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Microwave Zeeman Effect and Theory of Complex Spectra
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A treatment in spherical tensors of the microwave Zeeman interaction of Abragam, Kambe, and Van
Vleck is given. A calculation of g factors in atomic oxygen is then made and the numerical values compared
with those worked out previously. New methods and results are developed for finding matrix elements of
one-particle and two-particle operators for wave functions which contain more than one group of equivalent
particles. The generality of these results is such that they may be used in the various coupling schemes of
atomic and nuclear shell models.

1. INTRODUCTION

HE development of the microwave Zeeman Hamil-
tonian in spherical tensors, described below in

Secs. 2—4, leads to expressions for the pertinent opera-
tors which are easy to handle for particular systems
and are at the same time free of the quantum numbers
of such systems. Procedures are based upon the stand-
ard methods of Racah' and others. ' The reader will
recall that other interaction operators have been de-
veloped along similar lines during recent years, ' with
an expected advantage of ease of computation as com-
pared with the methods to be found, for example, in the
text of Condon and Shortley. '

In atomic systems, very little attention has been
directed to interaction energies involving closed shells
except for some Coulomb e6ects, ' even though a level-
dependent variation is to be found in the angular ele-
ments of the spin-other-orbit operator. Also such en-
ergies must be included in the two-particle Zeeman
eBects. ' Basic approaches in this type of calculation
have recently been set down by Elliott, Flowers, and
Yanagawa, ' among others, for the broad problem of
elements diagonal in configuration and with wave

' G. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943), denoted
R.II and RIII, respectively.

'Among others, the pa ers of J. P. Elliott, Proc. Roy. Soc.
(London) A218, 345 (1953; Biedenharn, Blatt, and Rose, Revs.
Modern Phys. 24, 249 (1952); Arima, Horie, and Tanabe, Progr.
Theoret. Phys. Japan 11, 143 (1954), are useful and give further
references.

3 Five such studies, of spin-dependent interactions, are those of
J. Hope and L. W. Longdon, Phys. Rev. 102, 1124 (1956);
H. Horie, Progr. Theoret. Phys. Japan 10, 296 (1953); I. Talmi,
Phys. Rev. 89, 1065 (1953).F. R. Innes, Phys. Rev. 91, 31 (1953);
R. K. Trees, Phys. Rev. 92, 308 (1953).

4E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1951), denoted
TAS.

5 TAS 9 . For other effects involving closed shells, see G. Araki,
Proc. Phys. -Math. Soc. Japan 19, 592 (1937),also T. Yamanouchi
and H. Boric, J. Phys. Soc. Japan 7, 52 (1952).

'A. Abragam and J.H. Van Vleck, Phys. Rev. 92, 1448 (1953);
K. Kambe and J. H. Van Vleck, Phys. Rev. 96, 66 (l.954), denoted
AVV and XVV, respectively. In this work, intergroup effects are
of the same order of magnitude as intragroup effects (see Table II
of IVV).

V Reference 2, above; J. P. Elliott and B. H. Flowers, Proc.
Roy. Soc. (London) A229, 536 (1955); S. Yanagawa, J. Phys.
Soc. Japan 8, 302 (1953).

2. MICROWAVE ZEEMAN HAMILTONIAN

The derivation of the operator is discussed in AVV
and KVV. ' Five parts are distinguished, as follows:

bZr, s
————,'n' P,(H (1~+2s~)T~+Z[V, (r,

—') XA,$ s,),
bZs, 4

——+n' Q,„LV;(r;;—') XA,) (s;+2s,), (1)

bZs =—n'P;&, Lr;; '(A; p,)+r;,—'(r, ,"A;)(r,,"p;)].

This will now be considered in the form 5Z=H-bp.
The field, 8, is recoupled to the left side of each ex-

pression after replacing the potential A, by the value

stHXr, . The moments are

by~ s ————,'n' P,{(1,+2s,)T,——',ZLs, XV;(r;—')]Xr,),
bye, e= —sn'P; t-(s,+2s) XV';(r,;—')]Xr,, (2)

bus = sn'2;, ['e '(r'—X p~)+r' '(r'Xr')(r, ,"p,)j.

The orbital parts of these moments will be expressed in

terms of operator forms C"&, (C&"&1)&"' and radial

operators in r; and r; in this and in the following two

sections. A standard concise notation for the generalized

' E. B. Rawson and R. Beringer, Phys. Rev. 88, 677 (1952).

functions comprising a number of groups of equivalent
particles. Further developments are given in the Ap-
pendix to this paper. It has been found possible to
reduce a number of these expressions to compact forms
Lsee Eqs. (A2), (A6), and (A7)j, without specifying a
particular coupling scheme.

The application to the Zeeman effect is made in Sec.
5 and to the ground term of oxygen in Sec. 6. Minor
corrections to the work of KVV show an improvement
in theoretical results over against the available experi-
mental results. ' lt is hoped that the prospect of rela-

tively simple procedures held forth by the formulas

. derived below will lead to new laboratory determina-

tions of Zeeman splitting. Hartree s atomic units,
described in TAS, Appendix, ' have been used through-

out this work.
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product of two or more spherical tensors is used through-
out. Composite one-particle and two-particle operators
are initially distinguished through the use of parentheses
and curly brackets, respectively [see also Innes, refer-
ence 3, Eqs. (2) and (11)j.

The one-particle interactions require little treat-
ment. The best value of the kinetic energy, T, is found
in AVV and KVV. The orbital operator in A@2 is

—r,—i($,X C,o)) X C,o)=+2r,—((($C(i)),.(i)C,.(())(&)

=+-'r —'[2s~+ (42X+5)(sC(") ")] (3)

Thus the one-particle moment operators are

512), 2= —2(2' p, [(1,+2s,) T;
Z"' '( '+(v )( C"')'"')] (4)

3. TWO-PARTICLE SPIN-DEPENDENT
INTERACTIONS

After recoupling the expression given in (2), it is
found that

[k (2k —1)(2k+1)gl
r .II(:+1

r.a
X(C;&" "C,&"))&')+ [(0+1)(2k+1)(2k+3) l&

r .0+2

X(C 2+& C'(& ) o (6)

R&bRjy
dri Eiari~Ei. drj—

J() J„, r .I(:+1

and that of r,~ri—~ ' is

(7a)

A number of conventions which relate to radial
operators have been introduced in this and like ex-
pressions to follow. In the expansion of the reciprocal
distance in Legendre polynomials, the first (second)
mode, r, ~&r;(r; &~ r;), .leads to the first (second) term
of this equation. It is evidently clear, in each equation
involving such an expansion [as in (8), (11), and (12)
of this paper], which mode is in use. The explicit
expression of the pertinent radial integrals proceeds in
a standard way. ' As an example, the radial element of
r,"r, 2 ' is the integral (abtrPr, 2 '~cd), or

()p2, 4=+2(2' p, &,((s;+2s,)[—(2/43)(r;V, (r ~-')) (())

-( 'V'( ';-'))"'+(5/3)-:(r;V ('-')) ']) ' (5) dr; dr; R;2r; R,g.
J r .2+1

(7b)

The gradient which occurs here relates to the com-
mutator of the linear momentum [see (9)] and the
operand 1/r;;,

%e have generally avoided the writing of radial opera-
tors in terms of r& and r& unless real conciseness is
obtained by this means (compare KVV, Secs. II and
III).

The final result for the two-particle spin-dependent
snteractsons ss

r.k

()t22, 4=+(22 Q ((s~+2s;) Q (—)'(2k+1)~x —
~

k —(k+1) ~(C""'C'"')"'
3 0 r'+' r "+'~

[k(k+1)Jl ~ r;" rr2 q [k(k+1)]l )t' 2k+3 l r 2 2k —1 '* r;" )
((C &")C (») &') —

)

— I(C;")C'"')"'
2%2~3 (r;2+) r 2+') 6&2 ( 2k 1rq "+' 2k+3 —rp+')

[k(k —1)(2k—3)]' rP' [(k+1)(k+2)(2k+5))& r, "
( C.(k—2) C.(2)) (2) (C.(2+2)C.(2)}(2) }(1) (8)

2VZ(2k —1)*' r;"+' 2V3 (2k+3) & r 2+'

4. TWO-PARTICLE SPIN-INDEPENDENT INTERACTION

»»t the linear momentum, found in (1), (2), and (6), is given the following form:

y =2V2r
—'(C &')])&')—28,C('). (9)

The f) rst part of ()p2 then leads to the 6rst two parts of (10), below. The vector operator in the second part of l)y2

«n be altered, by replacing riX rj by —rij)& rj, and recoupled to yield the last four parts. Thus,

2ri ri 1
(C,.Q)(C(&)]) .(i)}(&)+v2 ()„,(C,(i) C.o)) (i)— ].

rij 3r &j

'As in TAS 86.

Q5 1 +5 1
——((r..r. .) ( )].)( ) ————((r,. r. }()(C( )]) ( ))( )+

243r 2 W2 r;

5
((r; r; ) "'C "')")8~ (10).

. .3rij
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After expansion of r,; and recoupling, the useful function of r;, is the (symmetrical) form,

{rgr;;}~') 1 (k+1)(2k+1) ' 2&2 k ~ t' r,k r, k
p

( )k ,(tr) .(&) (2)

r„' +5 k 2k+3 K3 2k —1 &r,'+' r k+')

- ( r .k r,k+2 ) r, k r,k+2
)+[(k+2)(2k+5)g'

I
— I{C k)C k+"}")+I — I{C,&k+" C &k)}")

Er .k+1 r 'k+3 () .k+) r,k+83

The moment bp5 expressed in spherical tensors follows after some recouplings:

Q.
' ( r k r k+') k(k+3) '

~ok=+ Z (—)"
I

+ [(2k+1)l{C,.(k) (C(k) ]).(k)}o)
2v3 k (r k+ p;k+3). 2k+3,

2k+1 &

—(2k+5) '{C;&k+') (C~k+')I), &"+'&}~')]—2 — [(2k+1)&{C;&k& (C &"I),.'k+') }"&

2k+3.

(k+1)(2k+5) & ( r k r,k+2)

{C &k+')(C&k)]) ~k+')}~')j'
I

k (k+3)
k+2 I ) r;k+' r,'+') 2k+3

X ([k(k+1)(2k+1)]'*{C,'"'C, &k) }"'—[(0+2)(0+3)(2k+5) $*'{C„"+'&C;&"+'&}~") . (12)

The tensor form (C~' ')1)~'&, which occurs here, is simply related to (C&'+')1) &'):

(C ~'+') 1)~'&
= + [t (2t—1)$&[(t+1)(2t+3))—

&(C~'—'&I) ~'&.

[The form (C")1)"& must vanish by the parity rule. j
A relation involving quantum numbers which is useful in dealing with some of these expressions is

(C&k)1)~k& =-,'[t(ty 1)—t'(t'+ 1)—k(k+ 1))[k(k+ i))-kC &».

The general relation is

(tll(T'k" &'k') "'lit') = (—)"'+" "(2k+1)k p$ (tll2'k'Ilt") (t"II 1"k"lit')w(k)tk2t'i t"k).

We append here the two integrals which contain Br, , vis. ,

(13)

(15)

(16a)

(16b)

Direct elements of this type can be brought to the form of those in (7) by means of an integration by parts.

S. MATRIX ELEMENTS AND THE g FACTOR

Submatrix elements in SL coupling which are inde-
pendent of J, such as those given in the appendix, are
related to the entire matrix element as follows':

(SLJM
I Tq&

"k")
I
S'L'J'M'&= (—)~+~

X V(JJ" —MM'Q)
S L J'

X[(2J+1)(2 +1)(2J'+1)]' S' L' J'
k

X (SLII T'""'IIS'L'& (17)

For elements of the Zeeman interactions, ™is equal to
unity and Q is zero. After the restriction is made that

"The form given by the Eckart-Wigner theorem is found in
RII, Eq. {29).

only diagonal elements are appropriate, one writes

(SLJMlgo'"k" ISLJM&=&3M 'SL J
J(J+1) ~ k 1

X(SLII„~ »IISL&=-;~gM, (is)

in terms of the Bohr magneton (k2a in atomic units)
and the Lande g factor. It may be noted in passing
that this expression vanishes if K+k is an even number.
Thus the quantity in (8) which is of rank one in the
orbital part makes no contribution.

The general methods for finding matrix elements
which are diagonal in configuration are discussed in the
Appendix. The two-particle interactions in a configura-
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tion involving more than one group of equivalent
particles will involve intergroup and intra, group ele-
ments as there described.

In the work to follow, wide use will be made of unit
double tensors [see (A1) J which are defined and written
in a different way than are those of RII (58), (102),
namely, in setting (sl[[U&"o)I[sl) equal to unity. Other-
wise stated, this is, for irreducible tensor operators
which are properly normalized, the expression

g, s, & ) T,&»=(slls& )Ils)(lllr&»lll)U&». (19)

A more general type of unit tensor, for elements not
diagonal in /, need not be introduced for the present.
The fact that we here exclude pairs of wave functions
which differ in configuration means that direct elements
may be expressed in terms of elements of one-particle
operators within a single group, as in (A6b), below. If
exchange elements are expanded in direct elements,
through the use of (A4), then the unit tensors as given
above again suSce for the cases here considered.

6. APPLICATION TO OXYGEN

As a check and an example of calculations, the fac-
tors Agi and Ago for normal oxygen (as given in. AVV
and KVV) have been reworked. If we define 1)pi"") to
be one of the operators occurring in (4), (8), or (12)
and bg&"~) to be the contribution of that operator to the

g factor (~ and k are spin and orbital ranks, respec-
tively), then

1
n8gi&"") =3v2 1 1 1

k

X (1$'2so2P4 'P[[6p, '"o) [[1s'2s'2P4 oP), (20a)

'1 1 2
n8goi"") = (+10) 1 1 2

gK k 1

X (1s'2s 2p' 'PI[5&i&"")I[1$'2$'2P 'P). (20b)

In fact, the products of the numerical and the 9-j co-
efficient take on two values only, for such & and k as
allow a nonzero result. In Bgi this value is (3%2) '
throughout. In bg2, the same value obtains except for
(a,k) = (1,2) in which case it is —(1542) '. Contribu-
tions to Dg2 —2 g~ all originate, then, in the last operator
of 6po, (4), and in the last three operators of 6po, 4, (8).

(a) Contribution of Sts,

The submatrix elements of the operator bpi of (4)
involve only the partially filled shell, 2p'. We need the
submatrix elements of

P, s;&o)1;~')= ($[[s&')[[s)(l[[l&')I[l)U&"). (21a)

It is convenient in calculations to relate the unit double
tensors U&"") to the unit tensors of Racah by

V(ak) ($[[$(K)[[$)U(ak) (22)

Ui "& = (2s+1)&(2S+1) &U""). (23)

Tables of the submatrix elements of these operators are
given in RII and RIII or they may be found from RIII
(23). Furthermore, the orbital (and spin) angular-
momentum vectors are such that (l[[l[[l)= [l(l+1)
X (2l+1)]', as may be seen from RIII (24). We also
need the submatrix element

P; s, ")1;io)= (s[[s "&[Is)(l[[l&o)I[l)U"'&. (24a)

Putting the values of the submatrix elements in (21a)
and (24a) we And

(p"PI[A' '"'l'"'IIP4'P) =+3~&, (»b)
(p"PI[+, s;"&l,"&[[p' 'P) =+3v2. (24b)

With these values in. (4) and (20) we obtain for the
contribution of by~ in atomic units,

&gi orlop ')Av (25a)

(25b)~g2-&g~= o

(b) Contribution of Sp,

The operator 51oo is given in (4). In addition to the
submatrix elements of P;s;")1;") given for 5@i by
(24b), we need those of Q (s&') C&") "&

2' s'"'C'"' = (slls"'lls) (ll[C"'lll) U'"' (26a)

If we put the submatrix elements in (26a), we find

(P"PI[A' $'"'C'"'IIP"P) =3/v'5. (26b)

With (24b) and (26b) in (4) and (20), we obtain for
the contribution of A@2, in atomic units,

hagi
———,'n'Z(1/r) A„ (27a)

hg, = (3/20) n'Z(1/r) A„ (27b)

Sg —8g = ——,',n'Z(1/r), . (27c)

(c) Contributions to Sp, and St»4 from the Partially Filled Shell 2p4

The operator for 8yo, 4 is given by (8). As an example we shall calculate the contribution to the first term of

51io from the partially 61led shell, 2p4. We require the submatrix element of ({s,o)s;")}"&{C,&")C;i")}"')o). Here k

equals 2 only since the factor k in the coeKcient eliminates zero, and other values are eliminated by parity and

triangle inequality considerations in the submatrix element (l[IC&"&Ill). The intragroup submatrix element is given

by (A3), from which we find

(p' 'PI[A;(, {s,&')s, ")}"&{C;&') C;&') } io) llp4 oP) = (—)i+~'+o+' o -'v3 ($[[s&' lls) (sl[s&o lls)

X (1[IC&o)[[1)'[Qs z. (P4'P[[U&")[IP4S"I.")(P'S"I."IIU&oo)IIP4'P)W(1101; S"1)W(2121;I."0)
(O' 'Pll U'"'IIP"P)W(1o0o, o1)W(2121; 10)g. (28a)
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(29a)

(29b)(p4'Fll Uoo&llp4'8) =+2.
With these values in (28a), we obtain

(P"FIICK «~I s'"'s~ «'I "'
I C""C~'" I «&IIp"F)= —9/(5V'10). (28b)

From (8), (20), and the submatrix element from (28b) we obtain the stated contribution of ({s;&'&s;«&}"&

X{C;&"&C;i~&}«&) "&. In atomic units,

The unit-tensor matrix eleinent (P43EII U&'2&llp43F) equals Q-, and is diagonal so that the sum in (28a) reduces
to one term. Also

~g = —l 'F '(2P, 2P)
= ——,'pa'F'(2P, 2p) = bg2,

since F&'(2p2p) equals 2F'(2p, 2p).
Similar calculations for the other terms of A@3, 4 give for its entire contribution of this kind,

Sg =-'~'I —5F'( p, p)+ (11/5)F'( p, 2p) j,
Bgg= s'n'I —(31/5)F'(2p, 2p)+F'(2p, 2p) j,

~g2 &gi= sin'(6/5) I F'(2P~2P)+F2(2P~2P) 3.

(30a)
(30b)

(31a)

(31b)

(31c)

(d) Contribution to 5@3,4 from Closed Shells

Since there is one partially Riled shell in oxygen, we turn now to the intergroup matrix elements involving a
partially filled and a closed shell. We shall take the same term of (8) as in (c), and restrict the treatment to ex-
change elements. The operator is ({s,"&s;«&}"'{C,'"&C,i"&}«&}('&, and the submatrix element is given by (A7).
The configuration consists of three groups and the sum extends over 1s and 2s.

(1s'2s'2p"FIICK'&~Is, &'&s, «&I ('&I C,&"&C~"'I "'II1s'2s'sp4'E) = 'i(p"FIIU""lip"E) &.I —&314 (il 0i a'])

xw(lulu; 00)L(slls& &lls) (slls«ills) (ollci &Ill) (lllc&"&II0)$„(sp ps)+( —)'~'+'+'-'(slls&'&Ils) (slls&'&Ils)

x (0llc'"'ll 1)(1IIC'"'llo) g„(ps,sp) jI = (1/g6) p.g3.(sp, ps)+$„(ps, sp) g, (32)

since evidently k equals 1 only. The two energy parameters are the same. From (8), (20), and the submatrix ele-
ment (32), we obtain the contribution, of ({s,"'s "&}"&{C, i'& C;"&}i'&) i'&

hagi
= —(1/9)n' g G&'(ns, 2p) = —(1/18)n' g „G'(ns, 2p) = bg2 (33)

as before, with 6&' equal to ~G'.
A similar calculation for the other terms of 8@3and 5@4 in (8) gives as the entire contribution to A@3 4 from inter-

group elements, in atomic units,

Bgi=n' Q~f ——,'F)'(2p, ns) ——,'F)'(ns, 2p)+-', F)'(2p, ns) j,
bg, —bg, =n' p„l -', F)'(2p, ns) —-,'F)'(2p, ns)+ —,'G'(2p, ns)g.

(34a)

(34b)

(36)~ga= (1/30)n g„l G (2pi, )n+sG'(2p, n ))s=bg,

%e have seen that bg~= hg2 throughout bats. In this way we obtain all the terms of this operator.
If one now combines (25), (27), (31), and (34) with the terms of 8@~, one finds

hagi
——(8mc') '{—12(T)A~+2Z(e'/r) A„—L5F'(2P, 2P) —(11/5)F'(2p, 2p)

+p„(4F&'(2p,ns)+ (16/3)F&'(ns, 2p) —(8/3)F&'(2p, ns))g
—2L F'(2P,2p)+F'(2P, 2P)+g, ;(F&'(ns, 2p)+F&—'(2p,ns) (7/20)G'(2p, ns—) —~iG '(2p, ns)

ioG'(2p ns)+~~A(2p ns)) j} (37)

gg, =5gi —(5nic') '{-,'Z(e'/r)„„+I 43P'(2P, 2P)+x3F'(2P, 2P)+g„(—F&'(2p, ns)+2F&'(2p, ns) —G'(2p, ns)) j}.

(e) Contributions from Sy&

As an example of the contribution from bys, we shall calculate og.e of the intergroup matrix elements, in par-
ticular, the first term given in (12) which contributes only to exchange elements for k equal to 1. One needs sub-
matrix elements of the operator ({s,«&s;"&}"'{C;o&(C"'1);"&}")"&. From (A7), we have

(1s'2s'2p"Flip;&, I s,«&s, «&
I «&I C;i'&(Co&1) '

I
' II1s'2s'2P4'8)

=
~ (p' 'XII U"'&lip' 'F) Q„I—%3W(-,'0-,'0; 20)W(1111;01) (—)~'+'+' '

x (slls«&ll. ) (slls«&lls) (oil(«»l) ~»lll) (1llc~»llo)V„(pssp) I
= —(1/V2) Q„Q„(ps,sp). (35)

From (12), (20) and the submatrix element (35), we obtain the contribution of ({s«&s «&}«&{C "&(C&'&1)."'}"&)&'&

in atomic units,
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These equations show the following minor differences
with those of KVV. In the 6rst P„of d,gi, the first
term reads F&0(2p,ws) instead of F&'(2p, es), and the
coefficient of the third term is —(8/3) instead of
—(8/5). In the second P„ in Agi, the second term is
F&'(2p, its) instead of F&'(2p, es); and the sign of
34R(2p, es) is + rather than —.In Ag~, the sign before
the square bracket is + instead of —;and the coeffi-
cient of F&'(2p,ns) is 2 instead of 4. The results ob-
tained here may also be obtained from KVV (4), (12),
(13), (14), (15), and (16). They have the result, upon
insertion of the numerical values for Oz'E' given in
KVV, Table I, that

hg (calc)

~g1=981X10 '
Ag2=917X10 '
~g1—~g2 ——64X10-'

ag (obs)

971X10 '
905X10 '
66X10 '

Thus the difference is given with higher precision than
the absolute values themselves, as should indeed be the
case (KVV, Sec. IV).¹leadded i' Proof The .—relevant interactions have
also been derived by W. Perl [Phys. Rev. 91, 852
(1953)].More recent numerical values for normal oxy-
gen have now been published by Radford, Hughes, and
Innes [Bull. Am. Phys. Soc. Ser. II, 3, 8 (1958)].
Apart from the increased precision of observation, they
differ from those given in Sec. 6 in that a corrected
figure for the electron moment has been adopted
[C. M. Sommerfield, Phys. Rev. 107, 328 (1957);
A. Petermann, Helv. Phys. Acta 30, 407 (1957)].For
reference purposes, the new values are

d,g (calc)

Ag1=996X10 '
~g, =932X10-6

g1—~g2=64X10 '

hg (obs)

986X10 '
921X10 '
65X10-'

Finally, the changes in the KVV calculations noted
at the end of Sec. 6 have been taken up with the authors.
Agreement was also reached on all of these changes in
conversations between one of us and K. Kambe. It is
now anticipated that new information should be ob-
tained through relaxations of the (restricted) Hartree-
Fock method in the determination of the energy pa-
rameters [see G. W. Pratt, Phys. Rev. 102, 1303
(1956)]. We are indebted to the author of the above
paper for a number of observations which relate to
these techniques.
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APPENDIX. SUBMATRIX ELEMENTS INVOLVING A
NUMBER OF GROUPS OF EQUIVALENT

PARTICLES AND DIAGONAL
IN CONFIGURATION

A1. General

The elements of one-particle operators and the
intragroup elements of two-particle operators are both
derived through the use of one recoupling procedure.
The corresponding procedure for intergroup elements
(of two-particle operators) is more elaborate. Results
for all three sorts of elements are given in Secs. A2 and
A3, below, but the mode of derivation is put down only
for the intergroup type. From the given description the
derivation of the intragroup form may be inferred
quite readily. The general approach for all these forms
involves (a), the use of RII(44b) after appropriate
recoupling in the wave functions, and (b), the expan-
sion of the elements of two-particle operators into
weighted sums of products of single-group elements of
one-particle operators as given in Eq. (A1). Complete
(T)SL-coupling matrix elements are found in each case
through the use of (17), above, or its jj-coupling
equivalent, if that scheme is in use.

Submatrix elements are formulated in a compact
way by replacing sets of quantum numbers by a single
letter. Thus a group of equivalent particles is written
t"I. In wave functions which appear below, a number
of groups are coupled together by adding each suc-
ceeding group to the resultant of those preceding, thus
li"'(Iili"'I~) (Iq~ 1,"'Ii)Ir, A null group lpoIOI, may
also be inserted for greater clarity in interpreting the
results. Omitted particles or groups are indicated by
superscripts, e.g. , the symbol Iz&&»& is the result of
coupling together I, groups omitting one particle from
group p and the entire group q. The wave function of
two particles is written simply (l„l,)I&„,&. In the SL
scheme (used in Secs. 5 and 6, above) the expression
(2S+1)(2L+1) corresponds to (2I+1) and (2s+1)
X(2l+1), the number of particles in a closed shell, is
written (2l+1) in, e.g. , (A7). The abbreviation [a]
= (2u+1), now in frequent use, will also be used.

There are also useful conventions for the operators.
The general one-particle operator V&x& is, in the SL
scheme, the double tensor, P,s;&"'T~&"& (see RII, Sec.
5). The two-particle operator V'x'x'x& is the general
form g {s &""s "») & "&{T;&"» Y, &"») '"& instances of
which appear frequently in Secs. 3 and 4. Observe that
(slls&"&lls)(lllT&~&ill) is written (lllV' &ill) and that
products of n-j coefficients appear as single coefBcients.

The basic submatrix element of the developments to
follow is

(l"Iill""& ill
"I')= (ill &' 'ill) (l"Ill II'x'ill "I') (A1a)

in terms of a unit double tensor [see (19)],the element
of which is [RIII(23)],

(l"Ill fI'x'lll"I') =~([I][I'])'*
Xgzi(l"Iltl" 'Ii)(l" 'Ii)l"I')W(I,IlK; lI'). (A1b)
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Radial terms in both wave functions and operators have frequently been omitted. However, they are contained
in the energy parameters of the elements of (A2), (A6), and (A7), below.

A2. Intragroup Elements of One- and Two-Particle Operators

The intragroup elements of two-particle operators correspond to the quantities u and c in the treatment given
by Yanagawa, ' a and d in that given by Elliott. ' W'e consider elements in which particles are picked out of one
group at. a time, either singly or in pairs. The number of groups has been designated 3 and the number of particles
r) =Pen, p=0, , t. The final form, which can be found through a procedure analogous to that used in the next
section, is

(Ioli"'I, ) Ivil2"'I2) Ix2 l,"'I,) Ix, ll
V'-- ) lI()li"'Ii') Ix)'l2"'I2') I+2' l,"'I,', Iv, ')

=~n([I=n][I.n'] "[I.,][I=,'])-:(ln" I„IIV(- 'lll„- I,')
XgnW(Irn iIz In'nK; InIzn')W(I~)IxnIsn~i'E; Ir~)Irn') W(I,Ix, ,Ir,,'K; Ix,Ix, ,')

8(I, I ') for all mWp
8(I~, Ir ') for all m'(p.

Q indicates the pertinent energy parameter (the radial integral and other factors). The resultants Ix, and Ix)
appear pro forrrta, merely, since Io is the ('S) term of a null set. If V( x) is a one-particle operator, the single-group
submatrix elements are given by (A1). If it is a two-particle operator, these elements are

(l.Ill V«)«) ill"I') = ( )x)+x~x—-,'[E]'(ill V;(x') lit) (l l V, (x»
ll l) [P,"(l"Ill U(x')

ill
"I")(l"I"

ll
U("') ill"I')

XW(K)IKd'; I"E) (l"Ill U' —'ill"I')W(EilE2l, lE)]. (A3)

The derivation of a slightly less general form of this relation has already been given [Innes, reference 3, Eq. (12),
and Horie, reference 3, Eq. (12)].

A3. Intergroup Elements

The intergroup elements correspond to the quantities b and d in the treatment given by Yanagawa' and b and c
in that by Elliott. There are, in general, two direct and two exchange parts for each pair of groups, and four corre-
sponding energy parameters.

When one of the direct parts of the element has been given, as in (A6b), the corresponding exchange part may be
found by expanding the rank-dependent 9-j coe%cient" and treating each term of the sum separately. Thus, for
the first exchange part, as shown in (A6a),

( ) in+ha i()—e)'—
.Eg

e (uc) ln ln Qi ln 4 I(ne)
I(nc)' = P (—)" " x~()'[Qi][Q2] la 4 Q~ ln 4 I(ne)' .

E2 E . Q1 Q2 Ei E2 E. .Qi .Q2
E'

Discussion of this method of treating exchange elements will be found in RII, Sec. 5. The two remaining parts
involve simply an interchange of Ei and E~ with insertion of the factor (—)x&+x~x.

When in process of development, the entire intergroup submatrix element is in the form of a combination of
two-particle elements. Two one-particle wave functions have been relocated near the right-hand side of each wave
function through the use of a double sequence of 6-j coefficients (written below as a single unitary coeff)cient), and
two coefficients of fractional parentage. Another pair of coefficients (a 6-j and a 9-j) has then been employed to
recouple the two one-particle wave functions into the form (lnl, )I(„,). Step by step displacement of a group within
the wave function is accomplished by transformations of the type

((ab)e, c,dl (ac)f b,d) = ([e][f])'*W(ebcf; ad), (A5)

and the unitary coefficient consists of two fhghts of these, displacing groups (I and p, respectively, with sums over
intermediate terms. This program leads to the expression

(I()li"'Ii, I„,l2"'I2, Ig, . l)")Ig, Ix)ll V(x'x'x)llIoli"'Ii', Igi'l2"'I2', Ix2' l,"'I)', I.,').
= —,'[E]*'png, eng, pr([In][In ][Is][Ia][I&i'][I&)'])*[I(na&][I(na) ][I-")(n"][Ix)(n»]
X( Irn, In) Ixn I,, Ix, [

. .I~ i, Ix, ,"I,+i) Ir,+, I,) Ix,"'In) Iv. ,'I„ Ix,)
&the primed counterpart of this coeS.cient

X (l, "I,P," 'I, '")(l,""I,'P,"" 'I,"')(l,"'Iq P,"~'I,'")(1,"~Iq'P,"~'I,'")
"See Arima, Horie, and Tanabe, reference 2, Eq. (16).
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I~ (u) q
.I,(u) q

XW(IzP~I (»I.;t„ I„(»~I„) I (~& t I W(Ir,-I (»I-,"t I.,(»~I ') I «& t I '

I(uq)
X ([I.,][I.,'])-:W(I=,(-».,I(„,&'K, I(„&I.- ') I+(411U" "II@)(411U, ( '14) 4 4 I(-&' W(PvP~).Eg Eg E

q ju I(„q)
+(—)""+'" """"""(41V"x"14)(41V' "14) 4 4 I(nsI' &(VPVP)

~Eg E2 E
~q I(uq)—(—)'"" "-'(t'IIU" "Ilt.)(t. U' "114) t. t. I(-&' &(PwP).Eg Eg E

~q ~a I(&q)—(—)'"+' """(t,llV"x"114)(t.IIU' "lit.) t. t. I(..&' &(vPP&)I.Eg E2 E
t&(I, I ') for all mWp, (I

(A6 )
8&(I~ ., I~ ') for all m'(P.

The summed parameter sign, I, represents several sets of quantum numbers all of which can, in fact, be removed
through the use of identities given in the next section. The sequence of operations for the first direct part is now

given in detail. Reference is made to summed parameters and relevant identity for each step of the reduction. It
will be noted that the summed parameters Iq& ~q I~q+~q and their primed counterparts make no overt appear-
ance in (A6a). They may be found by writing out the unitary coefFicients in full, in the manner explained above.

a. Remove I(„s&, I(„e&' and Iri("'& with (A9).
b. Insert a submatrix element for group q according to (A1).
c. Remove I i("&' with (A11).
d. Insert a submatrix element for group p (see step b)
e. Remove I~ii'& with (A11) and Isi' and I~i' with (A10). Proceed in this way step by step until Iss+tr &, Ir,+,&,

and I~q+~q' are removed.
f. Remove Is, ir Ir». ir with successive applications of (A11).

After these steps have been taken, the form given above becomes

s[K]' Z.(.([I"][I..'] [Ir ][I~ '])'
X (t." I„IIV, (x &

II t." I,') (t,"I,II V,'(x & lit,
"I,')W (I=„ iI.P„'Kr; I,I.,') W(I,+»s.Is~i'Ki; I=~iI.,')
IYq ] Iq Igq

X' W(Iq iIvs sI&q iK&—I I&, &Its —s) Ire i Ie Irs
E] EQ E

XW(I,+,Iv,Ir,~,'K; Ir,+,Ir, ') W(I,Ir, ,Iv, 'K) Iv,Is, ,'), (A6b)

also with the same i& functions that appear in (A6a) and the energy parameter, $(p(tp(I), of the first direct part.
One commonly occurring particular instance of this general result is that in which all shells but the last are

closed. In fact one may simply write down the entire intergroup element in this case, since the expansion of the
exchange parts, by means of (A4), reduces to one term. This element is the useful form, for example, in the applica-
tion made in Sec. 6.

A portion of the element involving only closed shells may appear if E is zero. It is omitted here since it can be
found quite readily as a particular instance of'the portion which involves closed shells and an un6lled shell. This
portion is

-'( t'I, II U (ixll&, "'I,') Q {(2t,+1)P (K,,O) (t, li V;(x&
11 k,)Q (PtPt)+i& (Ks,0) (t, ii U (x&113,)$ (tPtP)]

ygt
(2K+1)'W(«K «K; t.K—)[(t.llV" 'liter)(«IIU/( "Ilt.)V(P«P)

+(—)x'+x (tiIIU' 'liter)(tnllV' "liter)V«PPt)))

The known relations TAS 9'12 and 9'13 may be found by using (A3) and (A/), respectively. The spin-other-orbit
interaction yields intergroup elements of type (A/), "but the spin-spin interaction (tensor force) does not, since
the spin rank is too large.

"These effects are important in calculations of fine structure (now under study).
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A4. Relations in 6-j and 9-j CoeS.cients

The process of expanding a given submatrix element into a set of elements in another coupling scheme displays
an identity involving e-j coeflicients. For example, (A4), above, is represented by the submatrix form,

Qy 82 Q

((c2b&)cl (d~c~)&(b~b2)b, clI (d~b2)'&= 2 b~ b2 b ([~3[b][c~j[c2j)'&(c2b~)cll(d~»)c~(c~b2)c2, ell (a~b2)c&.
cl, c2 pl. Q2

(Ag)

The identities which are needed for removal of sums in (A6a) derive from similar forms, viz. , ((a~a2)a(b~b2)b,
e~~ (a~b2)e ~(agin)a(b~b2)b, e) and the simpler (a2(b~b2)b, e~~ (a~b2)e a2(b~b~)b, e). These relations are

a b e

W(u~cd2a2, a2a) W(bgbb2bg, b2b) a, b e

,Q2 62

Gy 82 6 Gy Q2 Q a2 b2 c2

[c~][c2][c2jW(c~ec~e;c~e) b, b, b b& b~ b a2 b2 c~, (A9)

and

~1) &2g &2 .c~ c~ e. „c~ c& e. .Q2 52 e.
'a2 b e 82

W(bgbb2b2 b2b) a& b c = Q [c2][c2]W(b&ec2e; c2e)W(b&bc2a2, b2c)W(b&bc&a&, b&e) 62
Q2 ~2 g c2, c2

Q2

b2 c2

b2 c2 . (A10)
b2 e.

This last is also given by Arima et al. [reference 2, Eq. (A3)j.A fundamental (and well-known) relation, which
may be deduced from those given above, is

W(a~aa2a2, a2a) W(b~ab~a2, b2a) =P,[c)W(au2b~c; a~b2) W(aa2b~c; u~b2) W(cb2a2a2, a262). (A11)

It is evident that each submatrix form indicates a vector coupling identity in a concise way.


