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Photomeson Production in Intermediate Coupling~)
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The wave functions for the ground state of a physical nucleon and for the scattering state of a physical
nucleon and a pion are used to compute photopion production cross sections in an intermediate-coupling
approximation. Since the mesons included in the physical nucleon sufBce to account for an approximately
correct value of the anomalous magnetic moment, no use is made in this theory of a correction term involving
experimental values of the latter. The p-wave part of the photoproduction matrix element is arrived at
naturally, largely from the interaction of the meson currents with the electromagnetic field. Differential
cross sections are obtained for the production of ~+ and 7r' by photons of 200, 260, 335, and 440 Mev in the
laboratory system. It is also pointed out that in the intermediate-coupling theory, the ambiguity in defining
a gauge-invariant Hamiltonian is nontrivial. DiAerent procedures for generalizing the meson-nucleon inter-
action term into a form that is gauge invariant in an extended-source theory lead to substantially different
p-wave components of the photoproduction cross sections.

I. INTRODUCTION

Y making use of the Tornonaga method for dealing
with intermediate-strength coupling between me-

sons and nucleons, approximate solutions have been
obtained both for the ground state of a physical
(clothed) nucleon and for the scattering state of a
physical nucleon and a pion. This has been done for
the case of a symmetric pseudoscalar meson field
coupled to a 6xed extended source through derivative
coupling. The scattering state function obtained seems
to give a correct description of low-energy scattering.
In particular, it gives approximately the correct reso-
nance in the scattering phase shift for the I=I=-—,'
state. ' (J is the spin, I the isotopic spin of the pion-
physical nucleon combination. ) The ground state solu-
tion of the physical nucleon has been used to evaluate
the anomalous magnetic moment of the nucleon, on the
assumption that the latter is correctly represented by
the interaction of the meson current with a slowly
varying magnetic field. ' The result of that calculation
approximately agrees with the experimental values.
Since the anomalous moment is approximately right,
and since the interaction current term must give the
correct Kroll-Ruderman limit, it can reasonably be
expected that the probability of free meson creation due
to the interaction of the photon with the physical
nucleon will be given at least to the right order of
magnitude. Moreover, due to the approximately correct
behavior of the scattering state function, it can also be
expected that the relative amount of Born approxima-
tion terms and "enhancement" terms will be about right
at relatively low energies.
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II. WAVE FUNCTIONS

The ground state wave function for a physical
nucleon in a spin, isotopic spin state 1, will be written

x,=e, li&.

Here
I i& represents a Dirac spinor for spin and isotopic

spin /. K& represents a physical nucleon of the same spin
and isotopic spin. 0'0 is a spinor operator function given
in FLC. Matrix elements 3IIo of an operator 0 taken
between two physical nucleon ground states,

M o ——(rc
I
0

I
x ),

can be written symbolically;

3Io=(lI (&rst0@v) Il&.

Here the matrix element (Vst0%'v) already includes in-
tegration over the nine-dimensional reduced meson
space of I LC. It is still, however, a function of spinor
operators. It will generally be written

(@stO~@s) —II'0~ jI

The incoming scattering state wave function for a
physical nucleon in spin and isotopic spin state m, and
a meson of momentum y' in charge state p, when
written in the momentum representation, is given by

+-' '(t,E') = 2 (&ilx(t,~; E',a) I~&a-*(a)+oIi&
q, o. , l

—2- «I Ila-*(a) jjl ~&

&&&~I x(t,~; E',q) I ~&+sly&). (2)

The functions X(tt,a; y', tl) are obtained from a varia-
tional principle and are given by

X(tt~cti Et )tl) =4, ~bv', s

Gr, s(p', q)Pr, s(tt, ot; p', tl)
(3)

coo coo~+so

where the summation extends over I, J= ~, 2. The 6,, ;
here are the usual Kronecker delta functions. The
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(4)P.. ~(I,~; 1)',e) = »(1)',il) q r (~,~),

Pr, z(ii,e; y', il) appearing in Eq. (3) are the projection where the g(q) are
operators

g(q) = —Iq~(q & It)/[~.]'*[~.+~]
and are

g-(p', q) =~ q~ p'/qP'

&-:(p',q) = (3p' q —~ q~ I')/qp',
q l(&p) = 3r~ru~

%1(P)A) = Su, & 3r~ru.

The Gr, z(p', q) are given by

G; ~(p' q) =~i, ~(p')g(q)+Pr, ~(p')~, a(q),

and L is defined by'

&l I Itr„o,x;.j//i)

The quantities o.&z(p, ') and P&, J(p') are given by the
(5) equations

and

2A IJ&u'+~i J+4 (A IJ) 0
~»(p') =g(p')-

1—A. —(A, +& )«')+l(A )'[1+( '—~)«')]
-', A» —-', (A»)'

P»(p') =g(P')
1 Are—(Ar—ze);+&rz)&g'&+ ;(Are)'-[1+(e)i' —~)&g')]

(6)

where
~~= Z~ ~~[a(&)]',

(g') =Pk [g(k)]'[e))—e),. +ie]-',

and the A~~ and Bl~ are as defined in FLC.

III. GAUGE INVARIANCE OF THE THEORY

It is well known that the simple procedure for general-
izing theories with point interactions to include an
electromagnetic Geld is not valid when the interaction
of the nucleon and the meson field is extended over a
6nite region in space. ' The part of the interaction
Hamiltonian,

which satisfies the requirements of (1) gauge invariance
and (2) reducing to H (where V has already been re-
placed by (V —ieA) in H) for the case of a delta-function
source. It is, however, possible to amend this form in
an infinite number of ways, and still to preserve both
of these properties: A term J'@ nds may be added
to Je*A(y) dy in the exponential. Here @ is the mag-
netic field, J'ds indicates a surface integral over any
area entirely enclosed in the volume of the nucleon
source, and II. is the unit normal to the surface. The
e6ect of this term is to make the path over which the
line integral is to be performed entirely arbitrary. Also,
a term H' where

Hz ——(47r)'f)" V(x)r.o Vy. (x)dx,

which deals with charged mesons can be written

H'= c dx
40

dj{U(x)r&+)o"L"Xo((x)]gk)), (1O)

may be added to H . Here c is an arbitrary constant and

g (t) is an arbitrary function of P. In all of these possible
additions to H„@is the only function of A that appears,
and these additions are therefore manifestly gauge in-

variant. They are all scalars and they go to zero in the
case of a delta-function source. However, each one of
this infinity of possible alterations of H, can in principle
lead to diferent values of physically measurable

quantities.
It can be hoped that the sects of this ambiguity in

de6ning the most general form of a gauge-invariant
meson-nucleon interaction Hamiltonian can be mini-

mized either by showing that the physical consequences
of the ambiguity are small; or at least, by finding one
particularly simple specific form, which, for u priori
reasons, is more plausible than all the others. That the
latter is not the case can be easily shown by choosing c
and A(P) in H' to be c=ie&2(47r)&ef and g(P) =P, respec-
tively. Then, since Vx J'e* i A(y) dy (here the Je*, iindi-
cates that the path chosen is a straight line) can be

H =V2 (47')lf)I U(x) r(+)e Vy(x)dx+H. c.,

where ri+) =-,'(ri+ir~), p= (2) l(pi —i&2), f is the non-
renormalized coupling constant, and U(x) is a spheri-
cally symmetric normalized nucleon source function. It
is immediately obvious that the procedure of replacing
VP by (V ieA)g and V&* b—y (V+ieA)&*does not give
rise to a gauge-invariant theory unless V(x) is a delta
function. When U(x) is not a delta function, it is easily
possible to generalize H to include an electromagnetic
field in a gauge-invariant fashion, but it is not possible
to do so uniquely. We may, for example, write a gauge-
invariant form H, de6ned by

[v —ieA(x)]y(x)+H. c., (9)
' R. H. Capps and W. G. Holladay, Phys. Rev. 99, 931 (j.955);

for earlier discussion of a related problem, see R. G. Sachs, Phys.
Rev. 74, 433 (1948l,

/H, =&2(4m)~f dx V(x)ri+) exp ie ~ A(y) dy 0—
0 I
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written
Iris X ~l

Vx A(y) dy=A(x) —xX ' Pdg @(&x),J, , J,
it can be shown that for this choice of path and of c and

g(P), the equation H +H'= H & holds, where

Hs
——%2(4sr)&f dx V(x)r&+)rr

Vx Q(x) exp~ ie— A(y) dy
~

+H.c. (11)) I

This term, if included in the calculation of the magnetic
moment, would contribute an additional anomalous
moment of —2.5r3 nuclear magnetons, a result entirely
inconsistent with the experimental facts. Since the pro-
gram for the present calculation involves the use of a
theory which predicts the correct anomalous magnetic
moment, H& is clearly the proper choice here. However,
since the consequences of using H, are also of interest
(partially insofar as they provide a measure of the am-

biguity involved in defining the interaction term), the
meson photoproduction cross sections resulting from
the use of H, will also be calculated.

There is no compelling a priori reason for preferring
either H, or Hs and both have been used by different
authors. H is used by Znoch, Sachs, and Wali' to calcu-
late photopion production cross sections. H, ', given by

H.'=v2(Air)'f~ dx V(x)r&+&e [~—ieA(x)]y(x)+H. c.,

which accounts for by far the largest contributions to
H„ is used by Chew and Low in a computation of pion
photoproduction cross sections. ' Hs is used in various
computations of the anomalous magnetic moment of
the nucleon. 6 The question of whether the di6erences
between the various forms are large enough to be im-

portant can now be raised. In the case of the choice of
different paths for the line integral in the exponential
of H, or Hb, calculations carried out by the author
indicate that these differences can be expected to be
small. ' For this reason, the simple choice of a straight-
line path will henceforth be understood in this paper.
The ambiguity in the meson-nucleon interaction Hamil-
tonian due to the H' term is, however, large. It can
quickly be shown that the physical consequences of
choosing H b instead of H, are pronounced. For example,
in the case of a constant magnetic field, A(x) =-,'(x&(Q)
and JP, i A(y) dy= 0. H s for this case reduces to (8) and
there is no interaction current contribution to the mag-
netic moment. In HF, a calculation based on this
interaction term gives an approximately correct value
of the anomalous magnetic moment. H„however, gives
rise to an interaction current term

Hr"'= ice 2(47r)lf dx U(s—s)r&+)rr

A(x)y(x)+H. c. (12)

' Enoch, Sachs, and Wali, Phys. Rev. 108, 433 (1957).
s G. F. Chew and F. E. Low, Phys. Rev. 101, 1579 (1956)

(hereafter referred to as CL II).' See reference 2; see also M. H. Friedman, Phys. Rev. 97, 1123
(1954); also H. Miyazawa, Phys. Rev. 101, 1564 (1956).

'The smallness of the difference between jogclA(y) dy and
jo*e A(y). dy can be understood in the following way: Since
XA(y) dy= f@(y) n&fs and since the area integrated over is
entirely within the volume of the nucleon source, the linear dimen-
sions are limited to R, the radius of the latter. The area is therefore
of order ~R'. From the differentiation of A, a factor of p is
obtained and the area integral is smaller than a term of order

~

A ~R
by a factor of approximately R/X&php~n)

M(1) = P (l
~
lta. (&1)HI})ts)(m~7ft(fs,&r; p', ll) ~»,

q, n, l

M(2) = —2 (f I ItH III~)
q, a, l

(14)

x(~lxt(~, ~; p', q) lto-(a) III». (»)
Here H denotes H~ ri;(p)).

The Hamiltonian II can be expressed as the sum of a
meson current term and an interaction current term,
H~ and III, respectively. Thus II is

H H~+Hr

The meson current Hamiltonian is

(16)

H~=e t dxA (y,Vy, y,vy, );— (17)

in the momentum representation A is

A(x) = P [2p] '[b'(p)+b'*( —p)] aes'& *, (18)
i=1,2; p

where b'(p) and b'*(p) are annihilation and creation oper-
ators, respectively, for photons of momentum p and
polarization i. (The p and i index on the r. will generally
be suppressed. ) The interaction current Hamiltonian
which originates from Hs can conveniently be written
as the sum

Hr —Hra+HIb (19)

Here the Hr parts involve the meson field 4& but not
its derivatives; the IJ ' parts include only the deriva-
tives of P. Hr can again be conveniently subdivided as

Hr H„r +Hiss (2o)

IV. THE TRANSITION MATRIX ELEMENT

The matrix element for the production of a single
meson and the annihilation of a photon is

M= (0„—(ls,p') i Him„r);(p)), (13)

where II is the part of the complete Hamiltonian that
is first order in the electric charge, and where &7;(p) is
the normalized state vector for a single photon of mo-
mentum p and polarization i. Substitution of (2) into
(13) gives rise to the following expression for M where
for simplicity M is written M=M(1)+M(2):
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The individual terms are

H~' ———(4m)&ef, dx U(x)tr A(x)eiesriyp(x),

H and H ' parts of H, respectively. In a similar
manner, M(1) and M(2) will be written

M(i) =M~(i)+Mr-(i)+Mrs(i) (i=1, 2).

H '= —(fir)ref dx ~ $d$ U(x)o

LxX@(gx)7eiesrt, ge(x),

Integral

R
I

I
@a

Qb R
I

@bi'

I
Q tx

I
y,~ z

I

P CL

PbP

ybP

~A, b

~A, b

200 Mev

1.4944
0.0665

6.1029
0.0839

1.1524

0.5536
0.0426

1.8513
0.0538

0.2762
0.0029

1.1748
0.0037

0.8183

0.1935

1.0626
—1.9867
—0.4717
—2.5822

1.6024

0.3960
2.1024

260 Mev

1.8172
0.1880

6.9984
0.2834

1.0853

0.5789
0.0990

1.9581
0.1480

0.3602
0.0160

1.5154
0.0190
1.0109

0.2600

1.4029
—1.8458
—0.4773
—2.5653

1.9616
0.5368

2.7709

338 Mev

2.0756
0.4651

8.1829
0.8792

0.9616

0.5730
0.1849

2.0448
0.3496

0.4958
0.0428

2.0929
0.0809

1.3231

0.3976

2.0747
—1.6109
—0.4873
—2.5320

2.5171

0.8394

4.1039

440 Mev

2.2984
0.8829

9.5887
2.0473

0.7981

0.5096
0.2670

1.9797
0.6192

0.6347
0.900

2.7304
0.2087

1.6782

0.6360

3.1531
—1.3304
—0.5074
—2.5068

3.0856

1.4422

6.4306

' A ($x)ei,esr err ' Qxptt (x) .

Here e&,es is the antisymmetric isotropic tensor, (i.e.,
+1 for every even, —1 for every odd permutation of
)t, P, 3).

The alternate form of the interaction current, origi-
nating from H„ is given by

,r H~r.+Hrs. (»)
Hence it is clear that the difference between the two
forms of the interaction Hamiltonian is the presence of
Hg~lnH

In the expression for M(1), the matrix element
Itti (q)HI appears. Hereafter it will be denoted by the
symbol II. II will be written

II=II +II +II ',

where each of these parts of H involves only the HM,

TA&LE I. Table of integrals. The energy is that of the photon
in the laboratory system. The meson energy is computed under
the assumption that the origin of the momentum space is the mass
center of the pion-nucleon system. R indicates the real, I the
imaginary part of the integral. If only one number is cited, the
integral is real.

V. THE MESON CURRENT CONTRIBUTION

The contribution from the meson current part of H
to the pion photoproduction matrix element will be
considered here. The quantities M~(1) and M~(2)
which together comprise this contribution will be com-
puted in turn.

The quantity II~ which appears in M~(1) is obtained
by first permuting meson variables until all annihilation
operators are to the right of all creation operators.
Then the matrix element is written in the momentum
representation, the Tomonaga approximation is made, ' '
and the matrix elements in the reduced space of FLC
are evaluated. ' This results in the following expression
for II~:

2 (6)'«" q(q —p) ~g(lq —pl)
M

I 2ptosto(ts —yt) j'I q —
pl

(54)4-eL'N. (p)g(q)

(2~)s(2p)'Iql

X{L~,8., s—s(f/48)~(~)3(eXp) ~

+s D as' (fs' —f/12)—~(~)+ (ft/24) ~- sj.
XL(eXp) Xq] ), (22)

where A(tr) =be, rt 8t rs. The func—tion $,(P) results
from the integration over momentum space; its value
is given in Table I.The constants 0',~', Q,~~, 0',~', 0',2', 83'
are integrals over the reduced space of FLC. Their
values are given in the Appendix.

In computing M~(1) it is convenient to express it
as the sum

MM(1) =M~(1)+Jr, z Mrs~(1).

3II~(1) refers to the matrix elements taken between the
ground state and the plane wave part of the portion of
%' ' '(li, p') which appears in M(1). Mrr~(1) refers to
the part with spin and isotopic spin J and I, respec-
tively. It can be seen that M~(1) represents the part
of M~(1) in which the final state is taken as the free-
particle state, and thus is the Born approximation to
Msr(1). The Mrr~(1) represent the "enhancement" of
M~(1) beyond its Born approximation value, due to
the entry of the photoproduced meson into a pion-
nucleon scattering state.

The matrix element M~(1) is

M~(1) =P (~ I 8', .8„.11~
I ~& (23)

s T. D. Lee and D. Pines, Phys. Rev. 92, 883 (1953).
'For further details refer to the doctoral dissertation by K.

Hailer at Columbia University, 1958 (University Micro61ms,
Ann Arbor, Michigan),
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It can be directly obtained by replacing the q and n where
by p' and y, respectively, in (22). The matrix element

M;, ;~(1) is

Mb ig(1)

G:,:*(P-',—q)
m p~;, (y,a; p', q)II~ e). (24)

COg Q)gp& Z6

This becomes

2(6)4.eL'o', ~

Cy=
27(2zr)'p'(2p)&

4(54)'zr eL4N, (p)
C2=

(2 )'9P'(2P)'

RIJ='cl'I J Ib +pr J Sb &

Rr J err J~R +Pr J
( ) {[ P]'P+ [P X( XP)]}{ r '*' I yb& g g~ (and later g, N, t') result from th

+csl Sl' —28s'+28s' —(f/4)]R'„ 1 } integration over momentum space. Their values are
X (&„,s+i&(ltz)), (2&) given in Table I.

In a similar manner, the other I, J, states contribute as follows:

M;, ; (1)={p' (exp)+zo [p'X(exp)]}{crR,*, , +cz[Sr'+Ss' —8 s'+(f/16)]R*„; }[28„, zh—(zz)],

M;, ;~(1)=[2c&{[p' (exp)+2zy' ep o+zy'. Pe o]R;, ;ob—3[zy' ep o+zy' pe o]R*,, ;o'}

(26)

where
+ {2P'.( Xy) — [p'X( Xp)]}[O', '+O' '—+ '+(f/16)]R;, K&,, + &(z)],

rrrr I +err

M-:.—:"(1)=ter{[y' (eXP)+»y' ey o+zp' ye o]R*.—:"—3[zy"p o+zy' y'o]R-.*.—:"}

+cs{2p' (eXp) —zo [y'X (eXp)]}[(r'r'——,'O's'+z es' —(f/8)]R,*, ; ][28„,s—zA(p)].

Contributions from M~(2) to M~ will now be considered. It can be shown that

&~ I x'(z,~; P'8) It~-(0) II I I)=z(2)'*(2/9) ~r &~ I (o P'/P') rs
I
I&[g(p') —(L'/2~')R. , ;x]. (27)

The expression for M~(2) thus becomes

2L'e, -O,,bN. (p) p' (.Xp)+zo [y'X(.Xp)]
M (2) = —e(-,')-*' XLg(P') —(L'/2 ')R-:.—: ][~., +z~(z)] (29)

(2P)'P'(27) (4zrs)

It is to be noted that the only contributions that are made to this term come from the plane wave and the I=7=—,'
state. The matrix element (H~'jI is

(Hbr j= (ze/3)(eXP) ors(2P) 'Q, (L'/4m')8 (P) (»)

VI. THE INTERACTION CURRENT CONTRIBUTION

The same procedure that was followed in computing
the meson current contribution to the photoproduction
matrix element will now be invoked in this section for
the case of the Mr part of the latter. Namely, Mr(1)
and Mr(2) will be individually computed and Mr(1)
will be represented as the sum:

Mr(1)=Mr(1)year, r Mr r r(1).

The matrix element II~ is:

II~' ——(2zr)sp cspzz(lq pl)res *e& sr&o'e

+6~Lg(q)8g, .(p)p iq—
X{[((1',r'+ Re' —Qz') eq~srq+2zRz'8~s]zl. ya e

+[(82 Sb )ekasrb+2zRs 8ns]o pg a

+[2Kb'8~s+z(Rr' —Ss')e),~srg](exy) q}. (30)

8~„(P) [and, later, 8~, b (P,P') and 9&, bs(P,P')] result

from the integration over momentum space. Their
values are given in Table I. Here cs——ef(4zr)'*/2(2zr)'.
The 8„' are integrals over the reduced space; their
values are given in the Appendix. zz(k) is the cutoff
function

zz(k) = 1 for k& E,
zz(k) =0 for k) E.

Again M&r'(1) is just II&r with p and zz substituted
for q and n, respectively. Since ~y' —p~ (E for all
values of the energy for which this calculation is at all
valid, [M~~ ]„the s-wave part of M~r~, reduces to

[M~'],= {(2zr)scope), bred/[Pa)„]*}o e, (31)

where p is the ratio of the renormalized to the unre-
normalized meson nucleon coupling constant. "[Mar ],
is the only part of the entire photomeson production

"Reference 1, Eq. (41); also G. C. Wick, Revs. Modern Phys.
27, 339 (1955).



PHOTOMESON PRODUCTION 1741

matrix element that does not disappear at the threshold
for pion production. It can be seen that it corresponds
exactly to the result obtained from a weak-coupling
treatment of this theory, when the renormalized

coupling constant is substituted for the unrenormalized
one." The pion photoproduction matrix element ob-
tained here is thus consistent with the requirements of
the Kroll-Ruderman theorem.

Matrix elements M~. r, sr (1) are now computed in the same manner as were the corresponding Mrs~(1).
The results of this are

Mg,.s, ,r (1)=2cs[ip' ap o—ip' ya o—a (PXP')]

X/4;;, ; p
—cP~, .(P)(—Sr'+2Sg' —Ss'—Ss'+2S&'—2Ss'+Sg')R;, ; ][&„,s+zi1(p)], (32)

where cs= szrLcg(p'p', and where c4=4srL'/(2sr)'. Here Rg;r, g nr=s*P, g, s +PrJ*B~, , s .

M~, ; s o(1)=cs[zp' pa o —zP' aP o+a (PXP')]

X[R„, , p+cP, .(P)(Q, —2S, +S, +S, +S&'—S'+2Sg')R;, —; ][2~., —z~(~)],

M~, ;,,*'(1)= —2cs{[2ip'.Pa o+zp' ap. o—a (PXP')]R~;;, —,
* p

+c48x, ~(p)[(2Sr' —Sg' —Ss'+2Ss' Ss' 2Ss'+Sg')zP 'Pe'o

+(Sr'+Sg' —2Ss'+Ss' —2Ss' —Qs' —Sg')zp' ap o

+(—Sr'+2Sg' —Ss'—Ss'—Sv'+Ss' —2Sg')a. (PXP')]R;, ; }[8„,s+»(p)],

M&, ;, (1)=cs{'[2zp' pa o+zp' ap o—a (PXP')]R&,.L; p

+c4~»e(P)[(2Sr Sg' —Ss'+2Ss'+SSs'+Ss' —2Sg')ip' pa o

+ (S,'+ S,' 2S,'—+ Ss'+ Ss'+5Ss'+2Sg')iy' ap. o

—(Sr' —2Sg'+ Ss'+ Ss'+4Ss' —4Ss' —4Sg') a (PXP')]Rs, —: ) I 24 s—z~(&)»

The consequences of including the H& part of the interaction current Hamiltonian H will now be considered.
When the matrix elements M&, 3f&., &, J are evaluated and added to 3f&, M&. & ~, respectively, the results are

I
(2zr) pzz(IP' —PI)E), srgo 8 67ILg(p')9. (p)Mr. (1) cg, +

(p ')' (O'P')'*

Xi[p' ps o+p' ap o][(Sr'+Ss'—Ss')A(zs)+2z(Ss'+Ss')8p, s]

Ms sro (1)=M. sr (1)=0,

M~„r (1)= —6cs[8„,s+ih(p)][zp' pa o+ip' ap o][R;,;zp+cg, (P)R;, ;r'(Sr' —Ss'+Ss' —Ss'—Ss')],

M;, 1.'(1)=3cs[28„,s—ih(ls)][ip' pa o+ip' ay o][R,*,;zp+c40, (P)RL;~(Sr' —Ss'+Ss'+2Ss'+2Ss')].

(33)

The quantities P..(P), 9, (P,P'), and P.,s(P,P') (Rr J' —(x7J Ps +Ps J ass), result from the integration over mo-

mentum space. Their values are given in Table I.

It is to be noted that the s-wave parts of M~r (and
later, of Mr') disappear. This is the case because all
s-wave terms of M~ and M ' contain the expression
Vg zz(IP' —ppI) and Ip' —)PI (E for all cases here
considered.

A comparison of the numerical values indicates that
the P-wave parts of the M& and M&r terms strongly
interfere with each other. Although each of them, singly,
is somewhat greater in magnitude than the meson
current contribution, the M~ terms are only a small

correction to the latter. This interference accounts for
the fact that when H~ is used, the dominant contribu-
tions to the p-wave part of the pion photoproduction
matrix element are from the meson current. Mr (2) gives
no contribution here since (Hr ) is identically zero. This
identity is closely related to the disappearance of the
magnetic moment of the interaction current.

The final contribution to M, namely M ~ will now

"R. E. Marshak, Meson Physics (McGraw-Hill Book Company,
Inc. , New York, 1952), Chap. I.
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TABLE II. Coefficients in the expression for the transition matrix
elements. The coefficients are those of Eqs. (38). Those without
subscripts are computed with H as the interaction current Hamil-
tonian. Those with the Alt subscripts are computed with the
HAit interaction current Hamiltonians. The energy is that of the
photon in the laboratory system. R indicates the real, I the
imaginary part of the coefficient. Where either R or I is omitted,
the coefficient is pure imaginary or pure real, respectively.

of these quantities are again comparable to the M
contribution, and are signi6cantly smaller than the con-
tributions from the meson current Hamiltonian.

VII. CONTRIBUTIONS FROM THE ALTERNATE
FORM OF THE INTERACTION CURRENT

CoeKcient

S1(+)
S2(+)
S3(+)

I
I
R
I

S,(+) R
I

S (+) R
I

S3;~u(+) R
I

S4;Ait(+) R
I

S5;Alt(+) R
I

S3(0) R
I

S4(o)
I

S5(')
I

S3;Alt(o)
I

S4;A.lt I
Ss;Ait(0)

I

200 Mev

0.4620
—1.259
—0.04740—0.00654

0.04744
0.00706
0.06003
0.00565

—0.15383—0.00790
0.12042
0.00971
0.01620
0.01206
0.06548
0.00187

—0.05471—0.00943
—0.12684—0.01540

0.11872
0.01058

—0.12969—0.01441
—0.16494—0.01901

260 Mev

0.3782
—1.031
—0.05671—0.01392

0.05576
0.03101
0.07413
0.04702

—0.14950—0.05169
0.09622
0.03430
0.14488
0.08284
0.07087
0.04045

—0.04745—0.02363
—0.14911—0.07131

0.16728
0.10040

—0.10586—0.07271
—0.34014—0.16883

335 Mev

0.2918
—0.7954
—0.00676—0.01287
—0.00493

0.02750
—0.00637

0.03255
—0.03140—0.05959

0.01409
0.04080

—0.01770
0.09914
0.00585
0.01978
0.01849
0.05118
0.01402—0.07659

—0.01349
0.10470
0.03242—0.08734
0.00634—0.19290

440 Mev

0.2298
—0.6265
—0.00171—0.00030

0.01753
0.01393
0.00830—0.00583

—0.00839—0.02318
0.02303
0.00100

—0.02566
0.02273

—0.00798—0.00298
0.01751—0.02517

—0.02138
0.02573

—0.03098
0.04061
0.03228—0.00123

—0.03583
0.06331

4.0

C3
O
L 3 0

C4+
E(3

2.0
0

key 440
260
335
200

+ey

/
/

/

LO

Few new computations are required here since the
matrix elements Mz&, r(1) are just the sum of Mzr'(1)
and Mr'(1). It will be noted here that the M~r (1) are
in general somewhat larger than the meson current
contributions. Since the Mnr'(1), which in the last
section were shown to interfere strongly with M~r (1),
are not included in this alternate form of the interaction
Hamiltonian, the contributions of this interaction cur-
rent term to the photoproduction matrix element are
very large.

It should be noted that M~t, '(2) must also be included
now since IH~t, r ) is not zero. This is related to the

be considered. The expression for II ~ is

(p~.)'
t'd( e tl'[&,~(ltl —81)]II"=cp (2rr)sp)
0

&Xaa&X 45 90 t35
8 {degrees)

I80

6~La(C)V.(p)+ X[tl ey e+tl pe e]
(p'v)'

X[2(S, +S;)t'.s (S, —S;+S—p)iw(n)] . (34)

Q, (p) (and later Qs (p,p') and Q~(p, p')) result from
the integration over momentum space. Their values are
given in Table I.The expressions for the Myg ' terms are

M;, ~=M;...»=0,

M;, &= 6csP„s+—iA(p)],

X[iy' pe. e+iy' ep e][R;,; p+c4$, (p)RL;

X (St'—Ss'+ Ss'—Sr' —Ss')] (35)

M;, ;"=3cs[28„,s iD(p)]—
X[iy' pa e+ip' ep e][E;,i p+c4$ (p)R;, ;

X (Sr'—Ss'+ Ss'—Sr' —Ss')].

Here ErJ =nrq*Qs +Prq*gse. The numerical values

FIG. 1. Differential cross sections for ~(+) photoproduction com-
puted with interaction current Hamiltonian Hr. e =cos 'Lp' p/p'pg.
Numbers indicated in key denote energy of photon, in laboratory
system, in Mev.

aforementioned fact that a large magnetic moment con-
tribution is given by this form of the interaction current.
(Hs.q,

r ) is given by

(H~t, 'jI=i(12)'*(2 p)r'* feI p
—-'(sXp) erp~, .(p) Ss", (36)

where 0',2" is a reduced space integral; its value is given
in the Appendix. The value of M~ttr(2) is therefore:

Mgttr(2) =—(18)'*(2/9) (2rr) **efgg, ~(p) St'Ss

X(p' (eXy)+ie [O'X(eXp)])

X [g(p') —(I.'/2rr')R. ~ ] (37)

Ma&„(2) is numerically small relative to M&&& (1).

VIII. RESULTS

The matrix elements resulting from this calculation
can be expressed in the following form:
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M(sr+) = —A(p) (Sr&+&o .a

+@s Lro(ls' —sl&(o&(ls' —yl&+lt)l a'p (p p) '~
+Ss'+'p' pa v+84'+'p'. ep. w

—inst+&'(pX p') }, (»a)

M(sr') =its, s{5s p 'pa'IF+84'"p' ap e
—'S, t'& (pXp')). (3gb)

50-

4.0

The numerical values of these coefficients are tabulated
in Table II.The matrix elements for which the alternate
form of the interaction current has been used are also
tabulated for purposes of comparison. 8r&+& (the Kroll-
Ruderman term) and Ss&+& (part of the Born approxi-
mation term of the meson current Hamiltonian) are
unchanged by the substitution of Bgi~ for H . The
coefficients computed with Hs, &s~ are reported as Ss.stt, ,

0.50
0

0 45 90
8 ( degrees)

O.

0.50
E

~CD
Ol

o0.20

~ O.IO

0
0 45 90

8 {degrees)
l55 I80

FIG. 2. Differential cross sections for w&') photoproduction com-
puted with interaction current Hamiltonian Hr. 8= cos '[p' p/p'pg.
Numbers indicated in key denote energy of photon, in laboratory
system, in Mev.

54;+tt, and Ss;Ats and replace Ss, 84, and Ss, respec-
tively, in M~te(sr+) and M~&&(sr').

Differential cross sections for x+ and m' production
are plotted in Figs. 1 and 2. The cross sections resulting
from the use of H~i~ appear in Figs. 3 and 4. For com-
parison, experimental values for pion photoproduction
cross sections are given in Table III.

A number of features of these results are of interest.
In the case of w+ production, the angular dependence of
the cross sections for 200-, 260-, and 335-Mev photons
has a definite resemblance to that of the experimental
curves. " Their magnitudes are one to two times
those experimentally obtained. It must be remembered,
in this connection, that the quantity (fp), obtained

"For a bibliogra hy of experimental results, see M. Ross,
Phys. Rev. 103, 760 1956), footnote 1;also reference 4, footnote 1.

Fso. 3. Differential cross sections for ~(+) photoproduc-
tion computed with interaction current Hamiltonian H~~&l.
H=cos '[p' p/p'pj. Numbers indicated in lrey denote energy of
photon, in laboratory system, in Mev.

from the scattering data, is only an approximate one
and originates from a resonance fitting of a single
(I=J=—,') scattering state, with only p-state mesons
included. Experimental determinations of the coupling
constant, made by 6tting the Kroll-Ruderman expres-
sion for the threshold production of x+ and m. to ex-
perimental data for meson photoproduction from deu-
terium, gives a value of, (fp)' about half as large as that
used in this paper. "The'absence of the peak at 90' could
be ascribed to the appearance of Leo&is sl&(re&is sl&+X)j

4,0

O
L P 0

E

g 2.0
C)

key---- 440
260

=--= 355
--== 200

0
0 45 90 l35

8 (degrees)

180

Fzo. 4. Differential cross sections for m ( ) photoproduc-
tion computed with interaction current Hamiltonian H~lt~.
p=cos '[p' p/p'pj. Numbers indicated in key denote energy of
photon, in laboratory system, in Mev.

's H. A. Bethe and F. De Hoffman, Mesons and Rselds (Row,
Peterson and Company, Evanston, 1955), Vol. II, p. 279; see also
G. Bernardini and E. L. Goldwasser, Phys. Rev. 95, 875 (1954).
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TABLE III. Table of experimental data' (do'/dQ in 10 "cm'/sterad).

Photon
energy in

lab. system
(Mev)

200
BBb

0.70
&0.11

59

0.85
&0.05

Center-of-mass pion angle (degrees)
93 107 123 135

m+ photoproduction data

0.98 1.01 1.05 1.19
&0.06 &0.08 &0.06 &0.19

148 159

0.95
&0.07

165 180

200
JQPe

0.66 0.78 0.88
w0.35 W0.45 a0.50

0.97 1.04 1.07
&0.52 &0.52 +0.52

1.08 1.07 1.06
&0.49 &0.46 ~0.41

1.05 1.05 1.04
&0.38 &0.37 ~0.35

260
TKW~

0.58 1.02 1.38
&0.23 &0.17 &0.11

1.64 1.81 1.82
&0.07 &0.04 &0.07

1.72 1.61 1.47 1.36
&0.12 &0.15 ~0.19 &0.21

1.32 1.28
~0.22 ~0.23

265
BB

0.80 1.16 1.82
&0.10 &0.11 ~0.17

1.94
&0.10

1.99 1.84 1.70 1.69
&0.18 ~0.13 ~0.24 ~0.11

265
JLP

0.18 0.77 1.28
+0.20 %0.26 &0.30

1.66 1.94 2.02
%0.32 &0.31 &0.32

1.98 1.88 1.75
&0.30 &0.27 &0.24

1.65 1.61
&0.22 %0.21

1.56
&0.20

320
TKW

1.17 1.50 1.76 1.93 1.99 1.93 1.77 1.62 1.46 1.34 1.29 1.24
~0.19 ~0.14 &0.09 ~0.06 &0.04 &0.06 &0.10 &0.13 ~0.16 ~0.17 ~0.18 &0.19

350
TKW

1.18 1.36 1.48
~0.18 &0.13 &0.09

1.55 1.54 1.47
&0.06 &0.04 &0.06

1.34 1.22
&0.09 &0.12

1.09 1.01
+0.15 +0.17

0.98 0.94
~0.17 ~0.18

440
TKW

270
GOS'

0.88
+0.14

0.82
&0.10

0.76
~0.07

1.41
&0.29

0.70
~0.05

1.24
&0.18

0.61 0.54 0.45
&0.03 &0.05 %0.07
~o photoproduction data

1.31 1.29 1.17
+0.13 &0.19 ~0.31

0.40 0.35 0.32
&0.09 &0.1i ~0.12

1.04 0.89 0.79
&0.40 &0.50 &0.56

0.30 0.29
&0.13 &0.14

0.75 0.70
&0.59 &0.62

320
OWf

2.30 2.62 2.55
%0.25 &0.14 &0.27

2 ~ 19 1.79 1.34
&0.47 &0.63 &0.78

1.02
&0.89

450
OW

0.74 0.83 0.82
&0.12 %0.07 &0.04

0.73 0.56 0.40
&0.08 &0.13 &0.17

0.24 0.13
~0.21 &0.24

450
WOTg

0.99 0.97 0.92
~0.33 &0.23 +0.15

0.85 0.73 0.61
&0.08 +0.05 &0.09

0.47 0.36 0.26
a0.16 ~0.21 ~0.26

0.20 0.17 0.15
&0.30 &0.31 ~0.33

a Of the papers cited below, the following —TKW, GOS, OW, and WOTobtain values of Ao, A1, and A2 in the equation do/dQ =Ao+AI cosg+A2 cos 8,
(JLP obtain Bo, B1, and B2 in the equation da/d& =Bo+BIcos8+B2 sin28) by a least-squares fit of these constants to the data. The table entries corre-
spond1ng to data given in these papers have been computed from the equations cited above and the constants reported in the respective papers.

b Beneventano, Bernardini, Carlson-Lee, Stoppini, and Tau, Nuovo cimento 4, 323 (1956).
& Jenkins, Luckey, Palfrey, and Wilson, Phys. Rev. 95, 179 (1954).
d Tollestrop, Keck, and Worlock, Phys. Rev. 99, 1283 (1955).
e Goldschmidt-Clermont, Osborne, and Scott, Phys. Rev. 97, 188 (1955).
& D. C. Oakley and R. L. Walker, Phys. Rev. 97, 1283 (1955).
& Walker, Oakley, and Tollestrop, Phys. Rev. 97, 1279 (1955).

(II—E,)a,*To= V, to'0'o, (39)

is violated in the intermediate-coupling theory by a
factor of approximately cu/~+X. 'o The cross section for
440-Mev photons differs substantially from experi-
mental data. However, the use of a nonrelativistic non-
recoil approximation at this energy is of questionable
validity, and this curve cannot be taken too seriously.

instead of Lcut~o o~&7' as the divisor of the Sot+& coeffi-
cient. That the latter is correct is strongly indicated by
Klein's low-energy theorem for the Ineson current
term. '4 Moreover, the erroneous appearance of (oo+X)
instead of co in the denominator of scattering amplitudes
is a well-known feature of intermediate-coupling theory.
It arises primarily from the fact that the identity"

The m+ cross sections obtained with II~i&1 suer from
a great excess of p-wave contributions and are com-
pletely inconsistent with the data. They seem to indi-
cate that the additional p-wave terms from Hector are
incorrect.

In the case of m' production, the calculated cross
sections again have somewhat similar angular de-
pendence to that of the experimental curves and show
the expected resonance at 335 Mev. It can be seen that
in this case the cross sections obtained with H are too
small by a factor of about 3—5, while those obtained
with H~itl are of about the right magnitude. This fact
can, however, be understood in terms of the following
relation proven by Chew and Low':

'4 A. Klein, Phys. Rev. 99, 998 (1955).
"G.F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956)."R.Drachman (private communication). See also R. Strotfo-

lini, Phys. Rev. 104, 1146 (1956). "Reference 5, Eq. (51).

(40)



PHOTOM ESON P ROD U CT ION

where g„and g refer to the magnetic moments of
the proton and neutron, respectively. The factor
[(g„g—„)/fp)' is too small by about a factor of 3 in
the intermediate-coupling theory. If this correction is
applied to the calculated x' production cross sections,
then the result that IIat~r leads to an excess of p-wave
contributions is again obtained.

It can be seen that the substitution of the Hg for the
H, interaction Hamiltonian results in marked changes
in the values of both the anomalous magnetic moment
and the meson photoproduction cross section. Since
one or another specific form of the gauge-invariant
interaction Hamiltonian is generally explicitly involved
in the calculation of electromagnetic properties in
extended-source theories, ' ' it is of interest to note that
the ambiguity involved in defining the most general
form is large. Capps and Holladay" estimate that the
use of H instead of H~ in the computation of the
anomalous magnetic moment changes the latter quan-
tity by —0.1373 nuclear magnetons. This figure is
arrived at by assuming a 0.1 probability of finding a
charged pion in the physical nucleon. Since the average
number of mesons in the physical nucleon according to
the intermediate-coupling theory is about 1.8,' the
additional anomalous magnetic moment of —2.5r 3

nuclear magnetons due to H arrived at in this theory
is not inconsistent with the former result. It is also of
interest to note that the use of the interaction Hamil-
tonian H, (as by Enoch, Sachs, and Wali) gives rise to
line current terms that are a relatively small correction
to the pion photoproduction matrix element. However,
the use of the term H q gives rise to such large line current
contributions to the p-wave part of the photoproduc-
matrix element, that they suffice to largely cancel the
P-wave contributions of II&r .

Contrary to the result of Chew and Low, ' the anom-
alous magnetic moment and the pion photoproduction
cross section are not simply related by an approximately
interaction-independent multiplicative constant in this
theory. To verify this fact, the following calculation
was made: A phenomenological term proportional to
e @was added to H„sufhcient in magnitude to restore
the anomalous magnetic moment to the value obtained

"R.H. Capps and W. G. Holladay, reference 3."R. Drachman and G. Feinberg (private communication).

with Ht, . The photoproduction matrix element due to
this term was then computed and added to Ma~, (m+)
and cVat&(sro). When this sum was compared with
M(sr+) and M(m'), it was found that substantial differ-
ences still existed. Part of the reason for the failure of
the photoproduction matrix element and the anomalous
moments to be proportional to each other may be in-
herent in features of the model used here for the physical
nucleon and for the pion-nucleon scattering state:
(1) the previously-mentioned failure of the identity
[Eq. (39)] to hold; (2) errors due to the approximate
treatment of the reduced space state function 5~ in
FLC." However, this above-mentioned failure of the
proportionality relation to apply can also probably in
part be explained by the fact that in this theory the
intermediate states are not limited to those in which,
at most, a single meson is allowed.
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APPENDIX

Numerical values of the reduced space integrals that
enter into the expressions for M(sr+) and M(sr') are
listed below:

O, g
———0.4546,

0,2' ———0.4764,

Si'= 0.4462,

O,g'= 0.2203,

0,8'= —0.0945,

0',,'= —2.18,

0',,'= 0.0461,

82'= —0 0805

86' ———0.1918,
Sg'= —0.2424,

0 '=0 1358

0',g"= —0.2493,

0,4'= 0.0007,

0',7' ——0.0516,

Numerical values of some other constants are" f'=O.g47,
E=5.772, X=3.39, p=0.381.

"S"(sq, ss, sq) ia approximated by S (sq). All BS"/Dx;~ are, how-
ever, treated exactly.

"Small differences between the values of some of these quan-
tities as given here and in FLC represent corrections of some
minor computational errors in the latter.


