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Electron-Coupled Interaction between Nuclear Spins in HD Molecule~
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Electron-coupled interaction between two nuclear spins Ig and Ig is of the form hbggIg Ig. In this paper,
formulas for calculating biz are derived by using the variational method. By using these formulas, we have
calculated bye of the HD molecule at internuclear distances of 1.3, 1.4, and 1.5 atomic units. The total wave

function was chosen as a linear combination of seven independent functions of 'Z,+ symmetry, representing
the unperturbed state, and several additional functions, to represent the perturbation. The average value
of SAB over the zero-point vibration, (BAB)op, is found to be 37.138 cps. Further, the refinement of a part of
the calculations is undertaken by use of the 11-term James and Coolidge wave function. The final result
is (bAB)Do=35 217 c.ps. The agreement with the observed value of 42.7&0.7 cps is satisfactory, considering

that we have used only a few terms for the additional perturbative wave function and that the result is a
sum of terms which cancel each other appreciably. Contributions from each perturbing Hamiltonian and
also from a set of wave functions with diferent symmetry character were obtained separately. The various
results are presented and discussed.

INTRODUCTION

AMSEY' has shown that the interaction in a mole-
cule between two nuclear spins, IA and IB, of the

form
II5ABIA IB,

can be derived via the magnetic interaction between
the nuclei and the electrons. He estimated the value of
the constant 8~~ for the HD molecule and obtained a
reasonable result. However, as his estimation was based
on second-order perturbation theory, he was obliged to
use some drastic approximations to the summation
over the excited states.

On the other hand, by use of the variational method
we have succeeded in overcoming similar difhculties'
involved in calculating the electric polarizabilities, ' the
magnetic susceptibilities, etc. , of the hydrogen mole-
cule. In this paper, we will show that this method can
also be applied for the calculation of b~~ for the HD
molecule. It must be noted especially that not only the
contributions from each term of the perturbing Hamil-

tonian but also the contributions due to the mixing of
the set of wave functions of each symmetry type can
be obtained separately.

Recently, Stephen' calculated 8» of the HD mole-

cule by using the variational method. The main

differences between his calculations and ours are the
following:

(a) He used a wave function of the form 4'o(&+C'I ),
whereas we have employed the more Aexible form
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Cs+CI, where Cs is the unPerturbed function. Hence
his formulation is somewhat diferent from ours.

(b) As Cs, he used a very simple V.B. or M.O. wave

function, compared with our more exact solution.

(c) He did not discuss the separate contributions
due to the mixing of the wave functions of diGerent

symmetry type.
(d) He did not treat the nuclear magnetic moments

as quantum-mechanical vector operators.

+rAIHAA+yBIHBB+yAyBHAB (1)

Here A and 8 denote the proton and the deuteron in
the HD molecule, respectively; H' is the Hamiltonian
describing the motion of the two electrons in the
Coulomb field of the two nuclei, and

HA —H A+H A+H A

where

Hi" ——(efi'/mci) P; fr;A 'IAXr;A ~;),
HSA 2pfi Q, (3r,A '(S "——r;A)(IA r;A)

(2)

(2.1)

HsA ——(16irpk/3) p, 5(r,A)S,"I&.

Further H~~ is given by

—r, A 'S,"IA), (2.2)

(2 3)

HA 8 H AB+H AB

where

EIIAB (e'fP/mc') Q r 4 'r——B '

X (IA X r;A) (IBXr;B), (3.&)

FORMULAS FOR CALCULATING Gggg

Adopting the notation given in Ramsey's paper, '
the Hamiltonian of thy HD molecule in the adiabatic
approximation can be expressed as follows:

H =H'+yAHA+yBHB
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HA" = &—'{3RAB (IA'R.AB) (IBXRAB)

and
—&Aa 'IA Ia), (3.2)

H""= (e'A, '/2mc') P (r;A 'IAX r;A)'

where the g, (i =1, 2, ) are the linearly independent
functions of the space coordinates of the two electrons
with Z,+ symmetry and O~p is the spin eigenfunction
corresponding to the singlet. Secondly, we assume that
on account of certain terms, such as the terms repre-
senting the interaction between the external magnetic
field and the nuclear spins, the system of the two
nuclei is quantized and has the eigenfunction
(i=0, 1, 2, . ).Then our eigenfunction may be written
as follows:

Ha and Haa can be given by (2) and (4), respec-
tively, mltatis mltandis,

Now we intend to solve the eigenvalue problem for
the Hamiltonian (1) by the Ritz variational method,
considering those terms involving y~ and p~ small
compared to H'. The formulation can be performed
quite analogously to those previously given. ' 4

Since, however, the perturbing Hamiltonian (2)
depends on the electron spin as well as on the electronic
spatial coordinates, the wave functions corresponding
to the triplet states, which diGer in spin from the
'Z,+ ground state and hence did not have to be taken
into account in the previous cases, ' 4 must now also
be taken into account along with the singlet states.
It must be mentioned, moreover, that I~ and I~ are
the quantum-mechanical vector operators rather than
the ordinary c numbers, and so in order to apply the
variational principle to the present problem unam-
biguously, it is best to introduce a certain representa-
tion for these operators. With these remarks in mind,
we have treated the problem in the following way:

In the first place, the eigenfunction for H' is sup-
posed to be

c p
——P, c,'0, 0p,

and the equations determining the coeKcients az
and bE. .

where

Qx (Hicks' EOS—»cx )ax ——P—, Hx, AC,', (8.1)

Zsc (H»chic Eo&—sc»c ) b»c = —Q, &&a, c,o, (8.2)

Ep ——P;, ,' ccoc,"H;, , ',

H"=Q» I~»H"», (%=A or 8), (10)

where I~» is the $ component of the spin of the nucleus
E, H~& does not contain the nuclear spin operators,
and Z» means the sum over $, p, and f Furt. her, by
putting

«=2» (xil IA»l xp)«»,

bx=Z» (XilIa»l Xo)bk»,

we can reduce Eqs. (8.1) and (8.2) as follows:

(11.2)

p„(H ' EoS )cJ»= ——p;Hk'A»c", (121)

(Hkk '—EOSkk ) bk»= —p; Hk; »c,', (12.2)

where ( here is used to represent $, g, or f. Since the
nuclear spins are eliminated entirely from Eq. (12), we
can write HI, ;"&, aI, ~, , instead of H~; &, a~g,
respectively. We have made use of this fact in advance
in Eq. (11).

The expectation value of the Hamiltonian (1) with
respect to the wave function (6) becomes

and H~;~, H~;, H~~ ', H;,",and S~~. are the matrix
elements of H, H, H', and unity with respect to
the appropriate functions E(qkOkxi), E'(pok Ok xi ),
i(0,0pxp), and i'(8, Opxo).

Now we introduce the coordinate axes $, q, and l
fixed in the framework of the molecule. The origin of
these axes is the midpoint of the two nuclei. The f axis
is taken to be parallel to the direction from 3 to B.
Then we can write

2= Qi C~8iOoxo+pA Qk, LGklpokOkxl,

+ma Zk. i bk. »»ok~™kXi (6)

Here, the q k and Ok are functions of the space and spin
coordinates of the two electrons, respectively. It is
sufhcient to consider as p&0" I, only those functions which
have different symmetry character (with respect to the
symmetry operations of the molecule) from those of
0;Op, that is, 'Z,+ symmetry. c;, a&, &, and b&, & are the
coefficients to be determined by the variational prin-
ciple. For simplicity, the set of letters k and t is ab-
breviated as E in the following.

Following similar procedures to those developed in
references 3 and 4, we can derive the relation

ci=c, +'rA C, +'ra cC, +'rA faC, + ~ ~"

+yA'[p, ,' c,pc H;, ;""+Q»,, (xo l IA»IA, l
xo)4A»"]

+pa'[P. ..' CPC,'PH, „'"+Q»,„(xolIa»Ia, lx )& oaja

+'rA'ra[+;, ; c, c, H;, ;

+P», „(xolIA»Ia, l
xo)~Aa»"]+, (13)

where, for example,

bAA»&=+, , k c,'H,
, k"4k„, (14.1)

4a»"=2', k CPH,; k"»bk, +Q;, k c"H,, k "~k» (14 2)

Since H can be expressed as H =Z», „IA»IagH
we can write the fourth term of (13) as (xplEAalxp),
where

EAB GAIA »kA B ' IB+IbABiIA I'a ~
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TABLE I. Orbital part of the additional wave function pic.'

Symmetry

ly-

3g +

—exP f —b(XI+X&)j, (5 =0.75)
2m.

(X~—Xg)L{XP—1) (1—pP) (Xgg —1) {1—egg)]& sin(g g
—

g g)

(q& —~2) [P &' —1) (1 —
~& ) Pig —1) (1—~g ) ]& sin (g &

—
g g)

(4—~g); (~P—i g')

(Pl P2) j (~llll ~202) j (~1+2 Xggl)

1, 3Q p, L(4'—1)(1—pP)]& '""' +p, ((Agg —1) (1—pP)]'
COSTI COSy2

p~[P 9—1) (1—pP)]& '"+'
an't, LP,"—1) (1—egg)]&

COS y1 COS q&2

L{ ' —1)(1—i ')]' ""~' +L{ '—1)(1—~')]'
COSTI Cosp2

(XP—1) (1—@12)
'" ' —(P P—1) (1—P22)

COS2 P1 COS2 pg

i i(~i' —1)(1—i ~')
"" ' —i g(~g' —1) (1—i g')
COS2 P1 COS2 p2

~29 i' —1)(1—i P) —i i(~g' —1) (1—~g')
sln2 p1 sin2 p2
COS2P1 COS2p2

a X, p, and q are elliptic coordinates.
b Where ~ signs occur, + corresponds to singlet, —to triplet.
e The formulas containing the curly brackets should be understood as representing the two kinds of functions, namely, the one wit» t»e sine and the

other with the cosine throughout.

In this way we can derive the same formulas as given
by Ramsey. ' The expressions for 5» can be found
easily as follows:

8~a= (y~ya/3h) Qs fQ, , p c,'c,"H, , " &&+hg~&&). (16)

Since the contribution of H4 to 5~~ vanishes, we must
take into account only H&~~ in the first term of (16).

CALCULATIONS AND RESULTS

As the unperturbed wave function Co, we have
adopted the 7-term function obtained by the present
author' '7 for the values of the internuclear distance of
1.3, 1.4, and 1.5 atomic units (au). As to the additional
wave functions sg&O~&, we can see from the symmetry
properties of the perturbing Hamiltonian that we must
take into account only the functions with the sym-
metry character of 'Z,—,'Z„—,'0„'ll„, 'Z,+, 'Z„—,'ll„
'0„, 'd„and '6„.More precisely, the singlet functions
among them are connected by the presence of the per-
turbing Hamiltonian H~" and H~, and the triplet
functions are connected by the presence of H2" and
H2 Z,+ and Z„+ arise also from H3 and H3

Since it is our aim to survey the usefulness of the
variational method in the calculation of 8~~ and to
discuss the features of the different kinds of contribu-
tions to it by making a preliminary calculation rather
than to calculate the most accurate value of 8~~, we

6 E. Ishiguro, J. Phys. Soc. Japan 3, 129 (1948).' E. Ishiguro, J. Phys. Soc. Japan 3, 133 (1948).

are content to employ only a small number of functions
for each symmetry state. The functions adopted are
given in Table I, and were chosen mainly because of
the computational requirements of simplicity and
convenience.

The matrix elements HI„", H~, ~, can be calcu-
lated quite analogously to the way described in the
previous papers. ' "' Then a~~, bf, ~ can be obtained

by solving Eq. (12). By inserting these values in Eqs.
(14.2) and (16), we can find the numerical values of 3~~.
Contributions to 5~~, due to the set of additional func-
tions of each symmetry character in the presence of a
diGerent perturbing Hamiltonian, can be calculated
separately and are denoted as 3]A ii( +g )32AB( Zg ), . .
The results are given in Table II.

From Table II, we can see that, as pointed out by
Ramsey, ' the value of 8» can be found mainly from

the contributions due to H& and H~ . For-
tunately, moreover, 8»& can be calculated much more
easily than the other contributions. For these reasons,
we have undertaken to improve the calculation of

Rsvp& by adopting, as an unperturbed wave function C g,

the familiar 11-term James and Coolidge function
(8=0.75).' As the additional perturbative wave func-

tions, we have, however, again used the same ones as
above. The results are given in Table III.

Finally, we have calculated (5gii)M, the average value

'H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825
(1933}.
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TABLE II. Contribution to SQQ (in units of cps) from each set of additional wave functions with different symmetry
and from the different terms of the perturbing Hamiltonian.

Perturbing
Hamiltonian

Symmetry
of

additional
function

Notation
for each

contribution 1.3

bAB

RAa(au)
1.4 1.5 (baa)oob

Stephen
V.B. M.O. Ramsey"

H3A+H3~

H2A+H, 2B

3g +
3g +
Sum

Kg
3g +

3II„
3Q
3Q

Sum

~a~a ('~g+)
~3AB(&,.+)
~3AB

~ AB('~,+}
~2AB (3&u+)

~»B(~,)
~,»( rr„)
~ AB('~,)
~.AB(».)
~2AB

—79.065
+113.429
+34.364

—0.443
+0.436—0.106
+0.383—0.358
+0.302
+0.213

—64.433
+102.780
+38,347

—0.335
+0.377—0.074
+0.273—0.248
+0.222
+0,216

—52.611
+92.917
+40.306

—0.254
+0.327—0.052
+0.196—0.172
+0.165
+0.208

—63.165
+100.002
+36.837

—0.335
+0.369—0.07/
+0.279—0.259
+0.225
+0.202

+40

H2+Hg

HIA+HIB

H AB

HI+ H2+H3

Sum

lg-
Ig

IO
Sum

Ig +

Sum

Sum
Obs.

~2AB+~3AB

~IAB('~,-)
~ AB('~.-)
S,AB( rr, )
~ »(In.)
b~l AB

a~IAB

~IAB

~AB

+34.577

—0.0007
+0.0005—0.0289
+0.2973
+0.2682

—0.0019
+0.0012—0.0497
+0.5212
+0.4709

—0.0013
+0.0008—0.0375
+0.391/
+0.3538

—0.0012
+0.0008—0.0381
+0.3942
+0.3557 +0.47

+1.61

+0.41

—0.2859 —0.2908 —0.2544 +1.05—0.2508

+0.220 +1.46 +2.08

+49.14 +49.57
42.7~0.7f

+0.070 —0.023 +0.099

+34.797 +38.632 +40.492 +37.138

+38.363 ~+40.314 +37.039 +47.68 +47.49

&0.5

0 1e

a For the unperturbed wave function, see reference 6. For the additional wave function, see Table I.
b Averaged values over the zero-point vibration.
e See reference 5. V.B. (valence bond) and M.O. (molecular orbital) indicate the wave function employed.
d See reference 2.
e Evaluated by using a simple HL (Heitler-London) wave function.
& See reference 9,

of 8Ag over the zeroth vibrational state of the HD
molecule, following the procedures given in reference 3.
The results are given in Tables II and III. If we use
for (bs~rr)oo the value given in Table III, and for the
remaining contribution, (8t@s)oo+(5s~a)oo, the value
obtained from Table II: (+0.301 cps), then (8~~)oo
becomes 35.217 cps, whereas the observed value is
42.7&0.7 cps. ' For comparison, we have given in
Table II the results of Stephen' and Ramsey. '

DISCUSSIONS

As for the second-order terms, ~8A~, due to the set of
additional wave functions of each symmetry property,
we can prove the following qualitative properties (the
proofs are given in the Appendix):

(A) Contributions from a set of functions with even
symmetry, b8&n(even), are negative, whereas those
from a set of functions with odd symmetry, b8»(odd),
are positive.

(B) At infinite internuclear distances, these two
contributions are of equal magnitude and so their
sum vanishes.

(C) The contribution from a set of functions with a
given symmetry property increases numerically as the
number of contributing functions increases, if the same
unperturbed wave function is employed. The results

given in Tables II and III are in conformity with (A).
If the James and Coolidge 11-term wave function can be
taken as the exact wave function, we can conclude from

(C) that the exact values of 8oAQ('Z, +) for each R~n are
smaller than the corresponding values given in Table
III, and the exact values of 5o~rr(oZ +) for each R~~ are
larger than those given in Table III. Thus we can see
that the results for bozo('Z, +) and 83++('Z„+) are im-

proved by using the James and Coolidge 11-term wave
function instead of the unperturbed wave function
given in reference 6. This fact is, however, not a logical
consequence of the formalism, since, as pointed out by
Rahman ' in the variational calculation of the polariz-
ability, we cannot claim that the results are always
improved by using a better unperturbed wave function.
The fact that the results for the total sum 6A~ given in
Table II are better than those in Table III may be due

to a fortuitous cancellation of the errors in h, gn(ohio+)
and bogs(oZ„+).

Now, considering that similar calculations of the
various other quantities' 4 can yield values not so
difkrent from their respective observed values even
when very simple forms are assumed for the additional
wave function, it seems, then, not so surprising to
expect a similar situation to hold in the present case.

o T. F. Qimett, Phys. Rev. 91, 476(A) (1933). "A. Rahman, Physica 19, 145 and 377 (1953).
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TABLE III. Spies (in units of cps) calculated by using the James-Coolidge 11-term wave function (8=0.'75) together
with the ones given in Table I.

Perturbing
Hamiltonian

Symmetry
of

additional
function

Notation
for each

contribution 1.2 1.3

53AB

RAB (au)
(~SAB)00

II ~+II B 3+ +
+

Sum

~ »(~,+)
&szs('&~+)
~3AB

—101.600
+125.471
+23.871

—82.702
+113.726
+31.024

—67.666
+103.443
+35.777

—55.609
+94.205
+38.596

—66.058
+100.974
+34.916

a See reference 8.
b Averaged values over the zero-point vibration.

Then we can see from Tables II and III the following
points:

(a) As expected, the calculated values of 5~n agree
fairly well with the observed values.

(b) As a whole, the contributions from the even states
are of the same order of magnitude as those from the
corresponding odd states and so these contributions
cancel each other appreciably. The tendency stated in
(8), that is,

I
b5~ii(even)

I
approaches the correspond-

ing &5&z(odd), as R,& increases, however, cannot always
be seen in the neighborhood of the equilibrium inter-
nuclear distance. This tendency may be seen in the
region of somewhat larger internuclear distances.

(c) As stated in the previous section, most of the
contribution to b~~ comes from 53~~. This fact is in
agreement with the results of Ramsey's estimate. The
situation might he the same in Stephen's calculation,
though only the sum of 52~~ and 63~~ is given in his
paper.

(d) Ramsey estimated that 5sgn=3 cps, but this
value seems too large if the values calculated here
give the right order of magnitude.

(e) The values of,5i~ii are found here to be negative.
This fact means that the contribution to the integral
(ca

I Z~ ((~~(~~+~~~n~~+iwi~~)~~~ 'r~~ 'I co) «om
the charge density of the electrons within the sphere of
diameter AB is numerically larger than that from the re-
maining charge density. Ramsey obtained, by using a
simple HL wave function, also a negative value for,51~~,
whereas Stephen obtained a positive one. The fact that
Ramsey obtained a somewhat larger value than we do
is reasonable, since the charge density between the
two nuclei calculated by using the wave function em-
ployed here may be larger than that calculated by
using the simple HL wave function. The fact that
81~~ decreases as E~~ increases is also reasonable,

considering that the volume of the above sphere in-
creases with E~~. Further, from the form of the above
integrals together with the results given in Table II,
we can expect that 51gg decreases with Egj3 from a
positive value at small values of E~~ to a negative value
and reaches a minimum at a somewhat larger value
than the equilibrium distance, and finally approaches
zero as R~~—+~.

(f) As for the values of s5i~s, the contribution due to
the second-order effect of II1, our calculated value is

of the same order of magnitude as the one obtained by
Stephen. These values fall within the region suggested
by Ramsey.

(g) All the contributions from the second-order
e6ect decrease numerically as E» increases.

(h) In order to obtain the value of 5~s within an
accuracy of a few percent, we must take into account
the effect of averaging over the zero-point vibration.

Further, we note here that no appreciable correlation
can be found between the contributions from each
symmetry state and the lowest term values belonging
to the corresponding symmetry states. This is similar
to what is found in other cases. ' For example, the
polarizabilities of the 02 molecule" could not be ex-
plained by taking into account a few low-lying states.

The final result for (5~~)M obtained in the previous
section is 35.217 cps as compared to the observed value
of 42.7&0.7 cps, ' and the agreement is satisfactory,
considering that we took into account only a small
number of additional perturbative functions and that
the contributions from the even states and the odd
states cancel appreciably.
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APPENDIX

I. Proof of (A)

In the erst place, we note that

Hn&(Pi, Ps) =H"& (IPi,IPs),

($ represents $, rl, or f), (A.1)

where P; (i =1, 2) means the position of the electron i
and I means the inversion operator with respect to the
midpoint of the two nuclei. Then we can find the follow-

&' Kotani, Mizuno, Kayama, and Ishiguro, J. Phys. Soc.
Japan 12, 707 (1957).
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ing relations:

IIk;"&={+}HkP(, (g represents eo, )), or t). (A.2)

Here and in what follows, we assume that we choose a
plus sign in {&}when pkOk is of even symmetry and a
minus sign when this is of odd symmetry. Hence, from
(12), we have

uk~= {&}bk~, ($ represents $, )), or g). (A.3)

Then, from Eq. (14), we can see that

b-«={(~.
I
II"ICs.)+&C.III"~IC~,.)}, (A 4 1)

BQQ«= 2{(C'o I
H"~ IC'g )—&Col II ~ IC'k )}, (A 4 2)

where

the atomic orbitals of the ground state of one atom
p~o (N=A or B) and that of the excited state of the
other atom P~" (N'=B or A). Further, we can con-
struct from these orbitals the total wave function with
even symmetry, C„,„as well as that with odd sym-
metry, C„,. Since the total energy E„ is the same for
these two wave functions at EAB=~, whereas the
numerator of (A.7) is numerically equal and is of the
opposite sign, as stated in (A), we can conclude that
the sum of contributions from these two states vanishes
as RAB~00.

The situation can be explained also in our formalism.
For this purpose, we use the aforementioned C„,, and
C, , as ykOk in Eq. (6) and denote their coefficients as
c„... p, c„,, g, b ...g, b, , g, Then we can see from
Eq. (12) the relations like

CO, e Zk(even) Skfgkeky

C $, o= Pk(odd) +kf'Pkek~

(A.5.1)

(A.S.2)
&~...III"&l~.eo) =&~. III"'10.8 &,

a „k——g„... b (8.1.1)
and pk(, ,„) and pk(, dd) mean the summation over the
functional space with even symmetry and that with
odd symmetry, respectively. Further, from Eqs. (12.1)
and (12.2), taking into consideration the fact that Ep
is the eigenvalue of the lowest energy level, we can
see that

&C o III"'IC(&= —
&C'~ I

IIo—&p I C'() &0, (A 6)

where C~ stands for C~, , and C~. This leads directly
to the statement (A). This situation can be explained
also on the basis of perturbation theory. According to
this theory, we can see that

PAPB
$, n

jv„—jvo

X {&C'oI
II"t

I
C „)(C„I

B~t'
I C,)+c.c.}. (A.7)

Then we can prove (A) straightforwardly, since E„)Ep
and the quantities in the brackets are positive or nega-
tive if C „is of an even symmetry or of an odd symmetry.

II. Proof of (B)

In the limit of inhnite nuclear separation, C„ in
(A.7) may be composed to a good approximation from

&~, .III ~I~.H.&=-(~-..III ~lt'O"),
't

b„, t= —b„, p, b ($ represents $, )), or f) (8.1..2)

Hence we can conclude that 5g~«vanishes
I

see Eq.
(A.4)7. Further, from (6) and (8.1), it is shown that
Ps" (I/O) can be eliminated from the second sum of
(6) and p~o (e/0) can be eliminated from the third
sum of (6). This fact is as it should be in the limit as
RAB—+~, since the nuclear moment of one nucleus
may not afFect the charge density in the neighborhood
of the other nucleus.

III. Proof of (C)

The system of equations (12.1) and (12.2), de-
termining the coeKcients uI, ~ is found to be nothing
more than the condition to minimize the parts of the
energy expression with the factors p~'&xol I~op

I xo) and
y&'(xp

I
I&k'

I xp&, respectively. Then &C p I
II"&

I
C ~, ,) and

&CoIH"klCt, p) I
see Eq. (A.4)7 must decrease as we em-

ploy a more flexible additional wave function, under the
condition of assuming the same Co. Hence, from Eq.
(A.4.2), we can conclude (C). We mention, further,
that up~, for example, is determined by the form of the
operators H"( only, besides Cp and the &pkO~k. A similar
situation can be seen easily in the perturbation theory.


