 4) has been accounted for.
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F16. 13. Left and right inelastic yields from Be?. It is assumed
that the 2.4-Mev state predominates in this process. The curves
have no theoretical significance.

12) were obtained from the asymmetries by making use
of our knowledge of the first-scattered beam polariza-
tion. As often happens in this work, the asymmetries
have better precision than do the corresponding yields.
Nevertheless, the elastic yields at 30 degrees were so low
and so poorly determined that we could make no esti-
mate of the asymmetry at this angle. The curve in
Fig. 12 is a theoretical fit, and will be discussed in the
next section.

The angular dependence of left and right inelastic
yields for Be?, taken from the slopes of the V';—x; plots,
are shown in Fig. 13. The vertical scale is the same as in
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F1c. 14. Left and right elastic yields from C®2. The curves are
- theoretical predictions.
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Fig. 11. We see that, at angles above about 25 degrees,
the inelastic process predominates. At large angles,
these yields are similar in shape and magnitude to the
results on C® reported in CHR; comparison at small
angles cannot be made because the earlier work did not
have the resolution needed to follow the yields into that
region. The curves drawn in Fig. 13 have no theoretical
significance, but represent the trends suggested by the
data. Polarizations corresponding to these results are
discussed in connection with Fig. 17.

Ct2

In the present measurements, second scattering from
C®2 was observed only at a few large angles in order to
provide checks on results already reported. Agreement

220 Mev  elastic

Carbon

-05|-

Fic. 15. Polarization in elastic scattering from C12. The model,
which was adjusted to fit these data, gives the curve shown.

was excellent throughout. Figures 14 and 15 display the
elastic data of CHR with only minor changes resulting
from the remeasurement. They are reproduced here in
order to show comparisons with the curves, which are
theoretical fits.

In Fig. 16, the inelastic asymmetry and polarization
data of the Uppsala group®* are compared with the
corresponding data of CHR. The angular scale for all
results has been adjusted to the common energy of 220
Mev under the assumption that the theorem used in
dealing with elastic scattering is equally valid here.
Agreement among the three measurements appears to
be good, and the curve represents a reasonable fit to all
of the data. Figure 17 then compares this curve with the
inelastic polarization results obtained for Be® in the
present work. The angular scale has been adjusted for



SCATTERING OF 220-MEV POLARIZED PROTONS

nuclear radius in the same way as for elastic scattering.
We see a suggestion that, while the processes have
similar behavior at large angles, there may be significant
differences below 15 degrees.

Al

The level structure’® of this nucleus, which exhibits
two closely spaced states near 1 Mev, makes the accu-
rate separation of elastic scattering exceedingly difficult
by our present methods. Nevertheless, since we wished
to obtain at least some data on a nucleus of ground-
state spin £, we set up a measurement on Al*’ with

counter separations of 0.9 Mev, and worked in the

) )
i
|

Carbon 220 Mev & 165 Mev
4.4 -Mev excitation

o—=

B

0.5

o\l
, ,qp 91 220 Mev l |\
/ 1 | I 1 I Bg) ! |

F16. 16. Polarization in inelastic scattering from CI2. Points
labeled 4 were obtained from CHR and the present measurement.
Points labeled B and C are quoted from the asymmetry and
polarization data of the Uppsala group (references 3 and 4). The
curve is drawn as a fit to the data, and has no theoretical basis.

angular region from 8 to 20 degrees. We found no
significant changes in channel ratios within this region,
and have therefore concluded that inelastic scattering
does not play a large role. Figures 18 and 19 show the
relative cross sections and the polarizations that were
observed; the curves are again theoretical fits.

Ca40

Although the level structure® of this nucleus is also
complex, the first excited state (3.35 Mev) occurs at an
energy high enough to make possible a fairly clean

10 P). M. Endt and J. C. Kluyver, Revs. Modern Phys. 26, 95
(1954).
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F16. 17. Polarization in inelastic scattering from Be?. The points
are experimental results. The solid curve is a fit that has no
theoretical basis. The dashed curve is drawn, for comparison,
from the data of Fig. 16 on C®2, after a correction for radius.

separation of elastic scattering. Since the second and
third states fall within 0.6 Mev of the first excited state,
our measurements of the inelastic scattering represent
mixtures to which little significance can be attached. We

e,ub Degrees

. ! L { '
10 20

) Aluminum 220 Mev
\ P, =0.89

——4— Left
\ ——%—— Right

L \
os | %

" o(0),b/sterad

0.

0.05 -

0.01 ~

F16. 18. Left and right yields from Al?". Separation of elastic
events has not been attempted for this case. The curves are
predictions of the model adjusted to the data of Fig. 15.
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F1c. 19. Polarization in scattering from Al?". The curve is the
prediction of the model.

therefore report, in Figs. 20-22, only the results for
elastic scattering. The measurements were made with
the unregenerated beam and with counters separated by
3.5 Mev. The curves shown in the figures are theoretical
fits.

ANALYSIS

Attempts at accounting for the polarization phe-
nomena observed in complex nuclei have been made by
many workers,2 most of whom have attacked the prob-
lem by adding a spin-orbit potential to the well-known
optical model of nuclear scattering. The result has
generally been that, while such calculations reproduce
some of the qualitative features of the process, they
predict fluctuations in the large-angle polarization that
were often not observed. It was pointed out in CHR,
however, that much of the discrepancy might have
arisen from a failure of many experiments to make
satisfactory selection of elastic events; our opinion was
based on the observation that, when such selection was
made for the case of C%2, the results bore a strong re-
semblance to the predictions of the model. We therefore
began a search for a potential that would give a quanti-
tative description of the C® polarization. The present
discussion will summarize the results of the search, and
will indicate the extent to which the parameters chosen
to give the best fit for C*? are equally successful in
accounting for measurements on the other nuclei that
have been studied more recently.

We must assume that most of the details of the model,
and of the methods generally used for calculation, are
sufficiently familiar not to require discussion here. Apart
from some matters that we have not found adequately
treated in the literature, and which are collected in
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appendices to this report, we restrict ourselves to a
specification of the notation that we have found con-
venient and to a brief description of the technique of
calculation.

The nuclear potential is taken to be

V(T) =— Vl(f)—’l:V2(1')

n (__)2 1 d[Vs(r);tV4(r)]

s, (1)

mce

where 1=L/#%, s=¢/2, and m is the proton mass. Signs
are chosen so that, when V4, Vs, and V; are positive real
functions, the central force is attractive and absorptive,
and the spin-orbit force has the same sign as in shell
theory. In a partial wave analysis, the state with orbital
angular momentum / is subject to the potentials

Vli(i’) = Vl(f)—’l:Vz(f)

Wy | Lo

referring to total angular momenta /4% and I—3%, re-
spectively. The nuclear phase shifts, 8, ,*, corresponding
to these potentials can be computed in WKB approxi-
mation.! Modified Coulomb phase shifts,'? §;, ¢, for the
case of a uniformly charged sphere of radius 7, are added
to the nuclear phase shifts; each pair of total phase
shifts is equivalent to the quantities (n;48;*) defined in

100~ © c.m,

Calcium 220 Mev

10— P =0

Ol

[oX} ot

Fi16. 20. Unpolarized elastic cross section for Ca%, The curve is the
prediction of the model.

U N. F. Mott and H. S. W. Massey, T/eory of Atomw Collisions
(Clarendon Press, Oxford, 1949), second edition, p
12K. M. Gatha and R. ] Riddell, Phys. Rev. 86 1035 (1952).
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Appendix A. Equations (A9), (A12), and (A13) of that
appendix are then used to give amplitudes, polarization,
and differential cross sections for the scattering.

In most of our calculations we have used potential
shapes of the type suggested by Woods and Saxon®® and
used originally in the polarization calculations of
Sternheimer.'* Thus, for example, we take

Vi(r)=V1(0)/{1+exp[(r—r0)/al}, )

and assume that the parameters 7o and ¢ are the same
for all functions appearing in Eq. (1).

It is shown in Appendix B that, to a good approxima-
tion, the parameter %, of the optical model is related to
the potential V' by

k1= (eckc/pc262)vly (4)

where e, k., and p. are, respectively, the total energy,
wave number, and momentum of the proton in center-
of-momentum coordinates. The optical parameter
k2=%K can be related to the potential V5 in the same
way. It can, however, be estimated directly'® from a
knowledge of experimental nucleon-nucleon cross sec-
tions. Assuming, for example, an effective nuclear radius
of 2.52 f (1 {=1 fermi=10"" c¢m) for C?, we arrive at
the value k2=0.215 f~. This number has been used in
many of our calculations, including those that we regard
as the best fits.

100—

Calcium 220 Mev

] \ P, =0.89
A

\"\ . LEFT
* L]

.4 -— —-~ RIGHT

F1a. 21. Left and right elastic yields from Ca®. The curves are the
predictions of the model.

18R, D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).

14 R, M. Sternheimer, Phys. Rev. 97, 1314 (1955).

15 J. M. Cassel and J. D. Lawson, Proc. Phys. Soc. (London)
A67, 125 (1954).
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Fi1G. 22. Polarization in elastic scattering from Ca®. The curve is
the prediction of the model.

When the Woods-Saxon shape for the potentials is
chosen, the Thomas spin-orbit coupling gives the ex-
plicit potential

% \? V3(0)+4V,4(0)
Vs-°-<’>—“(,;;) .

etr—r0/a

,[:1+e(r—m)/a]2'

©)

If the spin-orbit effect arose from Thomas precession
alone, one would expect? the strength of this potential
to be one-half that of the central potential. We find, in
agreement with others, that it must be in fact many
times larger.

The entire computation outlined above was pro-
gramed for an IBM-650 digital computer. An interpre-
tive system was used, and we found that a calculation
involving 10 / values needed a computing time of about
15 minutes in order to print out data at 15 angles. The
slowness of the program prevented us from demanding
that the machine carry out a systematic search for best
fits; instead, we varied the free parameters of the model
more or less at random, attempting to discover trends
that would assist us in converging toward the best
values. A sequence of about fifty runs was devoted to a
study of the C*? scattering before any attempt was made
to extend the model to other nuclei. We discovered
rather quickly that the large-angle polarization in C'?
could be fitted accurately for a wide variety of potential
strengths, provided that the effective nuclear radius
was in the neighborhood of 2.5 fermis. But great diffi-
culty was encountered in arriving at a good description
of the scattering below the first polarization maximum,
the region where Coulomb effects are strong. We found
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Fic. 23. Behavior of the small-angle scattering amplitude
fr(6) for C2,

almost invariably that, if the large-angle polarization
was accurately given, the small-angle prediction rose too
rapidly and produced a maximum that was too broad.
Finally, a sequence of runs in which the shape parameter
a was reduced led us to the conclusion that the best fits
are obtained with this length no greater than 0.1 fermi;
it had initially been maintained at about 0.4 fermi, in
rough conformity with what is known from the results of
high-energy electron scattering.

The nuclear parameters that gave the C¥ curves
reproduced in Figs. 14 and 15 were as follows: ro=2.4
fermis, a=0.1 fermi, 7,=2.5 fermis, [ (7o+a)/4¥=1.09
fermis], %:(0)=0.086 1, [V1(0)=10 Mev], k2(0)
=0.215 £, [V(0)=25 Mev], V3(0)=225 Mev, V4(0)
=0. When this set had been fixed upon, we ran Be?, Al?’,
and Ca® with the same potential, changing only 7, so as
to maintain the relation with A4 given above; the
Coulomb parameters were, of course, also changed. The
results of these runs are the curves reproduced in
Figs. 12 and 18-22. One sees that the fits are, in most
respects, as good for these nuclei as for C*2. We are fairly
confident that, within the framework of the model
adopted here, no significant improvement in these
calculations would result from further adjustment of the
parameters. What we cannot say with as much confi-
dence is that our set of parameters is unique.

The computed scattering amplitudes at small angles
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for the case of C'2 are given in Figs. 23-25. We include
the amplitudes for pure Coulomb scattering (with point
charge and with distributed charge), for pure nuclear
scattering, and for combined nuclear and Coulomb
scattering (with distributed charge). The combination
is made in each of two ways: by taking the sum of the
separate amplitudes, and by using combined phase
shifts according to the method of Appendix A. The
calculations made by the latter method are labeled
“total WKB.” If the two procedures were equivalent,
curves 4 and 5 in Figs. 23 and 24 would coincide, as
would the two pairs of curves in Fig. 25. We notice that,
although the amplitudes f; and g. meet this test, f, and

100 -
T I -f; coulomb, pt. chg.
S0 - 2-f; " dist. chg.
I 3 f; nuclear
- 4-f; 2+3
5-f; total WKB
10 -
L (e
5 —
-
0.5 -
6 m Radians
L L L L L 1
[¢] O.1 0.2 0.3

F16. 24. Behavior of the small-angle scattering amplitude
fi(6) for C,

gi do not. Thus we have been led to suspect that there
may be large discrepancies between small-angle results
calculated in Born approximation and those found by
the WKB phase-shift procedure used in most of our
work. We have therefore carried out comparisons of the
two approximations at small angles. The nuclear model
used for the comparison was a square well whose radius
and depth parameters were closely equivalent to those
of the most successful Woods-Saxon model. The scat-
tering amplitudes computed this way exhibited the
same discrepancies as those revealed by the test already
mentioned ; indeed f, and g; were found to be signifi-
cantly different even for the case of pure nuclear
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scattering. Figures 26 and 27 show cross sections and
polarizations computed in both approximations.'®* We
note that the cross sections in pure nuclear scattering
are in fair agreement; all other comparisons exhibit
large differences. In making these calculations for the
case in which Coulomb scattering is included, we took
account of the electromagnetic interaction? between the
proton moment and the nuclear charge. This term had
been omitted in our previous work, but we have ob-
served that its effect is not large. It is particularly
interesting to see that the proton polarization in Born
approximation (curve 3 of Fig. 27) at small angles shows
a striking similarity to the characteristic experimental
shape observed in almost all measurements; the WKB
phase shift calculations have consistently failed to
describe this feature of the data. We are thus led to the
suggestion that Born approximation is the more valid

10 |
r !
3 2
5 -
4
]G]
10 -
i 3
0.5 -
1 gy nuclear
i 2 g, total WKB
3 g; nuclear
. 4 g; total WKB
[ X1= O¢.m Radians
s ! s 1 L 1
o [oX} 0.2 0.3

Fi16. 25. Behavior of the small-angle scattering amplitudes g (9)
and g;(0) for C2.

procedure in the small-angle region, even though it fails
qualitatively at large angles. The WKB approximation
has given successful fits to the large-angle polarization,
but fails to describe cross sections beyond the first
diffraction minimum.

We have found that all methods of calculation lead,
in the case of C'%, to the same value of f;(0) for nuclear
scattering. It is then interesting to see whether this
value predicts, through the optical theorem, the correct
neutron total cross section. The agreement with experi-
ment is in fact good: the prediction of 289 mb is to be
compared with the measured value of 29424-3 mb, taken
as the weighted mean of the two neutron total cross-

16 The proton calculations in “Born approximation” were made
by adding exact point-charge Coulomb amplitudes to nuclear and
magnetic-moment amplitudes taken in strict Born approximation.
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Fi16. 26. Cross sections for C'2in WKB and Born approximations.

section measurements!”-!® that have been carried out at
220 Mev. The agreement between computed and meas-
ured total cross sections persists for the heavier nuclei,
as shown in Fig. 28, provided we consider only the
prediction from the WKB calculation ; the corresponding

st

Nuclear scattering, Born
" * L WKB
Proton scattering, Born
" ' ,wWK8
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F16. 27. Polarizations for C2 in WKB and Born approximations.

17 J. DeJuren and B. J. Moyer, Phys. Rev. 81, 919 (1951).
18 Mott, Guernsey, and Nelson, Phys. Rev. 88, 9 (1952).
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F1c. 28. Total cross sections for neutron scattering. The curve
is an interpolation of the available experimental data. The four
points are the predictions of the present model, obtained from the
optical theorem and the amplitudes f:;(0) computed in WKB
approximation.

prediction in Born approximation rises much too rapidly
with nuclear radius.

The cross sections for absorption depend, in this
model, on nuclear radius and on the imaginary potential.
The predictions, which are rather free from ambiguity,
are consistently about 309 too low in comparison with
interpolations from data'® at other energies. Agreement
can be produced by increasing 7o to 1.34% fermis, but it
appears to be impossible to make this change and at the
same time to maintain our descriptions of the polariza-
tion patterns and the total cross sections. Perhaps it
should be emphasized, however, that we have chosen
V=0 as adequate for the polarization fits; an extended
study of the effect of this term might resolve the
difficulties with absorption cross sections. ,

In summary, we can make the following statements
about the results of our analysis:

(1) Parameters for the optical model with spin-orbit
coupling can be found such that, in partial-wave analysis
using WKB approximations to the nuclear phase shifts,
accurate descriptions of polarization are given for four
nuclei.

(ii) The agreement with experimental data on Be’
and Al* is sufficiently good to suggest that the nonzero
ground-state spins of these nuclei have no large effect on
the polarization in elastic scattering.

(iii) The WKB predictions of polarization at small
angles are consistently too smooth. In Born approxima-
tion at small angles, however, the observed shape of the
function appears to be given correctly.

(iv) In order to achieve good fits to the polarization,
it has been found necessary to use nuclear distributions
with sharp tails.

(v) The relative differential cross sections are well
described by the model, at angles below the first mini-
mum; at larger angles, the model predicts too much
scattering.
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(vi) Total cross sections are accurately given by the
optical theorem when the scattering amplitude in WKB
approximation is used. Absorption cross sections are,
however, consistently underestimated by potentials in
which an imaginary spin-orbit term is not present.
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APPENDIX A

We establish here the connections between scattering
amplitudes and phase shifts for the elastic scattering of
protons by spinless nuclei. Since a Hamiltonian in-
volving a potential of the type given in Eq. (1) com-
mutes with J? and J, their respective eigenvalues j and
m are good quantum numbers. The wave function in the
(j,m) representation is expanded in terms of the
(4,s,m1,m,) representation by means of Clebsch-Gordan
coefficients. Thus,

Y(im= 2 é(myms)(mym,|jm), (A1)
ml,mg
with m=m;+m,. We can also write
¢(ml:ms) Z-Rli (7) rm (07 ({’)Xams- (AZ)

R/* is the radial function for j=I+%; x,™ are spin
eigenfunctions for the proton.

We choose coordinates so that the incident beam is
moving along the positive z axis. A beam completely
polarized in the positive z direction’ has m=0 and
m=m,=3% before scattering. From this fact, and from
(1) and (2), we have

. Rl+ 1 1
UG == ] 1P ocosta
(4m)? A
er? T
+ P (cosf)xy*
(I+1) i
R_.
+ [—I%Plo(cosﬁ)xﬁ
(4m)} 4
ete 7
+—P (cost)xs~t| (A3)
i ] .

19 The choice of spin direction represented by the spin eigen-
functions is arbitrary; the two functions form a complete set, and
any polarization can be represented in terms of them. However,
we note that, while “spin flip” cannot occur for spin perpendicular
to the direction of motion in the case of a spinless nucleus, it can
occur for spin parallel or antiparallel to the direction of motion.
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for each [ value involved in the scattering. The radial
functions have asymptotic forms

Ci*
R,ﬂwk_ sin(kr— 3w —n In2kr+n,4+8,%), (A4)
7

where n=Ze¢?/hv, and §,;* are deviations from the point-
charge Coulomb phase shifts 7;. The total wave has
asymptotic form

eiﬁ eiﬁ
Yr~eilken ""“(’“”]xﬁ-l—f(ﬂ);x;*-‘r-g((’,w);xr*, (AS)
7 7

where 3=kr—n In2kr. It is convenient to write

where f,(6) is the deviation of f(f) from the point-
charge Coulomb amplitude, f¢(6), that arises from the
defining relation

(AG)

2+ .
2 exp (im)i’ sin (8—3lm-+n1)x3 P+ (cost)
e
= gilkz—n Ink(r—z)]x%§+fc(0)k_,x%§. (A7)
7

We now manipulate these equations in the following
way. Substitute (A4) into (A3), sum over /, and identify
the result with the left-hand side of (AS). Then subtract
(A7) from (AS5) and, in the resulting identity, equate
successively the coefficients of e#x;?, e~ #x;¥, ey, and
¢~ #x;~%. This work yields four identities:

Cit=[4r (I4+1)1* exp[i(ni+8;+5ir) ],
Ci=— (4nl)* exp[i(ni+oi+3ir) ],

(A3)

and
1
1x(0) =% Xll{ (I+1){exp[ 2i(n,46,) ]—exp[ 2in, ]}
. 1

+1{exp[ 2i(n,+6,7) ]—exp[ 2in. ]} } P.°,

1 (A9)
2(0,0) =5‘_ El:{exp[Zi(m—l—Bﬂ‘)]
i

—exp[2i(n;+8;7) J}eteP !
=go(6)e’*.

goe*? and f are the amplitudes for scattering with and
without spin flip, for protons with incident spin along
+z. The corresponding amplitudes for protons with
opposite incident spin are —goe~% and f, respectively.
We can then construct the scattering matrix

M= (ggi;“’ —gjf_w). (A10)
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Finally, we can write yields and polarizations from well-
known theorems. Starting with an unpolarized beam, we
find for the intensity after one scattering

I'=% Tr(M.M\") = fP+g?,
and, for the polarization,
(o)=Tr (M M'e)/Tr(MM"). (A11)

If the normal to the first scattering plane is j;, a unit
vector parallel to y;, then ¢;=0 and we find a polari-
zation®

2 Imfl*gl. .
=—=Pij1.
f12+g1“’

The intensity after a second scattering of this beam is
Iz= %[Tr (M2M21)+<01> -Tr (Mz(YMz*):I.

If j2, a unit vector normal to the plane of second scat-
tering, is parallel to y,, then ¢2=0 and we find that

I=I(1+4P1Psj1j2), (A13)

where P, is identical in form with Py, and represents the
polarization that would arise in second scattering if the
incident beam were unpolarized.

(A12)

0'1)

APPENDIX B

Assembled here are formulas that we have found
useful in interpreting experimental data with the optical
model. First, consider the relativistic kinematics of the
elastic scattering of a proton (mass #, momentum p,
velocity B¢) by a nucleus (mass M) at rest in the
laboratory. The total energy of the system in the

laboratory is
E=ymd+M¢c?, (B1)

where y2=1—02 The velocity of the center of mo-
mentum (c.m.) is given by

BO=PC/E: (BZ)
and the total energy in the c.m. system is
Eoy=E/~,. (B3)

If k= p/% is the wave number of the proton in laboratory
coordinates, then in the c.m. system it becomes

ko= (Mc/Eo)k. (B4)
(A convenient factor connecting & with p is given by

k=35.0680X10Yp¢c cm™,

20 The sign of the polarization computed from (9) and (12) is
positive or negative depending on whether (@) is parallel or
antiparallel to the vector n=k;Xk;, ¢ and f referring to the
incident and scattered beams, respectively. This is opposite to the
convention adopted by most experimentalists, who refer to the
vector k;Xky;. We perpetuate this unfortunate confusion by re-
porting our computed polarizations according to the latter
convention.
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TaBLE 1. Coulomb phase shifts for C12.

i m nln(+4%) éi,c

0 —0.0430 —0.0518 0.1130
1 0.0316 0.0303 0.1145
2 0.0689 0.0684 0.1175
3 0.0938 0.0936 0.1219
4 0.1125 10.1123 0.1276
5 0.1274 0.1273 0.1345
6 0.1399 0.1399 0.1424
7 0.1505 0.1505 0.1510
8 0.1599 0.1599 0.1599

where pc is in Mev). Now let 6; and ¢; be the laboratory
angles for scattering and recoil, respectively, and let § be
the c.m. scattering angle. Then we have

tanf;= (sinf/yo)[ (m/M) (m+M~)/

(my+M)—+cos6 T, (BS)

and ‘
tan¢;= (sinf/v,)/ (14 cosf). (B6)

If a reduced mass, u, for the proton is defined so that
Byuc=RBsymc, then it becomes

w=yomM/(ym+M)
and the total energy of the profon in the c.m. system is

(B8)

(B7)

€. =yuc.
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The optical parameter %, is given by
kx [(ec-l— Vl)“’—#zc“]*
k.

V1€c
~Y.

—l= )
Poz 62

(B9)

o2 — puct

where — V1 is, as in Eq. (1), the real part of the central
nuclear potential. The error made in using the ap-
proximation is less than 29, for our parameters.

In the treatment of Coulomb scattering, the point-
charge phase shifts are

ni=argl (1+4+1+in)

=—nC+ ké [Z—-tan“(;{—k)] (B10)

=n In(l+3),
where C=0.57722--- and n=Ze*/hv=Z/1378. The

recursion relation,
m—m1=tan*(n/l),

is always useful, but the series in (B10) is only con-
venient when it is rapidly convergent. Table I compares
the exact point-charge Coulomb phase shifts for 220-
Mev protons on C*2 with the approximation given above,
and with the modified phase shifts? §; ¢, computed for
kr1=38.58. The third column indicates that the ap-
proximation is good at all but the first few I values.



