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Neutron transmission measurements have been made on many of the nuclides whose atomic weights lie
between 45 and 75. Parameters of individual resonances were deduced for some of these nuclides and for all
of them a value of the strength function I',%/D was obtained. The experimental values of the strength func-
tion indicate a maximum near 4 =>53. This is consistent with the prediction of the theory of Feshbach,
Porter and Weisskopf for a square-well potential with V=44 Mev, {=0.03 and R= (1.264%40.7) X 1013
cm. The shape of the observed maximum is not in agreement with this simple theory, however, so a discussion
is given which compares the present measurements with predictions based on more realistic models of the

nucleus.

INTRODUCTION

HE Argonne fast-neutron velocity selector' has
been used to measure the neutron transmission of
14 nuclides in the mass range from 45 to 75. The primary
objective of these experiments was to obtain values of
the neutron strength function T.°/D. Many experi-
mental studies have shown that D, the average spacing
per spin state and T',.9 the average reduced neutron
width, defined as the average of the neutron widths
divided by the square root of the corresponding resonant
energies, vary by several orders of magnitude from one
nuclide to another. However, the ratio I',%/D shows
little variation with nucleon number. The “strong ab-
sorption” theory of Feshbach, Peaslee, and Weisskopf?
based on the so-called “black nucleus” model of the
nucleus predicts no variation of this ratio with atomic
mass, whereas the theoretical treatments based on the
optical model, first introduced by Serber, Fernbach, and
Taylor® and extended to low-energy neutron scattering
by Feshbach, Porter, and Weisskopf,* do predict such a
variation which, in fact, exhibits several maxima. Data
have been presented which show the existence of such
maxima near A=355%% and A=1557 in qualitative
agreement with the theory. The present work is a study
of the resonance structure of elements which contribute
to the maximum near 4 =55.

ANALYSIS

In the study of the resonant structure of nuclides in
the mass region of interest to this work, two classes of
structure were observed. The first consists of structure
in which the resonances are closely spaced so that many
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lie in the energy region in which the resolution of the
equipment is sufficient to allow a study of individual
resonances. The second class is made up of the structure
of the lighter nuclides, in which the level spacing is
large. In these cases the majority of the resonances lie
at high energies where the resolution of the equipment
is not sufficient to permit individual resonances to be
studied.

As a consequence of the existence of these two classes,
two different methods of analysis are required in order to
obtain values of the strength function. Data which
belong to the first class were analyzed by the usual area
techniques.?? The strength function was then deduced
from the measured individual widths.

For data of the second class, in which individual
resonances could not be resolved, values of the strength
function were deduced from the area above the meas-
ured transmission curves over a broad range of energy.
Other investigators'®! have used the same kind of
information for the heavier nuclides but, since their
techniques rest on basic assumptions which are not valid
for the light nuclides studied here, a different method
was necessary.

To aid in relating the area above a transmission curve
to T',9/D, the following simplifying assumptions were
made.

1. The resonances satisfy the single-level Breit-
Wigner relations. For the present measurements we need
consider only the case of target nuclei which interact
with neutrons by radiative capture or by s-wave elastic-
scattering processes, with which are associated capture
and scattering cross sections o, and o;. The total cross
section is then given by

g=0,+0,,
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In these relations E is the kinetic energy of the neutron;
E,, 27X, and o are the neutron energy, wavelength, and
cross section at exact resonance; and I', T',, and T',, are
the total, ¥ ray, and neutron widths, respectively. The
statistical factor g is given by

g=3[1=1/2I+1)],

where I is the spin of the target nucleus; and R’ is the
nuclear radius as defined by o,=4mR’?, where ¢, is the
potential-scattering cross section.

2. The radiation width T', is small compared with the
total width T, so that one may write I',/T'=1. On the
basis of those radiative capture widths which have been
measured, any such widths may be expected to be less
than 1 ev.1?

3. The width resulting from the thermal motion of
the target nuclei, i.e., Doppler broadening, is small
compared with the total width, so that it may be
neglected. In the calculation, A=2(mkTE,/M)* has
been taken to be zero. Here m is the mass of the neutron,
M is the atomic mass of the target, & is the Boltzmann
constant, T is the absolute temperature, and E, is the
energy of the incident neutron. For the cases studied, A
may be as large as several ev, but the total widths are
one hundred times this in most instances.

4. Interference between potential and resonant scat-
tering can be neglected.

5. The resonances in the structures studied do not
overlap, ie., the transmission at any energy is ap-
proximately equal to that resulting only from the
nearest resonance and the potential scattering.

On the basis of the above assumptions, it is easily
shown (see Appendix I) that the strength function may
be deduced from the measured transmissions by the
relation
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g
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2 J. S. Levin and D. J. Hughes, Phys. Rev. 101, 1328 (1956).
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Here E;, 7, and T'; are the incident neutron energy,
time of flight, and transmission corresponding to the
time channel j. The sum is over all channels contained
in the energy interval AE. T\ is the off-resonance trans-
mission, a quantity determined by the effective po-
tential-scattering cross section. YV is a tabulated correc-
tion factor which is introduced to take into account
self-shielding effects at the resonances. The statistical
factor § is unity for target nuclei which have zero spin.
For nuclei of nonzero spin, the average of the two
possible values of g, namely §=73 was used. In defining
the strength function as is done in Eq. (4), the custom-
ary assumption is made that the two possible spin states
contribute equally to the cross section for compound
nucleus formation.

Equation (4) depends on some of the unknown
parameters to the extent that these parameters appear
in ¥ and g. The question of the dependence on g has
already been covered, but the dependence through ¥V
may require some clarification. In order to obtain proper
values of Y it is necessary to know a corresponding
value of noo. These were computed from Eq. (3) on the
basis of assumption 2. This simply assumes that all the
resonances have a peak height o, that is determined by
an average of the theoretical maxima for the allowed
spin states. It is clear that only one value of ¥ should be
associated with each resonance but, since the locations
of the resonances are not always known, a value of ¥ is
computed for each measured point.

Since the number of resonances included in the deter-
mination of many of the values of T'.%/D was small,
some care was taken in the evaluation of the errors
assigned to each value. For ease in calculation, the
assumption is made that both the reduced neutron
widths and the level spacings are distributed expo-
nentially; i.e.,

o(x)dx=Ne>*dx,

where A=1/Z. On this basis, the distribution of the
average values of either of the above quantities is

2\ V-1
o(2)dz= ) exp(—Nz/%)ds,

(N—1)! :E( z
where g= (x1+x24 - - -+, - - +an)/N and Z is the true
average value of the x;. A joint density function can be
formed from those for the spacings and reduced neutron
widths. It is

(ﬂ _ GN=D (@/e)¥
Noss ) L= (1+a/a)™

where £ and § are the actual averages, s= (y1+yo+- - - y:
+---+yx)/N, a=2z/s and a=zi/§. There is equal
probability that the measured. ratio will be larger or
smaller than the true ratio.

The probable errors for the average parameters re-
ported in this paper are defined so that the probability
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Fic. 1._Comparison of experimental values of the strength
function I',%/D with the predictions of the optical and strong
absorption models. The points marked by_o are results reported
in this paper and represent the values of I',2/D for Sc#, V8!, Cr%,
Mn5%5, Co®, Cu®, Zn%, Cu%, Ga®, Ga™, and As’. The results of
several other investigators have been added to increase the scope
of the experimental data in order to demonstrate more clearly the
areas of agreement and disagreement between the results of the
various theoretical calculations and the experimental evidence.
These points are for the following : Znf—Dahlberg and Bollinger!7;
Y#—Good, Neiler, and Gibbons, Phys. Rev. 109, 926 (1958) ; Nb%
—Saplakoglu, Bollinger, and Coté, Phys. Rev. 109, 1258 (1958);
Mo and Mo%"—Harvey, Hughes, Carter, and Pilcher, Phys. Rev.
99, 10 (1955). Curve 4 was calculated on the basis of a square-well
potential with V=44 Mev, {=0.03, and R= (1.264%4-0.7) X 10713
cm. Curve B was taken from Weisskopf.? A diffuse-edge potential
was assumed with V= —Vy(1+exp[ (r—R)/d])! and {=0.08, in
which V=42 Mev, R=1.354#X 1078 cm, and Kd=1.65. Curve
C was taken from Vladimirskii.?? The nucleus was assumed to be a
prolate spheroid with (minor axis/major axis)=0.9 and with a
square-well potential for which V=42 Mev, ¢=0.03, and
R=1.454%X10"18 cm. Curve D was obtained from C and repre-
sents the case in which the nucleus is assumed to be an oblate
spheroid.

that the true value lies between the indicated limits is
0.5. Although the value of the strength function can be
determined without a knowledge of N, the number of
resonances included in the average, the error associated
with each measurement cannot. For those cases in
which individual resonances were studied, N was ob-
tained without question. For those cases in which indi-
vidual resonances were not separated, an estimate based
on the shape of the resonance structure and on any
additional information regarding the location of energy
levels was made.

RESULTS

Portions of the results for the elements studied have
been reported previously in the form of curves of cross
section vs energy,”® so such a presentation has been
omitted here. The values of I',’/D that were obtained
from this series of experiments, along with the limits for
each measurement, are listed in Table I and shown in
Fig. 1.

18 Neutron Cross Sections, compiled by D. J. Hughes and J. A.
Harvey, Brookhaven National Laboratory Report BNL-325

(Superintendent of Documents, U. S. Government Printing Office,
Washington, D. C., 1955).
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SCANDIUM

The present measurement of the total cross section of
scandium was restricted to the energy range from 0.7
kev to 40 kev. Since Pattenden’s data show no reso-
nances between 0.0015 ev and 0.7 kev, this region was
not studied. The scandium thicknesses in the Sc.Os
samples used were 0.712 g/cm? and 1.938 g/cm?. Re-
cently® MN published data on the total cross section of
scandium which extend from 2 to 105 kev. The present
data are in qualitative agreement with these except that
two additional resonances were observed—at 3.36 and
6.8 kev. The value of T',.?/D was obtained by the method
of Eq. (4) and is listed in Table I.

VANADIUM

The total cross section of vanadium was studied over
the range from 0.100 kev to about 30 kev. Normal
vanadium samples with thicknesses of 1.03 and 8.25
g/cm? were used. An additional sample which was used
had a thickness of 0.109 g/cm? and was enriched to
22.8%, in V%,

MN have reported resonances in vanadium at 4.1,
6.6, 11.5, 16.6, and 22.1 kev.® These results are in
qualitative agreement with the present data in which
peaks were observed at 4.18, 6.4, and 11.5 kev. The
shape of the transmission curve above 11.5 kev is such
as to indicate the presence of additional resonances
consistent with the data of MN. Analysis of the reso-
nance at 4.18 kev yields a value of '=0.540.1 kev, a
result also in agreement with the data of MN.

Resonances were observed at 167 ev and 1430 ev
which have been assigned to V® on the basis of measure-
ments on the 8.25-g/cm? sample of normal vanadium
and the sample enriched in V*. Upon the assumption
that I'y=0.6 ev and g=1%, values of ¢o=6200 barns and
I'=2.85 ev were obtained for the 167-ev resonance. A
value of I'=100440 ev was obtained for the 1430-ev
resonance.

In order to obtain a value of T',°/D for V¥ from the
data, the method of Eq. (4) was applied.

TaBLE I. Experimental values of f‘no/D and their range
of uncertainty.

Probable range of

Nuclide 10t X (T'9/D) 104 X (T'9/D)
Scis 4.6 32 -66
Vsl 10.8 6.9 ~16.7
Cr3 14.2 8.7 -22.8
Mn?s 5.1 32-1738
Co® 4.5 29 - 69
Cu® 2.16 1.53- 3.02
Zn® 2.30 1.61- 3.32
Cu® 1.90 1.35- 2.66
Ga® 1.17 0.87- 1.51
Ga™ 1.30 0.96- 1.74
As™ 1.83 1.30- 2.56

14N, J. Pattenden, Proc. Phys. Soc. (London) A68, 104 (1955).
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CHROMIUM

Samples of normal chromium 10.6 g/cm? and 1.38
g/cm? thick were used as well as the separated isotopes
listed in Table II. Figure 2 shows transmission as a
function of time of flight for normal chromium and for
samples enriched in Cr* and Cr%. No resonance struc-
ture was observed below 15 kev in Cr® and Cr®.

These results confirm the suggestion of Melkonian,
Havens, and Rainwater,® with regard to their data on
normal chromium, that the resonance structure at
about 5 kev is due to Cr® and Cr®.

The method of Eq. (4) was applied to the data on
Cr% and the result is listed in Table 1.

Since the shape of the resonance structure in Cr® ap-
pears to be that of a single resonance, it has been
analyzed as such and consequently no value of T',9/D is
listed for this isotope. For this resonance at 5.5 kev,
Doppler broadening is only a small fraction of the
observed width and the resolution width of the appa-
ratus is small enough that it has an appreciable effect
only near the peak, so an attempt was made to fit a
Breit-Wigner shape to the data. Since radiative capture
widths are generally less than 1 ev, it was assumed that
T',/T'=1. Interference between resonance and potential
scattering was included in the analysis. The best fit,
shown in Fig. 2, was obtained with the following
parameters: o9=473 barns, E;=5500 ev, I'=1500 ev,
and R'=2.67X107% cm. If the assumption is made that
the entire thermal capture cross section of Cr* is due to
this resonance, a value of I'y=2.9 ev is obtained.
Although this is large compared with values of T, for
other nuclei in this mass region, the ratio T',,/T" is still
close enough to unity that the original assumption is
still a good one.

The value required for R’ in order to fit the data is of
some interest. As defined by Feshbach, Porter, and
Weisskopf, R’ is the nuclear radius to be used in calcu-
lating the potential-scattering cross section ¢,=4R"%
The theories based on the optical model of the nucleus,
which predict a variation of the strength function with
nucleon number, also predict a variation of R'/R with
A, where R is the nuclear radius given by one of the
semiempirical relations between R and A4. In the case of
Cr% a value of R’/R=0.5 was used for the curve, shown
in Fig. 2, which provides the best fit to the data. As an
example of the theoretical variation, the value predicted
by the theory based on the optical model with a square-
well potential with Vi=44 Mev, ¢=0.03, and
R=(1.264%+0.7)X107% cm is 0.46.

TasiE II. Isotopic composition of chromium samples.

Sample Crso Cr5 Cr% Cra
Normal 4.31 83.76 9.55 2.38
Crf0 88.3 11.0 0.6 0.2
Cr® 0.3 99.1 0.4 0.2
Cr3 0.3 16.2 824 1.1
Cr 1.2 11.4 43 83.1
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F16. 2. The neutron transmission of normal chromium and two
of its isotopes, Cr® and Cr%®. The solid curve plotted with the
Cr® data is a theoretical curve based on the resonance parameters
o0=473 barns, I'=1500 ev, and R'=2.67X107% cm.

COBALT

Maxima in the resonance structure were observed at
4.89 and 8.05.f MN list resonances at 4.7, 7.8, and 28.3
kev. A sample,'® 99.89, pure and 0.448 g/cm? thick, was
used in the measurements. In order to compute T',0/D
for cobalt, a summation as indicated by Eq. (A2) was
performed and to it was added the value of gI',® for the
resonance at 132 ev, the final sum being divided by
AE. The reduced neutron width of the 132-ev resonance
was derived from the data of Seidl et al.®

MANGANESE, ZINC, AND GALLIUM

Values of T',? from Bollinger et al.'® were used to
obtain the sum of the reduced neutron widths for
manganese up to 15 kev. The result of this summation
is 15.5 (ev)~% when the correct value of 1.14 (ev)~% is
used for the reduced neutron width of the 337-ev

1 Note added in proof.—In a survey run made with much im-
proved resolution, resonances were observed in cobalt at 4.3,
5.0, 8.0, 104, 16.6, 21.5, 24, and 30 kev.

15 The value for cobalt of I',°/D=2.38X107* reported earlier’s
was based on measurements made with a sample which was later
found to have a large iron impurity. The values reported by us for
the total cross section of cobalt in BNL-325 suffer from the same
fault. Since some of the resonance structure observed with the
impure sample was not seen with the pure sample, but was ob-
served in earlier work by other investigators, it seems likely that
their work may have suffered from this same difficulty. The
authors are indebted to Dr. Carl T. Hibdon for pointing out that
the sample used in the early measurements on cobalt might be
impure.

16 Bollinger, Dahlberg, Palmer, and Thomas, Phys. Rev. 100,
126 (1955).
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resonance. In order to be consistent with the data of the
present paper, the sum of gI',’ has been divided by AE,
with AE=15 kev, to obtain T',%/D.

The data on zinc, which include a value of T'.%/D for
Zn® have been presented by Dahlberg and Bollinger.'
In addition to the value for Zn®?, a value of T'.?/D can be
obtained from their data on Zn® by the method de-
scribed in the present paper. The thickness of the
sample used was 1.03 g/cm? and its isotopic constitution
was 93.19, Zn® and 6.39, Zn®%. A value of gI',® for the
2750-ev resonance, derived from the data of Dahlberg
and Bollinger under the assumption that I',=0.35, was
added to Y gI',? obtained by the method of Eq. (A1)
for the energy region between this resonance and 15 kev.
Division of this new sum by AE yields the value of the
strength function for Zn%, the only even-even nucleus
studied.

Data on gallium were presented by Palmer and
Bollinger.!® Since the value of T',%/D calculated from
their data on Ga™ appeared to be high, because of the
atypically great widths of the resonances at 290 and
380 ev, transmission measurements above 380 ev were
made again in order to apply the method of Eq. (Al)
and hence improve the statistical accuracy of the
measurement by including more resonances. Similar
measurements were also made on Ga®. The sample
thicknesses for Ga® and Ga™ were 1.48 g/cm? and 0.841
g/cm?) respectively.
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F16. 3. The neutron transmission of normal copper and its isotopes.

17D, A. Dahlberg and L. M. Bollinger, Phys. Rev. 104, 1006
(1956).
18 R. R. Palmer and L. M. Bollinger, Phys. Rev. 102, 228 (1956).
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Gallium represents the worst case for application of
the method of Eq. (A1) since the assumptions that T,
and A are small compared with I' are poor ones for the
isotopes of this element. Values of I', have not been
measured for gallium, but the reasonable assumption
that I'y~0.3 ev requires a correction of about 69 in the
measured value of T',9/D. The neglect of the Doppler
broadening requires a correction of about 6%, in the
same direction. In the course of this work an error in the
data of Palmer and Bollinger was noted. Upon its cor-
rection the resonance parameters for the resonance
listed by them at 770 ev becomes E,=707 ev, '=1.15
=+0.20 ev and oo=13504=50 barns. The corrected results
of the present measurements, combined with the data of
Palmer and Bollinger for the lower energy resonances,
yield the values of T',./D listed in Table I.

COPPER

The transmission as a function of time-of-flight is
shown in Fig. 3 for a sample of normal copper and for
those enriched in Cu® and Cu®. The separated isotopes

TasLE I1I. Resonance parameters for copper. In order to obtain
values of oo and T, the assumptions were made that I'y=0.4 ev
and g=3%.

Eo Isotopic a0
(ev) assignment (barns) (ev)
230 65 250 0.42
577 63 1550 1.30
2050 63 626 324
2660 65 486 19.5
4160 65 308 33.8
5390 63 240 76.0

were in the form of CuO with sample thicknesses of 2.88
g/cm? of Cu® and 2.37 g/cm? of Cu®. The sample of
Cu® was 99.859, pure, the Cu® 98.159, pure. In addi-
tion to the structure shown, there is a resonance at
230 ev which has been identified as belonging to Cu®s.

Application of standard area analysis to the resonance
structure of copper under the assumptions that I',=0.4
and g=1% yields the results listed in Table ITI.§

Values of T',2/D were obtained in the same fashion as
those for gallium.

ARSENIC

Samples 8.95, 1.10, 0.332, and 0.0925 g/cm? thick
were used in this measurement of the total cross section
of arsenic. Standard area methods were used to obtain
the resonance parameters. Thick and thin samples were
available for the first three resonances, so that values of
T, could be obtained. These, along with the other
resonance parameters for arsenic, are listed in Table IV.

§ Note added in proof.—In a survey run made with much im-

roved resolution, resonances were observed in copper at 2.04,
2.52, 2.66, 3.91, 4.44, 4.84, 5.34, 590, 6.4, and 7.9 kev; many
resonant peaks were observed above this energy, but most likely
they are not due to single resonances.
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A weighted average value of the radiative-capture
widths for the first three resonances was used in order
to find the parameters for the next five resonances. The
average values of the level spacing D, the reduced
neutron width, and T',%/D are 100 ev, 0.0365 ev, and
1.83X 107, respectively.

DISCUSSION

Preliminary results for some of the nuclides for which
the final values are listed herein were reported previ-
ously.® Since then, MN have published results giving
values of T',/D for nuclides in the same mass region and
in fact for many of the same nuclei. Some comparison
of the two sets of data is therefore in order.

The results of MN were taken over the energy range
from a few kev to about 100 kev, while the present
results were obtained from the energy region from 0 to
15 kev. The wider energy range allowed MN to include
more resonances in their averages and hence to achieve
greater statistical accuracy. However, the present data
suffer appreciably from poorer statistical accuracy only
near the peak in T',%/D. In view of this, one would expect
agreement between the two sets of results everywhere
except, perhaps, near the peak. This is in fact the case,
for the agreement is within the experimental errors for
all nuclei off the peak, except arsenic. MN have dis-
cussed the result for arsenic, since their value appeared
to be quite high compared with their values for neigh-
boring nuclei. They indicated that a different choice of
potential-scattering cross section, namely a value based
on the total cross section in the electron-volt energy
region, would lower the value of T',%/D very sub-
stantially. This case points up the rather large depend-
ence of some of the results of MN on values of the
potential-scattering cross section. This difficulty is not
important in our determinations of I'.?/D because the
off-resonance cross section is much smaller than the
resonance contribution in the low-energy region that is
of interest to us.

The two highest values reported here, those for V¥
and that for Cr®, have very large statistical errors be-
cause so few resonances were included in the averages.
MN have not made measurements on Cr® so no com-
parison is possible. They have discussed the case of V%,
however, and attribute the high value in the ANL work
reported in this paper to poor statistical sampling. The
large errors placed on the present value indicate that the
statistical sample is indeed rather poor, and thus it is
certainly conceivable that it may not be a representative
sample of the wider energy range. A comparison of the
two values for V%, keeping in mind the meaning of the
errors, leads to the conclusion that no major disa-
greement exists even though the values differ by a factor
of two. The over-all conclusion to be drawn from this
comparison is that there is rather good agreement be-
tween the two sets of results; but it should be noted
that, although the values of the strength function for
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TaBLE IV. Resonance parameters for arsenic. I'y=0.2874-0.03
is the weighted average of values of I'y for the first three resonances
and is used in the analysis of the five resonances at higher energies.
The assumption that g=3% was made for all resonances.

Eo a0 iy T, Tn

(ev) (barns) (ev) (ev) (ev)

47 3100470 0.3362-0.032 0.296+0.035 0.0392-+0.0024
92 6534210 0.28640.089 0.26940.057 0.01554-0.002
254 11604106 0.30 +0.15 0.23 +0.18 0.07 =+0.03
322 32004 90 1.42 +0.08 0.287+40.03 1.13  +0.08
457 7254325 0.385+0.07 0.28740.03 0.10 =+0.06
535 22144 25 3.0 +0.15 0.28740.03 271 +£0.15
666 8704220 0.52 £0.10  0.287+0.03 0.23 +0.10
746 15654 25 2.67 +£0.22  0.287+0.03 2.38 =+0.23

V5t and Cr® are based individually on results which are
statistically rather poor, the combined evidence, which
includes these results and fragmentary results for V&
and Cr®, seems to indicate that the high values obtained
may be correct. In the case of V% this fragmentary
evidence is a value of T',%/D based on only two reso-
nances and for Cr® it is the very large value of the

reduced neutron width. On the basis of this evidence,

the suggestion is made that the high values obtained
may not be the result of poor statistical sampling, but
rather are a measure of the strength function near zero
energy. This suggests, of course, a variation of the
strength function with energy which is not predicted by
any theory.

Since many calculations based on the optical model
have been made which lead to results which are relevant
to the present experimental results, brief mention will
be made of the essential features of each, and of their
agreement with the present measurements.

The original work of Feshbach, Porter, and Weisskopf*
was done with a square-well potential of the form
V=—Vo(1+1¢). A curve based on such a potential with
¢=0.03, Vo=44 Mev and R=(1.264%+0.7)X10~8 cm
is shown as 4 in Fig. 1. For a potential of this form, a
value of {=0.05 provides the compromise necessary to
fit the experimental results both in this mass region and
for A>130. The peak is lower for this value than for a
smaller value such as 0.03 and consequently the agree-
ment with the present results is worse. It is clear that
this curve represents the experimental results only to
the extent that it shows a maximum at the appropriate
A for parameters which are consistent with those for the
peak near A=155.

Attempts at refinement of this model have lead to a
potential with a diffuse boundary.’® Weisskopf® has
discussed this calculation and a curve taken from his
paper is shown as B in Fig. 1. Except for the fact that
the particular choice of parameters is such that the peak
does not coincide with the experimental peak, this curve
appears to fit the data better than any of the others.
The major discrepancy lies in the fact that the curve

B R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954);
Morrison, Muirhead, and Murdoch, Phil. Mag. 46, 795 (1955).
2 Victor F. Weisskopf, Revs. Modern Phys. 29, 174 (1957).
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passes well above the well-determined points for Y,
Nb%, Mo, and Mo*".

The fact that nuclei are known to be nonspherical has
led to modification of the above calculations. Margolis
and Troubetzkoy® and Vladimirskii, Ilyina, Panov,
Radkevich, and Sokoloviskii?? have made calculations,
based on a square-well potential on the interaction of
neutrons with spheroidal nuclei. Though different ap-
proaches were made to the problem, the results are in
excellent agreement. Only those of Vladimirskii et al.
were carried out for the mass region of interest here. The
results of these calculations for spheroidal nuclei with
semiaxes ¢ and 5=0.9¢ are shown as B in Fig. 1.
Curve C is the result for oblate spheroidal nuclei with
semiaxes a=0.90 and b. Although neither of these
curves describe the experimental results well, D would
clearly be the better choice of the two.

Chase, Wilets, and Edmonds® have considered the
scattering of neutrons by a rotating, deformed, even-
even nucleus with a diffuse-surfaced complex potential.
Unfortunately, these calculations have been carried out
only for 4>130, so no representation of them is shown
in Fig. 1. In their most refined calculation this group has
used a deformation which varies in accordance with the
deformations deduced from E2 transition probabilities.?
The result of this calculation is in very good agreement
with the experimental results. The slope of the strength
function curve near 4 =130 is such that it appears as
though it might pass through the low values of the
strength function in the vicinity of 4=120. However,
nothing more positive than this can be said about the fit
to the data for the lighter nuclides.

In view of the work outlined above, it is clear that
none of the simple models discussed lead to results
which are in agreement with the experiment. So many
factors regarding the interaction of the nucleus with
neutrons have been neglected in the formulation of the
optical model that it is pointless to try to obtain a
perfect fit to the experimental data. However, it does
seem proper to question the fit in regions where the
results for many nuclides differ markedly from the
theoretical predictions. The inclusion of details per-
taining to the individual nuclides appears to bring the
experimental and theoretical values into much better
agreement for 4>130. Let us therefore inquire whether
a similar approach is likely to be helpful for the mass
region 40<4 <130.

For ease of discussion, let us consider the effects of
deformation and diffuseness separately. All quadrupole
moments of odd-4 nuclides between calcium (closed
proton shell, Z=20) and copper (4=065) may be ex-

2 ];) Margolis and E. S. Troubetzkoy, Phys. Rev. 106, 105
1957).
( 2 Vladimirskii ef al., Columbia Conference on Neutron Inter-
actions, New York, September, 1957 (unpublished).
23 Chase, Wilets, and Edmonds, Phys. Rev. 110, 1080 (1958).
24 Alder, Bohr, Huus, Mottelson, and Winther, Revs. Modern
Phys. 28, 432 (1956).
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pected to be negative,?® corresponding to an oblate
spheroidal shape. On the basis of the expected size
of these moments, the corresponding deformations
B=1.06AR/R, may be computed; here R, is the mean
nuclear radius and AR is the difference between the
major and minor semiaxes of the spheroid. The values
of 8 for the nuclides under consideration should lie in
the range from 0 to 0.1, a range which may be compared
with values of 0.25 to 0.47 for nuclides which form the
maximum in I',%/D near 4=155. Curves C and D of
Fig. 1 correspond to 3=0.079 and therefore are repre-
sentative of the effects of the maximum deformations
expected for nuclides in this mass range. It is clear from
these curves and from the complete investigation of
Vladimirskii e al.? that deformations of the size ex-
pected for the nuclei between 4 =70 and 4 =130 cannot
alone be responsible for the observed values of the
strength function in this region.

Consider now the case in which diffuseness alone is
included in the calculations. We have seen that models
with a constant diffuseness provide the best fit to the
experimental results treated in this paper, but that
these fail for the region 90 <A <130. Any constant value
of the diffuseness consistent with the low values required
for the strength function in this region of 4 cannot be
used in calculations without destroying the agreement
for nearly all other regions of 4.26 Agreement could be
obtained throughout the mass region by a variation of
the diffuseness, but such a procedure seems to be
unjustified since the results of the electron scattering
experiments at Stanford?” indicate that the diffuseness
parameter does not vary as a function of 4.

The conclusion reached on the basis of the above
discussion is that the experimental results are not in
satisfactory agreement with the results of using either a
variable deformation or a variable diffuseness in optical
model calculations, at least if these parameters are
varied in a manner consistent with other known nuclear
properties.

APPENDIX

On the basis of the assumptions listed in the text, the
direct results of the transmission measurements, uncor-
rected for resolution, can be related to I',9/D. From the
definition in Eq. (4), it is clear that the problem is
simply that of calculating 3~ ,(gl's").

The area above a single transmission dip is given by

©sTo—T 2Ey p2fTo—T
AE=f ( )dE%~— f )dT,
0 Ty To Yo T,

% Townes, Foley, and Low, Phys. Rev. 76, 1415 (1957).

26 H. Feshbach, Proceedings of the Conference on Neutron
Physics by Time-of-Flight, Gatlinburg, Tennessee, November,
1956; Oak Ridge National Laboratory Report ORNL-2309
(unpublished).

27 Hahn, Ravenhall, and Hofstadter, Phys. Rev. 101, 1131
(1956) ; Hahn, Hofstadter, and Ravenhall, Phys. Rev. 105, 1353

(195;); Downs, Ravenhall, and Yennie, Phys. Rev. 106, 1285
(1957).
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where E,is the energy of the neutron at exact resonance,
7o is the time of flight in usec/m for neutrons of energy
Eo, and T is the off-resonance transmission. For any
value of 70 this area and the resonance parameters can
be related in a general expression through the function
Y (no0), which can be calculated from curves available
in the literature.® The relation between these is

A p*=Y?*(noo)mnel?

where mnool'? is, as a matter of fact, 4* for a thick
sample. On the basis of this last equation and assump-
tions 1 and 2, the following expression can be obtained
for gI'a°:

gla"=g(2.6X10%rng) %A /Y.
The sum of the gI',’ of N resonances in an energy
interval defined by an upper limit Ey and a lower limit

Ej is given by

2E,

N N
> (gl0,= > [(2.6X1061rng)‘%g

r=1 r=1 To

<[ 5y w
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On the basis of assumption 5, one can write

r=1 TO TO

N To—T, To—T,
Z ~

b

where T is the transmission at a particular energy due
to all N resonances included in the sum. When g, as
defined in the text, and the measured transmissions T°;
are substituted in Eq. (A1), it becomes

N
> (g2, =2G(2.6 X 100rng)—3
r=1
E;/To—T,
X3 ~( )AT, (A2)
i Ty T()Yj

in which the sum on the right side is taken over all the
channels in the energy range Ey to Ej. This range is
determined in an arbitrary fashion so that any prejudi-
cial selection of the limits based on the apparent form
of the resonance structure can be avoided. Because of
certain properties of the velocity selector, the upper
limit is chosen to be the nearest channel to 15 kev; zero
is taken as the lower limit. The final expression for the
strength function can then be written as in Eq. (4) of
the text.




