Short-Lived Isotopes of Pd and Ag of Masses 113–117*

J. M. Alexander,[†] U. Schindewolf[‡], and Charles D. Corvell

Department of Chemistry and Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received January 31, 1958)

Six new short-lived Pd and Ag isotopes have been isolated from the fission products by fast chemical separations. Their decay properties have been studied by β and γ counting and spectroscopy or by periodic extractions of daughter activities. The nuclides described are: 1.4-min Pd¹¹³ decaying to 1.2-min Ag^{113m} and 5.3-hr Ag113; 2.4-min Pd114 from which 5-sec Ag114 was extracted; 45-sec Pd115 which decays to about 20-sec Ag^{115m} and 21.1-min Ag¹¹⁵; 2.5-min Ag¹¹⁶; and 1.1-min Ag¹¹⁷ which gives rise to the complicated decay chain of Cd¹¹⁷ and In¹¹⁷.

I. INTRODUCTION

SOMERIC states are common in those nuclides which have proton or neutron numbers a few units less than the "magic" or closed shell numbers. This fact is illustrated by the complicated decay chains of Ag, Cd, and In, where isomerism is the usual case rather than the exception. The odd-A isotopes of Ag, with masses 107, 109, and 111, have isomeric states with half-periods between 40 and 75 seconds. Ag^{109m} and Ag^{111m} are formed by β^- decay of the Pd parents; the formation of Ag^{107m} from Pd¹⁰⁷ is energetically prohibited. It would be expected that Ag113 and Ag115 might also have short-lived metastable states which are formed by the β^- decay of Pd. This was proposed for Ag¹¹⁵ by Wahl and Bonner¹ on the basis of fission vield measurements.

A more complete study is presented here of the expected isomeric states. These species are produced abundantly in the deuteron fission of natural uranium. The yield-mass curve² is almost flat in the mass 113 to 117 region and the valley-to-peak ratio in 14-Mev deuteron fission is about 0.2, whereas in the thermal neutron fission of U²³⁵ it is about 0.0016. However, the relative fission yields of the individual chains studied here may not all be the same, because of problems related to isomerism and distribution of yield along the chain.3 Rapid chemical procedures have been developed for the separation of Pd and Ag activities from fission products. With these techniques, six new Pd and Ag activities of half-period less than three minutes have been studied.

II. CHEMICAL PROCEDURES AND COUNTING TECHNIQUES

Fission was induced by the bombardment of U foil or UO₃ with 15-Mev deuterons, usually for 1 minute.

* This work was supported in part by the U. S. Atomic Energy Commission.

† Present address: Radiation Laboratory, University of California, Berkeley, California.

‡ Present address: Bundes laboratorium für Kernforschung,

 Karlsruhe, Germany.
 ¹ A. C. Wahl and N. A. Bonner, Phys. Rev. 85, 570 (1952).
 ² Sugihara, Drevinsky, Troianello, and Alexander, Phys. Rev. 108, 1264 (1957); J. M. Alexander, Ph.D. thesis in chemistry, Massachusetts Institute of Technology, October, 1956 (unpublished).

³ J. M. Alexander and C. D. Coryell, Phys. Rev. 108, 1274 (1957).

The chemical procedures used in the experiments were as follows:

(a) Separation of Pd from fission products.—The bombarded U foil was dissolved in aqua regia containing ~ 2 mg Pd (II) carrier. After diluting, AgCl was precipitated by the addition of 10 mg Ag carrier, and Pd was extracted into chloroform as the dimethylglyoxime complex (1 ml 1% dimethylglyoxime in methanol per 20 ml chloroform). The organic phase was washed twice with dilute HNO₃ and the Pd was back-extracted into concentrated ammonia. After scavenging with Fe(OH)₃, the Pd was reduced with Zn powder, filtered, washed, and counted. (The time required for the chemical separation was three minutes.)

(b) Separation of Ag daughters from Pd.—(1) The bombarded U metal was dissolved in aqua regia containing ~ 2 mg Pd (II) and ~ 10 mg Fe (III). After dilution, $Fe(OH)_3$ and $(NH_4)_2U_2O_7$ were precipitated with ammonia, and the Pd was reduced to the metal with Zn powder. The Pd was then dissolved in aqua regia, diluted, and extracted into chloroform as described in section (a). The organic phase, containing Pd, was shaken with an aqueous solution containing a known amount of Ag carrier, and the moment of phase separation was taken as the separation time of Ag formed by the decay of Pd. The Ag solution was washed with chloroform containing dimethylglyoxime, and AgCl was precipitated, washed, and counted. When required, the chemical yield was determined after counting. (The time requirement was five minutes.) Periodic extractions at one-minute intervals were performed in order to determine parent half-periods.

(2) In the search for Ag activities of half-period less than 20 seconds, the Pd was purified as described in section (a). The Pd metal was dissolved in aqua regia; the solution was diluted and the Ag was separated by rapid isotopic exchange⁴ with Ag foil coated with AgCl. The foil was washed with water and counted immediately.

(c) Periodic separation of Cd daughters from Ag and Pd.—(1) Bombarded U foil was dissolved in aqua regia containing ~ 1 mg Pd. After dilution the Pd was extracted into chloroform as the dimethylglyoxime complex. The organic phase was washed twice with

⁴ D. N. Sunderman and W. W. Meinke, Science 121, 777 (1955).

A. Pd isolated from fission products						
	Radiation observed	Observed half-period	half-periods follow	red		
	β 's>0.2 Mev β 's>3.5 Mev γ 's>0.1 Mev	$2.2 \pm 0.2 \text{ min}$ $2.4 \pm 0.1 \text{ min}$ $1.9 \pm 0.2 \text{ min}$	4 6 4			
	Photopeaks:			·		
	0.14±0.01 Mev 0.30±0.02 Mev 0.57±0.02 Mev	$2.2 \pm 0.4 \min$ $1.9 \pm 0.4 \min$ $2.4 \pm 0.3 \min$	4 5 5			
	Unresolved γ 's>0.7 Mev present in low intensity Maximum β energy associated with 2.4 \pm 0.1-min Pd: 4.6 \pm 0.4 Mev					
B. Ag grown from Pd	······································					
Radiation observed	Observed half-pe	riod half-perio	ds followed	Relative intensities		
$\beta's>0.2 \text{ Mev}$ $\beta's>1.0 \text{ Mev}$ $\beta's>3.5 \text{ Mev}$ $\gamma's>0.1 \text{ Mev}$	$1.25 \pm 0.15 \text{ m}$ $0.8 \pm 0.3 \text{ min}$ $5 \pm 2 \text{ sec}$ $1.15 \pm 0.15 \text{ m}$	in n in	5 3 3 4			
Photopeaks:						
$\begin{array}{c} 0.14 \pm 0.01 \ {\rm Mev} \\ 0.31 \pm 0.02 \ {\rm Mev} \\ 0.39 \pm 0.02 \ {\rm Mev} \\ 0.56 \pm 0.02 \ {\rm Mev} \\ 0.70 \pm 0.02 \ {\rm Mev} \end{array}$	$1.15 \pm 0.20 \text{ m}$ $1.15 \pm 0.20 \text{ m}$ $1.10 \pm 0.20 \text{ m}$ $1.50 \pm 0.20 \text{ m}$ $1.35 \pm 0.20 \text{ m}$	in in in in	4 5 4 3 3	40 100 30 10 10		
Maximum β energy of 1.2-min Ag: <2.0 Mev						
C. Ag isolated from fission	products	No	∽£	Relative		
Radiation observed	Observed half-peri	iod half-periods	followed	intensities		
β 's>0.2 Mev β 's>3.0 Mev γ 's>0.1 Mev	2.25 ± 0.25 m 2.5 ± 0.1 mi 2.0 ± 0.25 m	in 5 n 6 in 3				
Photopeaks over 0.26 Mev from ≤ 3-min Ag:						
$\begin{array}{c} 0.32 \ \pm 0.02 \ { m Mev} \\ 0.515 {\pm} 0.015 \ { m Mev} \\ 0.70 \ \pm 0.03 \ { m Mev} \end{array}$	v $1.5\pm0.5 \text{ min}$ 3.0 $\pm0.5 \text{ min}$ 2.6 $\pm0.4 \text{ min}$	3 3 3 3		100 20		
Unresolved γ 's>0.7 Mev \sim 2 min present in low intensity Maximum β energy of 2.5-min Ag: 5.0 \pm 0.4 Mev						
Measurements on longer-lived Ag:						
eta^{s} s through 900 mg/cm ² Al eta^{s} s>0.2 Mev	$21.1 \pm 0.5 \text{ min} \\ 5.3 \pm 0.2 \text{ hr}$	n 7 7				
Photopeaks from long-lived Ag:						
0.138 ± 0.010 Me 0.227 ± 0.015 Me 0.310 ± 0.010 Me	$v \sim 20 \text{ min}$ $v \sim 20 \text{ min}$ $v \sim 5 \text{ hr}$	probably but not definitely in coinciden	ce	20 100		
Maximum β energy of 21.1-min Ag ¹¹⁵ : 2.9 \pm 0.3 MevMaximum β energy of 5.3-hr Ag ¹¹³ :2.2 \pm 0.2 Mev						
D. Indirect observation of parents by periodic extraction of daug Radiation and half-period of daughter observed		laughters Half-period of parent		No. of parent half- periods followed		
5.3-hr Ag ¹¹³ (β'_{5}) 1.25-min Ag (β'_{5}) 1.25-min Ag (pho 5-sec Ag (β'_{5}) 21.1-min Ag ¹¹⁶ (β'_{5}) 2.2-day Cd ¹¹⁵ (β'_{5}) 50±20 sec Ag (β'_{5}) 2.2-day Cd ¹¹⁵ (β'_{5}) 2.2-day Cd ¹¹⁵ (β'_{5}) Cd ¹¹⁷ (β'_{5}) Cd ¹¹⁷ (β'_{5}) 1.1	>0.1 Mev) >0.1 Mev) otopeaks, see Fig. 1) 5 Mev) 's>0.1 Mev) s>0.1 Mev) ^a 's>0.7 Mev) s>0.1 Mev) ^b s>0.1 Mev) ^o Iev) ^b Iev) ^b	$\begin{array}{c} 1.43 \pm 0.16 \text{ min} \\ 1.29 \pm 0.17 \text{ min} \\ 1.3 \ \pm 0.15 \text{ min} \\ 3 \ \pm 1 \text{ min} \text{ Po} \\ 50 \ \pm 12 \text{ sec P} \\ 44 \ \pm 3 \text{ sec P} \\ 50 \ \pm 20 \text{ sec P} \\ 20 \ \pm 10 \text{ sec}^{4} \\ < 50 \text{ -sec } \text{ Ag}^{115m} \\ 1.1 \ \pm 0.1 \text{ min} \\ 1.1 \ \pm 0.1 \text{ min} \end{array}$	Pd ¹¹³ Pd Pd d d ¹¹⁵ d ¹¹⁵ d Ag ¹¹⁵ Ag ¹¹⁷ Ag ¹¹⁷	3 3 4 3 4 5 4 4 4		

TABLE I. Experimental results.

* 21-min Ag was extracted successively from Pd [Sec. II(b)1] and the extracts allowed to decay to Cd, which was counted. • Cd was extracted successively from the combined Pd and Ag parents [Sec. II(c)1]. • Cd extracted successively from Ag after removal of Pd [Sec. II(c)2]. • Half-period from curve fitting 45-sec Pd \rightarrow Ag \rightarrow 2.2-day Cd (see Fig. 2).

Nuclide	Half-period	$E_{m{eta}_{\max}}$ (Mev)	E_{γ} (Mev)	Daughters
Pd113	$1.4{\pm}0.1$ min		no prominent γ 's	1.2-min Ag ¹¹³ ^m 5.3-hr Ag ¹¹³ (90%) ^a
Pd^{114}	$2.4 \pm 0.1 \min$	• • •	no observable γ 's	5-sec Ag ¹¹⁴
Pd^{115}	$45 \pm 3 \text{ sec}$		no prominent γ 's	~ 20 -sec Ag^{115m} 21.1-min Ag^{115}
Ag ¹¹³ m	1.2 ± 0.15 min	<2.0	$\begin{array}{c} 0.14 \pm 0.01 \\ 0.30 \pm 0.01 \\ 0.39 \pm 0.02 \\ 0.56 \pm 0.02 \\ 0.70 \pm 0.02 \end{array}$	5.3-hr Agus b Stable Cd ¹¹³ 5-yr Cd ¹¹³ <i>m</i> (<5%) ^a
${f Ag^{113}}\ {f Ag^{114}}\ {f Ag^{115m}}$	$5.3 \pm 0.2 \text{ hr}$ $5 \pm 2 \sec$ $20 \pm 10 \sec$	$2.2 \pm 0.2 \\ 4.6 \pm 0.4$	$\begin{array}{c} 0.30 \pm 0.01 \\ 0.57 \pm 0.02 \\ \end{array}$	Stable Cd ¹¹³ Stable Cd ¹¹⁴ 21.1-min Ag ¹¹⁵ b 2.2 day Cd ¹¹⁵
Ag ¹¹⁵	$21.1 \pm 0.5 \min$	2.9 ± 0.3	0.138 ± 0.010 0.227 ± 0.015 (both weak probably coincident)	$\begin{array}{c} \text{2.2-uay Cd}^{115m} (9\%)^{\circ} \\ \text{43-day Cd}^{115m} (91\%)^{\circ} \\ \text{2.2-day Cd}^{115} (91\%) \end{array}$
Ag ¹¹⁶	2.5 ± 0.1 min	5.0 ± 0.4	0.515 ± 0.02 0.70 + 0.03	Stable Cd ¹¹⁶
Ag ¹¹⁷	1.1 ± 0.1 min			3-hr Cd ¹¹⁷ 50-min Cd ¹¹⁷

TABLE II. Summary of conclusions.

Yields discussed in the Appendix.
Inferred from decay systematics (see Appendix).
Yields from reference 1.

0.015*M* HNO₃. Then dithizone (diphenylthiocarbazone) in chloroform⁵ containing 1 mg Ag carrier was added to hold in the organic layer the Ag growing from Pd. The organic phase containing Ag and Pd was then shaken with an aqueous solution containing a known amount of Cd carrier in 0.015M HNO₃, and the instant of phase separation was taken as the separation time of Cd formed by the decay of Pd and Ag. The Cd solution was then washed with chloroform and complexing agents, and the Cd purified following a procedure (similar to that of Glendenin⁶) which included an AgCl scavenging, Fe(OH)₃ and PdS and Sb₂S₃ scavengings, CdS precipitation, and final Cd precipitation and weighing as the $Cd(NH_4)PO_4$.

(2) In one experiment Pd was removed from the HNO₃ solution by a dimethylglyoxime extraction. Ag then was extracted with dithizone and Cd periodically removed as described in Sec. II(c)1. In these experiments the chemical procedures required two to three minutes.

(d) Separation of Ag from fission products.-Bombarded U metal was dissolved in aqua regia. After dilution with chlorine water, Ag was separated by AgCl precipitation or by isotopic exchange with AgCl coated on Ag foil. The AgCl was dissolved in ammonia and the solution was scavenged with an Fe(OH)3 precipitation. Ag was reduced to the metal with Zn powder, then dissolved in HNO3, washed with chloroform containing dimethylglyoxime, and precipitated as AgCl which was washed and counted. (The time required was three minutes.)

(e) Counting techniques.-Gamma spectra of the short-lived species have been measured by scintillation spectrometry making use of a 1-in.×1-in. cylindrical NaI(Tl) crystal and a 20-channel analyzer. The gamma spectra of 21.1-min Ag^{115} and 5.3-hr Ag^{113} were measured on both a gray-wedge analyzer and a single-channel analyzer. Beta spectra were similarly measured using a 0.5-in. \times 2-in. NaI(Tl) crystal with a 5 mg/cm² Al window. Energy calibration was made with both β and γ standards having maximum energies up to \sim 3 Mev. Since the samples counted were not weightless, the Kurie plots did not yield straight lines and only the maximum β energy of the hardest component could be estimated. End-window flow-type proportional counters and well-type scintillation counters were used for conventional β and γ counting. Irradiations were obtained from the M.I.T. cyclotron, which delivers 15-Mev deuterons and secondary neutrons from a Be or LiF target.

III. EXPERIMENTAL RESULTS

Because of the number of short-lived nuclides involved and the growth of short-lived Ag daughters from short-lived Pd nuclides, a variety of different observations had to be made, and for reliability of the results, these had to be repeated a number of times. Table I gives a survey of the types of observations made, the half-period correlated with each, and the length of time for which the correlation was followed. Estimates on the reliability of each half-period are given from the inherent precision of the observation and its reproducibility in different preparations. Conclusions are drawn in Sec. IV below from the data in

⁵ E. B. Sandell, Colorimetric Determination of Traces of Metals (Interscience Publishers, Inc., New York, 1950), pp. 86–112.
⁶ L. E. Glendenin, Radiochemical Studies: The Fission Products,

edited by C. D. Coryell and N. Sugarman (McGraw-Hill Book Company, Inc., New York, 1951), Paper No. 265, National Nuclear Energy Series, Plutonium Project Record, Vol. 9, Div. IV.

Table I, and Table II gives the summary of the conclusions from our work of the decay properties and mass assignments of the ten species of interest. Proposals for decay schemes of the nuclides are given in the appendix.

Part A of Table I gives the observations on Pd isolated directly, the Ag growth time being about 1 min before counting. The data refer largely to 2.4-min Pd¹¹⁴ in equilibrium with 5-sec Ag¹¹⁴, except for the γ rays of 0.30 and 0.14 Mev, due to 1.2-min Ag^{113m} coming to equilibrium.

Part B of Table I, which describes short-lived Ag daughters of short-lived Pd parents, gives the decay properties of 1.2-min Ag^{113m} exclusively, except for the experiments with hard β rays.

In Part C of Table I, the species responsible for the different observations are adequately identified by the half-periods observed, and Part D on periodic extraction of known daughters is self-explanatory.

(a) 1.4-min Pd^{113} .—The half-period of Pd^{113} is considered best determined as 1.43 ± 0.16 min from periodic extractions of 5.3-hr Ag¹¹³ from purified Pd, in agreement with the value of 1.5 min reported by Hicks and Gilbert⁷ by a similar experiment. Prompt counting of the silver extracts always showed a 1.2-min component. Plotting the initial specific β activities against time established a half-period of 1.29 ± 0.17 min for its parent, and plotting the intensities of the γ rays of 0.14 and 0.31 Mev gave the value 1.3 ± 0.1 min. Curve 7 of Fig. 1 shows the γ evaluation of the Pd half-period. As shown below, there is no doubt that

FIG. 1. The γ spectrum of six different Ag samples periodically extracted from Pd. This spectrum is the result of two normalized experiments representing a 35-channel analysis. The photopeaks are at 0.14, 0.31, 0.39, 0.56, and 0.70 Mev with approximate relative abundances 40:100:30:10:10. Curve 7 gives the half-period of the Pd parent, which is 1.3 min (crosses represent the area under the 0.31-Mev peak, circles represent the area under the 0.56-Mev peak).

⁷ H. G. Hicks and R. S. Gilbert, Phys. Rev. 94, 371 (1954).

these data all refer to the same parent, Pd^{113} . The value chosen for the half-period is 1.4 ± 0.1 min. No evidence was obtained for any characteristic γ rays.

(b) 45-sec Pd^{115} .—The half-period of Pd^{115} was found by periodic extraction and counting of 21.1-min Ag¹¹⁵ to be 50 ± 12 seconds. A more accurate value of 44 ± 3 seconds was found by identical periodic extraction and subsequent purification and counting of 2.2-day Cd¹¹⁵ after decay of 21.1-min Ag¹¹⁵. The half-period chosen is 45 ± 3 sec.

(c) 1.2-min Ag^{113m}.—As indicated above, the prominent short-lived Ag isolated from short-lived Pd is the 1.2-min species of relatively low β energy with complex γ spectrum, formed in the decay of 1.4-min Pd¹¹³. Only an upper limit of 2.0 Mev could be established for its maximum β energy because of interference of the 2.9-Mev β particles from 21.1-min Ag¹¹⁵. The γ spectrum showed lines at 0.14, 0.31, 0.39, 0.56, and 0.70 Mev (Fig. 1), which are all associated with decay of silver nuclides with half-periods of 1.2 ± 0.25 minutes. These γ 's *a priori* may originate from the decay of either Ag^{113m} or Ag^{115m}. To distinguish between these possibilities, six silver samples were extracted from Pd at intervals of 1 minute and the γ spectra observed. Since Pd¹¹⁵ has a half-period of 45 sec and Pd¹¹³ has a 1.4-min half-period, the intensity of γ rays from Ag^{115m} should be depleted by a factor of ~ 8 with respect to Ag^{113m} in the course of this experiment. Figure 1 shows that the relative intensity of all γ peaks is unchanged in all six Ag samples, indicating a common origin. The halfperiod of this common parent is 1.3 ± 0.15 min and thus the γ rays are assigned to Ag^{113m}. The energies, with the exception of 0.14 Mev, are in agreement with the energy levels observed⁸⁻¹⁰ in Cd¹¹³ by Coulomb excitation of Cd^{113} and by the $Cd^{112}(d,p)$ reaction.

The half-periods shown for measurements of the different types of radiations are listed in Part B of Table I. The average of all but the curves for $E_{\beta} > 1.0$ Mev and $E_{\beta} > 3.5$ Mev (principally Ag^{115m} and Ag¹¹⁴, respectively) will be taken as 1.2 ± 0.15 min.

(d) 5.3-hr Ag¹¹³.—The half-period for Ag¹¹³ is confirmed,¹¹ the maximum β energy remeasured¹¹ as 2.2 Mev, and a γ ray of 0.31 Mev found in low abundance. A comparison of the relative β intensities of the 1.2min Ag^{113m} and the 5.3-hr Ag¹¹³ shows that $90\pm5\%$ of the 113 chain passes through 5.3-hr Ag¹¹³. (e) ~20-sec Ag^{115m}.—Periodic extraction of 2.2-day

(e) ~20-sec Ag^{115m} .—Periodic extraction of 2.2-day Cd¹¹⁵ from its combined precursors Ag^{115} and Pd^{115} [by methods of Sec. II(c)1] gives definite evidence that 2.2-day Cd¹¹⁵ is formed by the decay of a short-lived Ag^{115m} as well as 21.1-min Ag^{115} .

⁸ G. M. Temmer and N. P. Heydenburg, Phys. Rev. 98, 1308 (1955); 99, 617 (1955). ⁹ Mark, McClelland, and Goodman, Phys. Rev. 98, 249, 1245

Mark, McCleiland, and Goodman, Phys. Rev. 98, 249, 1245 (1955); 99, 617 (1955).
 P. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc. Ser.

¹⁰ P. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc. Ser. II, 1, 164 (1956); N. S. Wall, Phys. Rev. **96**, 664 (1954). ¹¹ Hollander, Perlman, and Seaborg, Revs. Modern Phys. **25**,

¹¹ Hollander, Perlman, and Seaborg, Revs. Modern Phys. 25, 469 (1953).

FIG. 2. Delimitation of the half-period of short-lived Ag^{115m} by periodic extraction of 2.2-day Cd¹¹⁵ from Pd+Ag sample. At time zero, Pd was isolated by the method of Sec. II(c)1 and Ag starts to grow in. In one-minute intervals Cd was separated and counted after purification. Experimental points give relative activities of 2.2-day Cd¹¹⁵ extracted 1, 2, 3, \cdots minutes after final Pd separation in two runs (× and \bigcirc). The curves are the calculated relative Cd activities for successive extracts, assuming that Cd¹¹⁵ is formed by the following scheme:

and using for the half-period of Ag^{115m} 10 sec (- - - -), 20 sec (- · - · -), and 40 sec (- - -). The value 20 sec gives fit with an uncertainty of ± 10 sec.

Figure 2 shows the activity of 2.2-day Cd¹¹⁵ in successive Cd extracts taken after 1 minute of growth at various times after purification of the mother sample of Pd. The high activity in the first three minutes is good evidence for short-lived Ag^{115m} undergoing β decay. The three curves of Fig. 2 show predictions for the 2.2-day Cd¹¹⁵ activity with postulated half-periods of 10, 20, and 40 sec for Ag^{115m}, using the branching ratio 0.28 for β decay determined by Wahl and Bonner¹ from fission yields. The 20-sec curve gives reasonable fit with an estimated uncertainty of ± 10 sec.

In another experiment 2.2-day Cd¹¹⁵ was periodically extracted from Ag alone, after removal of Pd. Extractions of Cd from Ag were made at 45-second intervals beginning 3.8 minutes after bombardment. None of the Cd samples showed evidence of an Ag¹¹⁵ parent other than 21.1-min Ag¹¹⁵. Thus only an upper limit of 50 sec for the half-period of Ag^{115m} could be determined by this method with β counting.

The direct observation of the decay of Ag^{115m} is difficult because of the presence of 1.2-min Ag^{113m}, but discrimination in favor of Ag^{115m} can be obtained by cutting out the lower energy β rays, since Ag^{113m} has a maximum β energy of 2.0 Mev. Periodic separations of Ag were made from Pd, and the extracts counted for β rays above 1 Mev. The gross half-period of 0.8 ± 0.3 min was obtained for the Ag fractions, showing substantial content of Ag^{115m}. Using this half-period without correction for Ag^{113m} contribution, the half-period of 0.8 ± 0.3 min is obtained for the Pd parent, identifying the mass number as 115. The half-period for Ag^{115m} is taken as 20 ± 10 sec.

(f) 21.1-min Ag^{115} .—The half-period of Ag^{115} is confirmed,¹¹ the maximum β energy remeasured¹¹ as 2.9 Mev (from absorption measurements), and weak γ rays of 0.138 \pm 0.010 and 0.227 \pm 0.015 Mev found, which are probably in coincidence.

The discussion so far is based on the assumption that short-lived Ag activities grown from \sim 1-min Pd are only Ag113m and Ag115m. A rough determination of the maximum β energy of these ~1-min Ag species sets an upper limit of 2.0 Mev. The systematics of β decay¹² predict 2.2 Mev for the maximum β -decay energy of Ag¹¹³ (observed 2.2 Mev) and 3.2 Mev for Ag¹¹⁵ (observed 2.9 \pm 0.3 Mev). The predicted maximum β energies of other possible Ag species (114, 116, 117, etc.) are all greater than 4 Mev; therefore, their presence is unlikely. The following discussion of these other mass chains supports this conclusion.

(g) 1.1-min Ag^{117} .—The Cd activity which was periodically extracted from Ag contained in addition to 2.2-day Cd¹¹⁵ a much shorter-lived activity which was not observed when Ag and Cd were extracted from Pd. The decay curve was consistent with the complicated growth and decay^{13,14} of 3-hr Cd^{117m}, 50-min Cd¹¹⁷, 1.1-hr In¹¹⁷, and 1.9-hr In^{117m}, initially flat and then passing to an apparent half-period of 3.0 hr. The absence¹⁵ of β decay from 75-sec Ag^{111m} eliminates possible contribution of 49-min Cd^{111m}, as verified by the observed Al absorption curve. Also a large contribution¹³ of 30-min Cd¹¹⁸ could be ruled out by the apparent half-period of the separated Cd.

The Cd decay curves of the successive extracts were analyzed into components of chains of masses 115 and 117. The data correspond to a half-period of 1.1 min for Ag¹¹⁷. Pd¹¹⁷ must have a much shorter half-period or a very low yield in the deuteron fission of U^{238} .

(h) 2.4-min Pd¹¹⁴ and 5-sec Ag¹¹⁴.—Direct observation of the decay properties of Pd¹¹³ and Pd¹¹⁵ was impossible because of the growth of their Ag daughters and of the presence of another Pd activity with a halfperiod of 2.4 minutes. In the measurement of the β spectrum, this half-period was observed in all channels over 3 Mev for 15 minutes, and the maximum β energy was found to be 4.6 Mev. According to the systematics of β decay,¹² no Pd nuclide of mass number less than

¹² C. D. Coryell, Annual Review of Nuclear Science (Annual Reviews, Inc., Stanford, 1953), Vol. 2, p. 305; J. Riddell, "A Table of Levy's Empirical Atomic Masses," Atomic Energy of Canada Limited Report CRP-652, 1956 (unpublished), based on H. B. Levy, Phys. Rev. 106, 1265 (1957); R. C. Fix, Ph.D. thesis in chemistry, Massachusetts Institute of Technology, 1956 (un-published).

 ¹³ Coryell, Lévêque, and Richter, Phys. Rev. 89, 903 (1953).
 ¹⁴ C. L. McGinnis, Phys. Rev. 94, 371 (1954).
 ¹⁵ Schindewolf, Winchester, and Coryell, Phys. Rev. 105, 1763 (1951).

117 (with the exception of Pd^{115} which has a half-period of only 45 seconds) is expected to have a maximum β energy of greater than 3.5 Mev. However Ag¹¹⁴ or Ag¹¹⁶, which are expected to have very hard β radiation, may be in equilibrium with Pd precursors and be responsible for the observed hard β component. Since no hard- β emitter was observed in the Ag extracted from Pd, it may be concluded that a possible Ag daughter must have a half-period of less than 20 seconds.

Very fast periodic extractions [Sec. II(b)2] revealed the existence of an Ag activity of (5 ± 2) -sec half-period having β radiation greater than 3.5 MeV and a Pd parent with half-period ~ 3 minutes as shown in Fig. 3. The γ spectrum of this Pd, which includes the 5-sec Ag daughter in equilibrium, shows a very intense peak at 0.56 Mev associated with the 2.4-min decay. (The other γ lines listed in Part A of Table I can be assigned to Ag^{113m} .) A level between 0.55 and 0.56 Mev has been found in Cd¹¹⁴ by several investigators^{8,9,16–18} using Coulomb excitation of Cd¹¹⁴ and neutron capture of Cd^{113} , and it has been found in the decay¹⁹ by K capture of 50-day In¹¹⁴. The similarity of the energy levels suggests the mass number 114 for the 2.4-min Pd, 5-sec Ag chain. No other γ radiation was observed that could be assigned to Pd¹¹⁴.

(i) 2.5-min Ag^{116} .—Attempts to observe the decay properties of Ag¹¹⁷ by direct separation of Ag from the fission products were unsuccessful due to the presence of a 2.5-min Ag activity. (A short-lived Ag in the fission products was observed before,20 but mass assignment

FIG. 3. Decay curve for 5-sec Ag¹¹⁴ in five successive extracts from purified Pd. Open circles are observed counts of β particles with energy greater than 3.5 Mev, the curves being analyzed for a 5-sec component and a longer-lived contamination. The halfperiod is 5 ± 2 seconds as taken from decay curves 1 to 5. Filled squares give the initial 5-sec activity from which a 3 ± 1 minutes half-period (curve 6) for the Pd parent follows, if constant chemical yield is assumed in the silver extractions.

- ¹⁹ L. Grodzins and H. Motz, Phys. Rev. 100, 1236 (1955)
- ²⁰ W. Seelmann-Eggebert, Naturwissenschaften 33, 279 (1946).

and characterization of its radiation were not reported.) The γ spectrum of this directly isolated Ag shows photopeaks at 0.515 and 0.70 Mev which are associated with the 2.5-min decay and a relatively weaker peak at 0.310 Mev which is assigned to Ag^{113m} because of its shorter half-period. Coulomb excitation of Cd¹¹⁶ reveals the presence of a 0.508-Mev level⁸ in this nuclide which is, within the experimental error, identical to the γ line of 0.515 Mev observed for the 2.5-min Ag. Because of the similarity of these energy levels it is proposed to assign the 2.5-min Ag to the mass number 116.

The maximum β energy of the 2.5-min Ag is 5.0 MeV and is definitely greater than that of the 5-sec Ag, as found by a careful comparison of the β spectra of the 2.5-min Ag and the pair 2.4-min Pd, 5-sec Ag. (The quoted uncertainties in Table I arise from the extrapolation of the energy calibration curve.) This difference in maximum β energy gives further evidence that the 2.5-min Ag has a higher mass number than the 2.4-min Pd, 5-sec Ag chain, and that the mass assignments made by comparison of the energies of the decaying nuclides with the energy levels of excited Cd isotopes are correct (if mass numbers greater than 117 are excluded as unlikely).

Duffield and Knight²¹ have reported a 2-min Ag activity formed by fast neutron bombardment of enriched Cd¹¹⁴, which they assign to Ag¹¹⁴ and which could be identical with the 2.5-min Ag fission product. It could also be an isomer of the 5-sec Ag¹¹⁴ not formed in observable quantity in the β decay of 2.4-min Pd¹¹⁴. We have been unable to produce a 2-min Ag with β radiation above 3 Mev by the fast-neutron bombardment of natural Cd or of 10 mg of enriched Cd¹¹⁴.

The 0.170-Mev γ line of 4.8-min Pd^{109m}, which decays²² by isomeric transition to 13.6-hr Pd¹⁰⁹, could not be observed in the γ spectrum of the fission palladium. Its direct formation in fission is unlikely,³ and its formation by β decay of Rh¹⁰⁹ is unlikely²² because of its high spin (11/2-).

APPENDIX. DECAY SCHEMES

The decay data presented in Table II can be represented in reasonable decay schemes presented below for palladium and silver isotopes of mass numbers 113 through 116. The schemes are consistent with the earlier ones presented by Goldhaber and Hill²³ and Dzhelepov and Peker,²⁴ with due account of more recent information cited in the corresponding sections below. Very little information is available on coincidence of various β groups and γ rays, but the spin assignments were chosen with due regard for β -decay

¹⁶ A. L. Recksiedler and B. Hamermesh, Phys. Rev. 96, 109 (1954).

 ¹⁷ T. H. Braid, Phys. Rev. 102, 1109 (1956).
 ¹⁸ H. T. Motz, Phys. Rev. 104, 1353 (1956).

R. B. Duffield and J. D. Knight, Phys. Rev. 75, 1613 (1949).
 U. Schindewolf, Phys. Rev. 109, 1280 (1958).
 M. Goldhaber and R. D. Hill, Revs. Modern Phys. 24, 205 (1978). (1952)

²⁴ B. S. Dzhelepov and L. K. Peker, "Decay Schemes of Radio-active Isotopes," Academy of Science, U.S.S.R., 1957; translated and issued as Atomic Energy of Canada Limited Report AECL-457, 1957 (unpublished).

FIG. 4. Decay schemes for A = 113. Note two alternative possibilities, scheme \overline{A} and scheme B.

theory^{25,26} and $\log ft$ values,^{26,27} and Weisskopf's radiation theory^{26,28,29} as modified empirically by Way et al.,³⁰ together with other literature information cited below.

The decay schemes are given for each isobar, followed by discussions below. Wherever possible, branching is noted by percentage of decay, and log *ft* values are given in italics. A firm decision cannot yet be made for two alternative decay schemes A and B for Pd¹¹³ and Ag¹¹³.

Mass Chain 113

The parity and spin assignments made by Goldhaber and Hill²³ and repeated by Dzhelepov and Peker²⁴ and by Way and co-workers³⁰ seem quite acceptable. They are $\frac{1}{2}$ - for 5.3-hr Ag¹¹³, 11/2 - for 5.1-yr Cd^{113m}, $\frac{1}{2}$ + for ground-state (natural) Cd¹¹³, and 9/2+ for groundstate In^{113} . Two rather different decay schemes A or B, as shown in Fig. 4, will result according to whether $\frac{5}{2}$ + or $\frac{1}{2}$ +, respectively, is assigned to 1.4-min Pd¹¹³. It is unlikely that Pd^{113} could be 11/2- and decay so readily to Ag without prominent γ radiation.

Determination of the β intensities of 1.2-min Ag¹¹³ and 5.3-hr Ag¹¹³ shows that the saturation β activity of the former is 0.1 ± 0.05 of the latter, most of the error coming from the uncertainty in the half-period of the 1.2-min species. One of the isomers is probably $\frac{7}{2}$ + and the other $\frac{1}{2}$ -, in the pattern of the well-known^{23,24,30} Ag isomers at A = 107, 109, and 111. The expected Q_{β} for ground-state Ag¹¹³ is¹² 2.0 Mev.

With the unlikely assumption that the 1.2-min Ag isomer is the $\frac{1}{2}$ - state, its β transition would go directly to ground-state $(\frac{1}{2}+)$ Cd¹¹³ (competing with isomeric transition only if the $\frac{1}{2}$ - level fell above $\frac{7}{2}$ + level), and its rich γ spectrum would be unexplained. The 1.2-min isomer is thus identified as $\frac{7}{2}$ +.

It can be shown that the $\frac{7}{2}$ + level does not lie appreciably below $\frac{1}{2}$ - (5.3-hr Ag¹¹³), because 90% of the β decay of Pd¹¹³ ultimately leads to the 5.3-hr Ag¹¹³. If the 1.2-min level lay more than slightly below the 5.3-hr level (>0.03 Mev), isomeric transition from the 5.3-hr level to the 1.2-min level would occur, giving the easily identifiable γ spectrum of the latter in equilibrium. We conclude that the 5.3-hr level is at most barely above the 1.2-min level, and that it probably is ground state.

For decay scheme A, 1.4-min Pd¹¹³ will be classed $\frac{5}{2}$ + in accord with the Pd ground states^{23,24,30} at A = 103, 105, 107, and 109. The same value³¹ has also been proposed for 22-min Pd¹¹¹. The predicted β -decay energy¹² of Pd¹¹³ is ~ 3.6 Mev corresponding to log ft ~6.1, compatible with decay to 1.2-min Ag¹¹³ $(\frac{7}{2}+)$ without prominent γ radiation.

The chief source of 5.3-hr Ag^{113} in scheme A is isomeric transition. The partial half-period for isomeric transition (90%) of Ag^{113m} is 80 sec, similar¹⁵ to 74 sec for Ag^{111m} (0.087 Mev), 40 sec for Ag^{109m} (0.087 Mev), and 44 sec for Ag^{107m} (0.094 Mev). The transition energy of 1.2-min Ag^{113m} by this scheme would be judged as about 0.10 Mev, about the cutoff of our measurements. It is possible that the γ from isomeric transition, even though weakened greatly by internal conversion, is included in the abundant 0.14-Mev peak we observe.

For decay scheme B, 1.4-min Pd^{113} will be classed as $\frac{1}{2}$, but $\frac{3}{2}$ is not excluded. The spin $\frac{1}{2}$ is re $corded^{23,24,30}$ for the ground state of Cd isotopes A = 111,

²⁵ E. J. Konopinski, Revs. Modern Phys. 15, 209 (1943)

²⁶ R. D. Evans, The Atomic Nucleus (McGraw-Hill Book Company, Inc., New York, 1955). ²⁷ D. R. Wiles, Nucleonics 11, No. 11, 32 (1953).

V. F. Weisskopf, Phys. Rev. 83, 1073 (1951).
 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John Wiley and Sons, Inc., New York, 1952). ³⁰ Way, Kundu, McGinnis, and Van Lieshout, Annual Review

of Nuclear Science (Annual Reviews, Inc., Stanford, 1956), Vol. 6, p. 129.

³¹ C. L. McGinnis, Phys. Rev. 87, 202 (1952).

113, 115, 117, suggested³⁰ for the ground-state Pd¹¹¹, and proposed for 45-sec Pd¹¹⁵ (see below). The $\frac{1}{2}$ + Pd¹¹³ would be expected to undergo β decay principally to $\frac{1}{2}$ - Ag¹¹³ (5.3 hr). It is supposed that the β yield of ~10% of $\frac{7}{2}$ + Ag¹¹³ (1.2 min) comes from β decay of Pd¹¹³ to higher energy levels of Ag¹¹³, followed by γ de-excitation.

Under scheme *B*, isomeric transition in Ag¹¹³ cannot be very prominent and the $\frac{1}{2}$ – level (5.3 hr) would lie in the range <0.03 Mev above the $\frac{7}{2}$ + level to <0.06 Mev below.

The β decay of the two Ag¹¹³ isomers to Cd¹¹³ is independent of choice A or B of decay schemes except for the fraction of decay of the 1.2-min Ag¹¹³m to give 5.1-yr Cd^{113m}. The 5.3-hr Ag¹¹³ is expected to decay almost exclusively to ground state Cd¹¹³. The β -decay energy of 2.2 Mev corresponds to log ft of 7.4 consistent with the assignment. A small branch to the 0.31-Mev level of Cd¹¹³ is also seen (Table II), suggesting that this level has assignment⁸ $\frac{3}{2}$ + rather than $\frac{5}{2}$ +.

Inelastic scattering and excitation studies^{8,9,10} have established excited states in Cd¹¹³ at 0.31 ($\frac{3}{2}$ + or $\frac{5}{2}$ +), 0.56, and 0.70 Mev and the γ cascade 0.39+0.31 Mev. Our observation (Fig. 1) of a high yield of 0.14-Mev γ rays in the decay of 1.2-min Ag¹¹³ suggests also the γ cascade 0.14+0.56 Mev. These data lead to the assignment of spins of $\frac{3}{2}$ +, $\frac{5}{2}$ +, and $\frac{5}{2}$ + for the levels at 0.30, 0.56, and 0.70 Mev.

The use of β -decay theory^{25–27} for branching, with ~ 2.3 Mev β -decay energy for 1.2-min Ag¹¹³, and the use of Weisskopf's theory^{26,28,29} of radiation probabilities as modified empirically by Way *et al.*,³⁰ leads to reasonable agreement between observed and predicted γ -ray yields in the decay of 1.2-min Ag^{113m}. The spectrum of Ag^{113m} was explored only above 0.10 Mev. It exhibits the components of energy 0.14, 0.30, 0.39, 0.56, and 0.70 Mev (Fig. 1 and Table II). Correcting for scintillator efficiency³² gives the relative yields 40:100:30:10:10, respectively. The predicted yields, taking the mean life³⁰ for *E2* transitions as 0.08 times the single-particle life, are 3:100:30:2:2. This is considered satsifactory agreement.³⁰

Fission yield measurements¹ indicate that 0.5% of the 113 chain leads to 5.1-yr Cd^{113m} (11/2-). This occurs most likely in the β decay of Ag^{113m} of high spin through an intermediate state.

Mass Chain 114

Parity and spin in the levels of Cd¹¹⁴ and In¹¹⁴ have previously been assigned.^{23,24,30,33} The proposed decay scheme is shown in Fig. 5. The ground state of Pd¹¹⁴ is undoubtedly 0+. The 0.56-Mev γ ray associated with the decay of 2.4-min Pd¹¹⁴ is ascribed to a γ transition

FIG. 5. Decay scheme for A = 114. The order and energy difference of the two Ag¹¹⁴ isomers is unknown, as indicated by the curved double-ended arrow.

following β decay of 5-sec Ag¹¹⁴. The mass assignment depends partly on the agreement of this energy with that observed^{8-10,16-19,33} for an excited state in Cd¹¹⁴. The ~5-sec Ag¹¹⁴ is very probably 1+, a common ground state^{23,24,30} in odd-odd nuclides in this region. This is supported by the log*ft* value for Pd¹¹⁴ of 4.5 corresponding to the estimated¹² decay energy of 1.7 Mev. Similarly the decay of ~5-sec Ag¹¹⁴ to either the 0+ ground state or the 2+ first-excited state of Cd¹¹⁴ should be allowed transitions. No evidence was seen for appreciable decay via the reported¹⁸ excited states at 1.21 and 1.37 Mev (2+ or 1+) and at 1.31 Mev (0+), but the higher γ rays may well have been missed. Assuming 60% β transition to the ground state, the log *ft* value is 5.2.

The ~2-min Ag¹¹⁴ reported by Duffield and Knight from the reaction Cd¹¹⁴ (n,p) may well be the 5isomer, another well-known level for odd-odd nuclides, and thus it would not be formed appreciably in β decay or in high yield in a low-energy (n,p) reaction. It should show the 0.72-plus 0.56-Mev γ cascade. Little can be said about the separation of levels for the Af¹¹⁴ isomers, and about which is higher. If the high-spin (2-min) level is higher, isomeric transition will compete with β decay for it.

Mass Chain 115

By analogy to Pd¹¹³, the ground-state spin of Pd¹¹⁵ could be assigned either (A) $\frac{5}{2}$ + or (B) $\frac{1}{2}$ + or $\frac{3}{2}$ +. From the following discussions of the spins of Ag and Cd isomers it will become evident that $\frac{5}{2}$ + can be excluded for Pd¹¹⁵, so that $\frac{1}{2}$ + is the best assignment although $\frac{3}{2}$ + is possible. If negative-parity Pd states are considered, $\frac{5}{2}$ - is excluded on the same grounds, but $\frac{3}{2}$ - is permissible. The proposed decay scheme is shown in Fig. 6.

The spins of the two Ag isomers can be expected by analogy^{23,24,30} to be $\frac{7}{2}$ + or $\frac{1}{2}$ -. The 21.1-min Ag¹¹⁵ decays to the extent¹ of 9% to 43-day Cd^{115m} (11/2-)

 ³² M. I. Kalkstein and J. M. Hollander, University of California Radiation Laboratory Report UCRL-2764, 1954 (unpublished).
 ³³ P. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc. Ser. II, 2, 267 (1957).

FIG. 6. Decay scheme for A = 115.

and 91% to 2.2-day Cd¹¹⁵ ($\frac{1}{2}$ +). This branching cannot be explained by a $\frac{1}{2}$ - assignment, and thus $\frac{7}{2}$ + is assigned to 21.1-min Ag¹¹⁵, contrary to several reviews,^{23,24} and $\frac{1}{2}$ - is assigned to 20-sec Ag^{115m}. It has also been established from thermal-neutron fission yields¹ that 28% of the 2.2-day Cd¹¹⁵ arises promptly from β decay of the short-lived Ag^{115m} ($\frac{1}{2}$ -). If the 45-sec Pd¹¹⁵ had spin $\frac{5}{2}$ +, direct decay to the $\frac{7}{2}$ + 21.1min Ag¹¹⁵ would be an allowed transition and no mechanism exists for transmitting 28% of the chain through β decay of ~20-sec Ag^{115m} ($\frac{1}{2}$ -).

The assumption of $\frac{1}{2}$ + or $\frac{3}{2}$ + for 45-sec Pd¹¹⁵ leads to prediction of a first-forbidden transition to the $\frac{1}{2}$ isomer of Ag¹¹⁵, and second-forbidden transition to the $\frac{7}{2}$ + isomer. The log*ft* for 45-sec Pd¹¹⁵ of assumed¹² β -decay energy of 4.5 Mev is 6.0, consistent with the pattern shown.

If the $\frac{1}{2}$ – state of Ag¹¹⁵ should be below the $\frac{7}{2}$ + state, there would be negligible population of the latter state. If the $\frac{1}{2}$ – state should be about 0.1 Mev above the $\frac{7}{2}$ – state, the half-period for isomeric transition would be about 1 minute,²² consistent with the half-period and inferred branching.

It has been shown¹ that β decay of the short-lived Ag isomer leads to 2.2-day Cd¹¹⁵ only. If one uses a β -decay energy of 3.2 Mev, the log*ft* for the β decay of ~20-sec Ag^{115m} is ~5.6, in comparison with 6 to 8 expected ^{26,27} for the direct decay $\frac{1}{2} - \rightarrow \frac{1}{2} + .$

The γ spectrum of 21.1-min Ag¹¹⁵ reveals two transitions of 0.23 and 0.14 Mev (probably in coincidence) with relative intensities of 5:1. We therefore postulate energy levels in Cd¹¹⁵ at 0.23 and 0.37 Mev, both assigned spin $\frac{5}{2}$. The log *ft* for decay of 21.1-min Ag¹¹⁶ $(\frac{7}{2}+)$ to a $\frac{5}{2}+$ state would be expected to be 4 to 6, and to a $\frac{5}{2}$ - state 6 to 8. Assuming 80% decay with 2.9 Mev and 20% decay with 2.76 Mev, log *ft* values of 6.6 and 7.1 are determined, not inconsistent with either choice for parity of the Cd states. However, analogy with known excited states of other odd-A Cd isotopes and shell-model considerations favor the choice $\frac{5}{2}$ +.

A small fraction (9%) of the 21.1-min Ag¹¹⁵ ($\frac{7}{2}$ +) leads to the 11/2- state. Assuming this to be a direct transition of 2.9 Mev, a log *ft* of 7.8 is obtained, reasonable for $\Delta I = 2$, yes.

Mass Chain 116

The proposed decay scheme for mass chain 116 is shown in Fig. 7. The ground state^{23,24,30} of even-even

FIG. 7. Decay scheme for A = 116.

Cd¹¹⁶ is 0+. Its first excited state has been found by Coulomb excitation^{8,16–18} to be 0.510 Mev and assigned 2+, and the second state at 1.217 Mev identified³³ also as 2+. The γ spectrum of 2.5-min Ag¹¹⁶ shows in addition to the 0.515-Mev line another line at 0.70 Mev (relative intensity 0.2), which we assume to be in cascade with the first.

Ignoring possible ground-state decay for lack of evidence, the $\log ft$ for the 5.0-Mev β transition of 2.5-min Ag¹¹⁵ to the 0.51 level in Cd¹¹⁶ is 6.8, which is consistent with ΔI , =0, ±1, yes. Thus the assignments 1–, 2–, or 3– are suggested for the ground state of Ag¹¹⁶. These are all consistent with the relative γ intensities due to branched β decay. The 1– state is a common one^{23,24,30} for odd-odd nuclei in this region.

ACKNOWLEDGMENTS

The authors are grateful to Elizabeth Backofen and F. Marcos for aid in the chemical separations and counting, to E. F. White and the crew of the M.I.T. cyclotron for performing the bombardments, to Dr. R. Bauer, Professor M. Deutsch, Professor J. W. Irvine, Jr., Professor N. S. Wall, and Professor J. W. Winchester for advice and help, and to Dr. Katharine Way, Dr. C. F. McGinnis, Dr. J. D. Knight, and Dr. J. O. Rasmussen for helpful discussions on the decay schemes.