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Photodisintegration of the Deuteron in the Medium Energy Range*
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We have calculated the photodisintegration of the deuteron in the medium energy range using the
Gartenhaus wave function for the deuteron and the Gartenhaus plus spin-orbit wave functions for the
final states. The results are in good agreement with experiment. It is shown that the cross sections are
sensitive to the triplet odd scattering phase shifts and the D-state probability, but rather insensitive to the
detailed shapes of the wave functions. The results indicate that it is not necessary to relinquish Siegert's
theorem in order to explain the large isotropic term in the angular distribution in this energy region, provided
one assumes a rather high percentage of D state (7'Po) for the ground state of the deuteron.

1. INTRODUCTION

'HE photodisintegration of the deuteron in the
medium energy range (20 Mev(E, (100 Mev)

is for the most part an electric dipole transition from the
ground state of the deuteron to the continuum states of
the tr-p system. If only central forces are considered to
operate between the neutron and the proton, the differ-
ential cross section is predicted to have the usual sin'0
form. The presence of a substantial iso tropic component
of the cross section in the energy region under con-
sideration would seem to imply the operation of non-
central forces. Attempts to take into account the effects
of noncentral forces on the 22 pwave -functions have not
been too successfuP and have led Wilson' to argue for
the importance of virtual pion transitions and Austern'
to question the validity of the Siegert theorem. "

Recent work by Signell and Marshak4 and by Gammel
and Thaler' has led to two-nucleon potentials which 6t
very well all of the single and double scattering data up
to 150 Mev. ' We have used the SM potential to calcu-
late the photodisintegration of the deuteron. We assume
that the Siegert theorem holds and we simply insert the
wave functions which were computed by Signell and
Marshak into the expression for the transition proba-
bility. We use the Gartenhaus wave function' for
the ground state of the deuteron and the modified
Gartenhaus wave functions (which are derived from a
combination of Gartenhaus and spin-orbit potentials' )
for the final triplet odd-parity states of the n psystem. -

De Swart et at. ' have shown that the spin-orbit force is

essential for the triplet odd-parity states but can be
omitted for the triplet even-parity states (e.g., the
deuteron).

In Sec. 2 we write down the fundamental equations,
in Sec. 3 we present the results of the calculation, in
Sec. 4 we give an approximate calculation, and finally in
Sec. 5 we discuss the results.
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3f=nucleon mass, a=polarization direction of the inci-
dent y ray, co= angular frequency of the y ray, f41 =wave
number of the final rr-p system, and r =r„—r„=relative
coordinate. The angular brackets indicate that the sum
is to be taken over the final states and the average over
the initial states and polarizations.

The deuteron wave function is

~(r) „~(r)
+a + JJ011 + JJ211 (2)

2. FUNDAMENTAL EQUATIONS

Assuming that the Siegert theorem holds, the cross
section for the photodisintegration of the deuteron,
when we take into account only the electric dipole
transition, is given by

*Assisted in part by the International Business Machines
Corporation.' See J. Bernstein, Phys. Rev. 106, 791 (1957).

~ R. R. Wilson, Phys. Rev, 104, 218 (1956).
3 N. Austern, Phys. Rev. 108, 973 (1957).
"Compare A. J. F. Siegert, Phys. Rev. 52, 787 (1937) and

N. Austern and R. G. Sachs, Phys. Rev. 81, 710 (1951).
4 P. S. Signell and R. E. Marshak, Phys. Rev. 106, 832 (1957);

109, 1229 (1958).
2 J. Gammel and R. Thaler, Phys. Rev. 107, 291 (1957).

At 150 Mev, the recent Harwell triple scattering experiments
which measure the D function give much better agreement with
the SM than with the GT potential LA. E. Taylor (private
communication}].

7 S. Gartenhaus, Phys. Rev. 100, 900 (1955).
de Swart, Signell, and Marshak, Nuovo cimento 6, 1189

(1957).

where'(r)~e 'outside the potential. Here 'JJr.eJ are
the normalized eigenfunctions for the total angular
momentum J, orbital angular momentum L, total spin
S, and total angular momentum component in s direc-
tion 3II. R = 1(n= radius of the deuteron =4.3154&(10 "
cm. We can relate E to the triplet eGective range
rot= 1.&OX10 "cm by

—
(

=0.87)&(10 "cm) &.

2
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0„' ' is the scattering solution corresponding to an
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incoming wave so that

4'„i—l~'= P (4ir(2L+1))-'* exp[ i—(br& ,'—L—ir)] Photon energy 80 Mev 53.5 Mev 22.4 Mev

TABLE I. Photodisintegration parameters. '

vr. g(kr)
X Cour sr ' 'JJr, iz '& (3)

k

We define now the quantities'

L,=A~+c;I', , (i=0, 1, 2), (5a)

where vr, q(kr) —+sin[kr+br, q —L(or/2)] when r~
Equation (1) can be rewritten in the form

do/dQ= a+b sin'e

Bo

81
82
$g
Ao
A1
A2
Fo
r,
I-0

I-2
I.~
La

11.57—19.16
10.8—1.38
0.128
0.243
0.154
0.069
0.099
0.078
0.030
0.313
0.143
0.123
0.177

13.00—14.98
9.52—0.80
0.240
0.349
0.264
0.109
0.128
0.115
0.086
0.439
0.248
0.138
0.290

7.24—6.68
4.68—0.10
0.704
0.731
0.711
0.206
0.192
0.204
0.412
0.866
0.682
0.148
0.735

where

r"
L I' = 5 2'&

~

K V32rlr
0

Nvi, rdr, (6a)

and

I', =n) wvi, rdr,
0

co= —2'& ci= 2 '& co= 21/10.

(6b)

1 e' Mo)
8 (k) =—— E'R'.

12kc kk
(10)

Here the subscripts 0, 1, 2 refer to the 'Pp, 1, 2 states and
F refers to the 'F2 state.

In the derivation we have neglected the mixing of the
'I'2 and 'F2 states due to the tensor force. We can write
the total cross section as

o ~ = [4irB (k)/9][Los+ 3Lis+5Lss+ (15/2)L p']. (11)

3. CALCULATIONS

The amplitudes L have been calculated numerically
using the Gartenhaus wave function for the deuteron
and the Signell-Marshak (SM) potential to calculate the
functions v and the phase shifts. Actually, a core of 9
Bev up to r=o 55X10 " cm . (iir=0.39) has been in-

o We use Austern's notation, reference 3.

We get for the coefficients in the cross section (4)

&= [8(k)/36](4Lo' —8LoL2 cos(&o—bs)+9Li
—18LiL s cos(bi —bs)+13Lss+18Lp'

—12LoLp cos(bo —5p)+18LiL p cos(bi —8p)

6LsL p cos(b—s—5 p) }, (8)

[B(k)/24) (8LOL2 cos(bo —&s)+3Li'
+18LiLs cos(bi —bs)+ 7Ls'+12L p'

+12LoLp cos(bo —5p) —18LiLp cos(bi —5p)

+6LsL p cos(8s —8p) l, (9)
with

a The phase shifts are in degrees, the amplitudes in units of 10» cm.

serted in the original SM potential' to eliminate a
bound 'P2 state. Moreover, the coupling term between
the 'E'2 and 'F2 state has been removed. It has been
shown4 that this has very little effect on the phase shifts
(and therefore on the scattering cross section). But it is
necessary to make these changes when the wave func-
tion itself is to be used.

Calculations have been performed for energies corre-
sponding to I-p scattering in the laboratory at 150 Mev,
100 Mev, and 40 Mev and hence for y-ray energies of
80 Mev, 53.5 Mev, and 22.4 Mev, respectively. The
results are given in Table I.

To show the importance of the various transitions, the
coe%cients a and b and the total cross sections a ~ have
also been calculated neglecting certain of the transitions.
The results are given in Table II together with the
experimental results. "

For comparison we give the values predicted on the
basis of the theory of Schiff, Marshall, and Guth" using
the Hulthbn wave function for the deuteron and no
interactions in the final states.

It is evident that the agreement of our theory with
experiment is excellent and it is clear that the inter-
ference of the 'F2 with the 'P states is essential to
achieve the good agreement. ' Without the 'F2 transi-
tion, the isotropic part of the cross section would be
too small (and the sin'i) part would be too large).

4. APPROXIMATE CALCULATION

It seems worth while to examine in greater detail how
the large isotropic contribution to the differential cross
section is achieved. To do this we look at an approxi-
mate expression for a. If we set the cosines of the phase-

'o The experimental results are taken from the review article of
L. Hulthdn and M. Sugawara, Harzdbucfz der Physik (Springer-
Verlag, Berlin, 1957), Vol. 39, p. 129; Lew Allen, Jr. , Phys. Rev.
98, 705 (1955); Whalin, Schriever, and Hanson, Phys. Rev. 101,
377 (1956);J. Halpern and E. V. Weinstock, Phys. Rev. 91, 934
{1953).

L. I. Schiff, Phys. Rev. 78, 733 (1950);J. F. Marshall and E.
Guth, Phys. Rev, 78, 738 (1950).
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TABlz II. Photodisintegration cross sections. '

Photon energy

Exp.
'~1+'D1~'~0, i, 2+'~2

S.M.G.b

'~1~'~0, 1, 2

'51+'D1~'PP 1 2

4.8+0.8
4.1
0
0,4
1.5

22.4 Mev
b

47+8
50
55
52
52

465+50
470
460
442
453

5.1&0.9
4.7
0
0.2
1.7

53.5 Mev
b

9.5+1.5
10.5
12.7
12.8
12.5

140+15
147
107
110
126

4.5~0.8
4.1
0
0.56
1.4

80 Mev
b

3.9+0.6
4.3
5,8
5.6
6.0

88&10
88
48
54
68

a Cross sections in pb.
b From the theory of reference 11.

shift differences equal to 1, we get for u and b:

= LB(k)/36ji4(L —Lo+lL )'
+9(Lg—Lp+LF)'), (12a)

b= pB(k)(Lp'+3L, '+5Lp'+ (15/2)Lr') —-'a (12b)

where

A =uk
~o

Ij&(kr) r'dr,

B=nk t Ne~(kr)r'dr.

(16a)

(16b)
We see that large a can be achieved if J2—1.0 and
J1—1-2 are sufficiently large and positive.

o see how the differences between the amplitudes I. The integrals A and 8 are solved using for the 5-state

arise, we consider the transitions separately. wave function of the deuteron the Gartenhaus wave
function' and the Hulthen wave function

'8&—+'Po 1 2 Transitions e
—ar ~-Pr (17)

Outside the potential, the final-state wave functions
are given by

v Jq(kr) =kr{cos8rqjr(kr) —sinblqnr(kr)). (13)

We replace "outside the potential" by

"if r~& p",

pL J (kr) = kjrI, (kf) COSSLJ. (14)

This is, of course, an arbitrary choice. In particular, the
wave function inside the potential is not correct, but the
contributions to the integrals A from the inside a,re
rather +mall, so that it is a reasonable approximation for
the amplitudes under consideration.

The expression for A; becomes

A;=A cos8;—8 sin5, , (15)

where p=1.41X10 "cm (=Compton wavelength of m.

meson). We choose for r(p

Here P is slightly dependent on the D-state probability
and we take the value /=1.340X10+"cm. Our expres-
sion for A reduces to the amplitude III given by Schiff,
Marshall, and Guth" if the phase shifts reduce to zero
and we use (17) to calculate A.

Substituting the approximate values in (15) and using
our phase shifts, we get the results listed in Table III.
We see that the agreement is extremely good. The
differences at high energies between these approximate
values and those calculated with the Gartenhaus wave
function and the SM potential are presumably due

chief to the effects of the repulsive spin-orbit potential
in the 'Pp state. From (15) we see too, that a large
positive Al —A2 and not large negative A2 —A. o can be
reached only if 60 and 62 are positive and 8& is negative.
This requires a long-range repulsive tensor potential.
Use of the Hulth6n wave function for the deuteron
instead of the Gartenhaus wave function proves that the
isotropic part of the cross section is not very sensitive to
the 5-wave part of the deuteron wave function. At

TABIK III. Approximate parameters. '

Photon energy

A
8
Ap
A1
A2
A2 —Ap

A1 —A2

0.735
0.097
0.717
0.741
0.724
0.007
0.017

22.4 Mev
II

0.722
0.089
0.705
0.728
0.713
0.008
0.015

0.704
0.731
0.711
0.007
0.020

0.290
0.216
0.234
0.336
0.250
0.016
0,086

53.5 Mev
II

0.298
0.203
0.245
0.340
0.260
0.015
0.080

0.240
0.349
0.264
0.024
0.085

0.177
0.201
0.133
0.233
0.136
0,003
0.097

80 Mev
II

0.191
0.200
0.146
0.246
0.150
0.004
0.096

0.128
0.243
0.154
0.026
0.089

a The amplitudes are in units of 10» cm. Values I are calculated using the Hulthhn wave function for the deuteron. Values II are calculated using the
Gartenhaus wave function for the deuteron. Values III are the corresponding values from Table I.
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TABLE IV. Approximate parameters. '

Photon energy

C
D
r0
r,
F2
JF

0.168—0.016
0.168
0.165
0.169
0.153

22.4 Mev
II

0.200—0.064
0.207
0.191
0.205
0.148

0.206
0.192
0.204
0.148

0.077
0.047
0.064
0.086
0.068
0.123

53.5 Mev
II

0.121
0.035
0.110
0.126
0.114
0.139

0.109
0.128
0.115
0.138

0.046
0.049
0.044
0.059
0.044
0.103

80 Mev
II

0.088
0.055
0.075
0.101
0.076
0.123

0.069
0.099
0.078
0.123

a The amplitudes are in units of 10» cm. Values I are calculated using the Feshbach-Schwinger D-state wave function corresponding to 3.7%%u~ D state
for the deuteron. Values II are calculated using the Gartenhaus D-state wave function corresponding to 6.7% D state for the deuteron. Values III are the
corresponding values from Table I.

higher energies, however, use of the Hulth6n wave using the same D-state wave functions as before. Be-
function will reduce the total cross section. cause the phase shift is very small in this case, we can

take
'D&—+'I'0, ~, 2 Transitions

At 6rst sight, one should expect these amplitudes to
depend rather strongly on the D-state probability. This,
however, is not true for the low-energy region and is only
partly true for the higher energies. A large contribution
to these amplitudes comes from the region outside the
potential (for small energies more than for high ener-

gies) and hence from the region where the asymptotic
behavior of the D-state wave function is determined
largely by the quadrupole moment. The smaller the
D-state probability, the larger the outside wave function
has to be. This tends to cancel the reduction in the
amplitude in the same way as it cancels the reduction in
the quadrupole moment if one lowers the D-state
probability. We find that dI'/dE is the l—arger, the
smaller the D-state probability.

We can also write for these transitions,

F;=C cosh; —D sinb;,

Lr = oo2'nk~ mj o(kr)r'dr. (20)

The results are also given in Table IV. We see that this
approximation is excellent for the Gartenhaus wave
function.

We can now calculate the values for u, b, and O. z with
our approximate expressions for A;, F;, and I.p. It is
interesting to inquire how we obtain the large isotropic
cross section. From our formula (12a), we see that two
quantities are important, i.e.,

L, Lo+$L» —and L, Lo+ Lr. —

Because bo and 62 have the same sign and order of
magnitude, we see at once that A.2

—Ao is small. The
value J~—Jo is almost entirely due to the 'D~—+'Po

transition:

Lo=&o &o+2'(I'o 0.1Fo).
where

wj i(kr)r'dr,

D=nk I wni(kr)r'dr (19b)
L L+Lr =hi A—+2 '(I'i ,'I—' )+. Lr. ——

We see that the first term in (12a) gets its contribution
(19a) practically only through the interference between the

transitions from the 'D~ state to the 'Po and 'F2 states.
This term is especially important at low energies.

The second term is

These integrals have been evaluated using the Garten-
haus wave function (corresponding to 6.7P~ D-state
probability) and the best of the Feshbach-Schwinger"
wave functions (corresponding to about 3.7% D-state
probability). The results are given in Table IV. We see
that the agreement with the "exact" values is again
good for the Gartenhaus wave function, but that the
values obtained by using the Feshbach-Schwinger wave
function are smaller especially at the higher energies.

'D&—+'E2 Transition

This transition amplitude is less dependent on the D-
state probability. This amplitude has been calculated
"H. Feshbach and J. Schwinger, Phys. Rev. 84, 194 (1951);see

also R. L. Pease and H. Feshbach, Phys. Rev. 88, 945 (1952).We
wish to thank Professor Feshbach for sending us the wave func-
tions.

Because of the phase-shift differences we get a term
from the interference between the transitions from the
'S& and 'D~ states to the 'P~, 2 and 'F2 states, which is im-
portant at high energies. Moreover, we have a term due
to the interference between the transitions from the 'Dj
to the 'P~ and 'F2 states, which is important at the
lower energies.

Using these approximate values for the transition
amplitudes and the phase shifts from the SM potential,
the values for a, b, and 0-z have been calculated. The
results are given in Table V. We see clearly that the
values using the Feshbach-Schwinger D-state wave
function corresponding to 3.7% D state are too small
everywhere for a, and in the high-energy region for r T.
It should be noted that even virtual pion processes will

not appreciably improve the agreement with or (if the
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TAsLE V. Approximate photodisintegration cross sections, ' in pb.

Exp.
"Exact"
Approx. I (6.7%)
Approx. II (6.7%%uo)

Approx. III (3.7'P&)

4.9
4.1
4.1

3.6

22.4 Mev
b

47
50
50

51

465
470
470

469

52
4.7
4.6

3.2

53.5 Mev
5

9.5
10.5
10.1

140
147
142

4.5
4.1
4.1
4.1
2.7

80 Mev
b

3.9
4.3
4.3
3.5
4.8

88
88
88
80
75

a For approx I: Gartenhaus S- and D-state wave functions are used for the deuteron. For approx II: Hulthen S-state and Gartenhaus D-state wave
functions are used for the deuteron. For approx III: Gartenhaus S-state and Feshbach-Schwinger D-state wave functions are used for the deuteron. The"exact" values are the values taken from Table II.

D-state probability is low) since, according to Austern,
the Lo amplitude will be reduced by such effects.

5. CONCLUSIONS

Our calculations indicate that it is possible to achieve
a detailed understanding of the photodisintegration of
the deuteron in the medium energy region without
renouncing Siegert's theorem or introducing virtual
pion effects which are not contained in Siegert's theorem.
However, it must be emphasized that the Gartenhaus
wave function which we have used involves a larger
percentage of D-state probability (=7%) than nor-
mally assumed. "This is not in contradiction with the
measured electric quadrupole and magnetic dipole mo-
ments of the deuteron, in view of the still unknown
relativistic and pion exchange e6ects and the possibility
that there may actually be a positive contribution to the
magnetic moment of the deuteron from a spin-orbit
potential in the isotopic-spin zero state of the e-p
system.

In evaluating the significance of the good agreement
between our predictions and experiment, it should be
recalled that we have neglected the tensor coupling

"L.Hulthen and M. Sugawara, Handbuch der Physi% (Springer-
Verlag, Berlin, 1957), Vol. 39, p. 74.

between the 'P2 and 'F~ final states in addition to
restricting ourselves to the electric dipole transition.
The effect of the tensor coupling can be shown to
actually improve the agreement with experiment. The
restriction to the electric dipole transition leads to an
underestimate of u at the lowest energy considered. "
In view of the latest Pennsylvania experiment" which
has just been completed and the other experiments on
deuteron photodisintegration which are under way at
higher energies (at other laboratories), calculations of
the magnetic dipole and electric quadrupole transitions
on the basis of the SM potential have been started and
will be reported at a later date.
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