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Form Factors in Quantum Electrodynamics*
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The electromagnetic form factors of an electron in pure quantum electrodynamics are analyzed with the
techniques of dispersion relations. The viewpoint is adopted here that no subtractions are required in the
construction of dispersion relations for the electromagnetic vertex. This leads to coupled integral equations
for the form factors in terms of other physical amplitudes; electron-positron scattering, for example. The
relation between this and the usual perturbation approach to quantum electrodynamics, and the validity
and consequences of the "no-subtraction" philosophy, are discussed.

I. INTRODUCTION

' 'N constructing dispersion relations for any process
~ ~ it is an open question whether or not subtraction
constants are required. In practice, in the analysis of
pion-nucleon scattering and photoproduction by means
of dispersion relations, ' the assumption that no such
constants exist has led to reasonably good agreement
with experiment. As a result it is tempting to suggest
that it is a general rule that such arbitrary constants
are never present. ' If such a "no-subtraction" philos-
ophy is combined with the assumption that dispersion
relations hold for all amplitudes, then one obtains an
infinite set of coupled homogeneous integral equations
connecting these amplitudes.

We should like to explore here the no-subtraction
philosophy, its validity and consequences. For this
purpose, we select quantum electrodynamics (QED),
and in particular, we study the behavior of the electro-
magnetic form factors of an electron in pure QED.
There are several reasons for this choice. The 6rst is
that pure QED refers only to one coupling, and one
coupling constant. The second is that experimentally
valid solutions, at least in the low-energy region, are
known to be obtainable through perturbation theory.
Finally, we 6x on the form factors because they de-
scribe a process with only three external particles and
hence satisfy a simple type of dispersion relation. Our
purpose then is to study the agreement with experiment
of the form factors obtained from the no-subtraction
philosophy. That is, we ask if it is possible to construct
form factors which vanish for infinite momentum trans-
fers, have the analyticity properties required for the
existence of dispersion relations, and also agree with the
usual perturbation theory, and hence experiment, at
low-momentum transfers.

with
Fi(q')y„+Fs(q') o„,q„

Fi(q')=e +pa( iq)e +ps

F, (q') = b, (q')cps+ (2)

where eo is the "bare" charge and q„ is the four-momen-
tum transfer at the vertex.

The "observable" charge is now defieed by

e= ep+ai(0) ep'+ (3)

and is experimentally found to be small, e'/4m= 1/137.
"Solving" Eq. (3) for ep in terms of e and inserting in

Eqs. (2), one may write

Fi(q') =e+cr(q')es+
Fs(q') =di(q') es+

It is convenient to begin with a brief discussion of the
usual perturbation approach to QED, and then to com-
pare it with the dispersion theoretic approach.

The conventional procedure of calculation in QED
may be summarized as follows, with particular refer-
ence to the form factors. The complete vertex contains
an infinite number of Feynman graphs (Fig. 1). Corre-
sponding to this expansion, one may write the vertex as

* This research was supported in part by the U. S. Air Force
through the Air Force Office of Scientific Research.

' Chew, Goldberger, Low, and Nambu, Phys. Rev. 106, 1337,
1545 (1957).' Chew, Gasiorowicz, Karplus, and Zachariasen (to be pub-
lished). This point of view is mentioned in this reference though
a subtraction was actually made in the calculation of the nucleon's
charge form factor. Recently G. F. Chew has discussed the no-
subtraction view of the nucleon structure factors. We wish to
thank M. Gell-Mann for a stimulating discussion of the implica-
tions of the no-subtraction philosophy.
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FIG. 1. Infinite series of Feynman graphs for the vertex func-
tion. Solid lines represent electrons and wavy lines represent
photons.
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and similarly for Fz. (The correspondence of the func-
tion to its diagram is indicated by writing the inter-
mediate state as a subscript. ) The form factor is then
obtained from the dispersion integral

1
Fi(q') =— P [ImFi(q")7„

3 ~p g
—

g
—26

—=2- LFi(q') 7-.
(A)

FIG. 2. In6nite series of "dispersion graphs" for the
vertex function.

According to our assumption the integral in Eq. (A)
exists, so that no subtraction is required. If this assump-
tion is not made, the dispersion integral may be given
in the form with the charge e appearing explicitly as a
subtraction constant:

with c,(0)=0, and with all expansion coeKcients in
Eqs. (4) finite. In practice, of course, infinite expansion
coeKcients appear in Eqs. (2). Because of the smallness
of e'/4zr, Eqs. (4) have been found to form a useful
expansion for low-momentum transfers. ' They no

longer have a term by term correspondence with the
Feynman graphs of Fig. 1. In particular e corresponds
to the erst graph of Fig. 1, plus the sum of the values

of all succeeding graphs at q'=0.
The dispersion theory procedure of calculation may

be described as expressing the form factors as an
infinite series of "dispersion graphs. " This is seen in

Fig. 2. To this series of graphs there corresponds a
series of functions calculated by well-de6ned rules,

[ImFi(q')7, -,+[ImFi(q )7,-„+

~2 oo d~f2

Fi(q') =e+—~ P [ImFi(q")7„
q"(q"—

q
—ze)

=e+2- HALF (q')7- —LF (0)7-}

is contained in

is contained in

and

(B)

FIG. 4. Relation of a Feynman graph to dispersion graphs.

+ ~ ~ ~

+ ~ ~ ~

Corresponds to

Corresponds to

It is of immediate interest to inquire into the connec-
tion between the dispersion description of the form
factor and the perturbation description. To make this
relation clear, it is convenient to take the diagrams in
both cases literally and to establish a correspondence
between them. To each dispersion graph there corre-
sponds a large and well-defined set of Feynman graphs,
as indicated in Fig. 3.

Similarly all Feynman graphs, except for one, fall
into the general types of dispersion graphs, as indicated
in Fig. 4.' The one exception is the lowest order Feyn-
man graph, Fig. 5, which we discuss now. It may be
said to be included in the subtraction constant e if
dispersion relations of type 8 are used. However, it is
our intention in this paper to study the consequences of
the assumption that dispersion relations of type (A)
are aPPlicable, in which case no term in P„[Fr(qz)7„
explicitly contains Fig. 5. Now dispersion relations of
type (2) imply that e is expressed in terms of itself, i.e.,

FIG. 3. Correspondence of a set of Feynman graphs to a
dispersion graph.

3 It is indicated by radiative correction calculations that the
relevant expansion parameter is (e'/4e) ln(qs/ms).

Lehmann, Symanzik, and Zimmerman, Nuovo cimento 2, 425
(1955).'It is evident in Figs. 3 and 4 that the same Feynman graph
contributes to more than one dispersion graph and vice versa.
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e= f(e). This follows directly from (A),

e=E- LFi(o)7-, (5)

when we recall that each (Fi)„, by means of a disper-
sion relation, is itself expressible as a combination of
amplitudes of physical processes which connect with
each other, and which connect in particular, back to
Fi(q'). For example, the first graph in Fig. 2, shows
that (Fi),-,. is related to Fi times the ee scattering am-

plitude; this scattering amplitude is related to e'/fir
again, via the graph in Fig. 6, plus other terms, Accord-
ing to Eq. (5) then, the lowest order Feynman graph
is given by a linear combination of many other Feyn-
man graphs which involve e to higher powers. Since
each of these graphs is included in the dispersion rela-
tions, we may consider that the lowest-order perturba-
tion graph is included as well.

Equation (5) may be looked on in to ways. On one
hand, one may say that Eq. (5) uniquely determines e.
According to this view, the requirement that the form
factors vanish at infinite momentum transfer forces a
new condition on the field theory, not present in the
usual description, which can be satisfied only for a
particular value of e. A second point of view is that
Eq. (5) is an identity in e. Then, as in the usual formu-
lation of QED, a solution exists for any value of e.
Another way of saying this is that the dispersion rela-
tions with no subtractions form an infinite set of coupled
homogeneous integral equations for all conceivable
physical amplitudes, in particular the charge form
factor. The two points of view described above may
then be expressed as follows: either this set of equations
has a unique solution, or it does not. In the first case, e

is uniquely determined; in the second case, the require-
ment that Fi(0) = e picks out a class (perhaps one) of
solutions; once this condition has been imposed, the
equation becomes an identity in e.

At present, it is not known definitely which alterna-
tive applies. For our purposes, this is irrelevant, since,
as will become clear later, our approximation is such
that the imposition of condition (5) can be used only
to obtain information about the form factor, and not
about the charge itself.

Since it is in practice not possible to calculate

LImFt(q')7„ for all intermediate states, we must work

with an approximation to Eq. (A). We do not expand

the form factors in a power series in e'. It appears in

out final result, in fact, that such an expansion is indeed

impossible. The nature of our approximation will be an

FIG. 5. Lowest order Feynman
graph for the electromagnetic
vertex.

expansion in intermediate states which contribute to
Fi(q ), i.e., an expansion in terms of dispersion graphs
instead of Feynman graphs. We note here a similarity to
the analogous expansion used by Chew and Low in
meson theory in calculating the physical amplitudes of
the meson-nucleon interaction. In particular we retain
only the state e= ee. The infinite set of coupled integral
equations is then reduced to equations coupling the
form factors to the electron-positron scattering ampli-
tude and to each other. In the dispersion relation for the
ee scattering amplitude, we shall keep only the con-
tribution from the pole, which is equvalent to renormal-
ized Born approximation, except at threshold and zero
scattering angle where an exact treatment is required
to avoid the infrared problem. This description of ee

scattering agrees well with experiments in the low-

energy region.

II. DISPERSION RELATIONS

The dispersion relations upon which we base our
discussions are the following:

ImF, ,(q's),

where F~ and J'"~ are defined as the usual electromagnetic
form factors:

X(ter
I
Ft(q')y„+Fs(q')~„,q, I ter+) (&).

We use the following notation: p+= (Fr+, y+) and

p = (E~, p ) represent the four-momenta of the posi-
tron and electron which are produced in state

I p+,p t l)
with incoming boundary conditions by j„(0), the com-

plete electromagnetic current operator evaluated at
x„=0, operating on the physical vacuum state IO).
The corresponding Dirac spinors for the positron and
electron are up+ and uy which are taken to be normal-
ized to N „u„=—8 ~e„=2m, and which satisfy the equa-
tions (P —m.)ui =0; (P++m, )sr+ 0. Here we choose——

In explicitly evaluating e from Eq. (5), one might 6rst be
tempted to expand the functions LFq(0) j„ in powers of es. This
would lead to a series e=p&(0)e'+p2(0)e'+ . . It is clear that
one should not expect such a series to be a reasonable approxima-
tion even though an expansion of the type indicated in Eq. (4)
is in fact useful. This is analogous to an attempt to expand 1/137
in powers of 1/137 starting with (1/137)'. It is however, a reason-
able expansion to write 1/150, for example, in such @ series sty, ru-

ing with (I/137)',

FIG. 6. Contribution
to ee scattering ampli-
tude proportional to e2.
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vs (P&P+) and +s & Yw7" 7 & ys' Ftnaliy Vp (P+)8

+(p )„represents the four-momentum transfer and
our metric is such that q'= qp

—q'-.

The properties of Ii j and F2 which are required by
Eq. (6) are that Fr and Fs are analytic everywhere in
the q' plane with a branch cut along the real axis from
q'=0 to ~, and that F~ and F2 vanish for large q'. A
reality condition

F (~2) F (~os) s

is also seen to hold for functions which satisfy relations
of this type. This condition that Ii j and Ii2 are real on
the real q' axis (except of course on the branch line)
also follows on physical grounds from the assumption
that QED is invariant under time reversal.

We offer here no rigorous proof of dispersion relations
Eq. (6).' ' However, the indicated branch cut and

where

and

x~(,)(p I[-, j,(*),j„(0)jlo), (9)

(z~„v„m—.)y.(x) =j,(x)

rl(xo) =1, ao)0
=0, xp(0.

Inserting a complete set of states and integrating one re-
duces this to a form which directly shows the branch cut:

reality property for F& and F2 may be seen to follow
directly upon application of the contraction rule to
the QED vertex, Eq. (7). Thus, combining the electron
state vector with the operator in Eq. (7), one obtains
the relationt

(P+p-' &

I j.(0) I 0)= —s l~d'*(2E -) 'e'" *
~.

(P+ I
~v-j.(o) I

~"')(~"'
I j.(o) I o) (2~)'5'(P++P- —P-)

(P+P-' 'I j.(o) Io)= —(2E.-)-'2
En Egg Ey ZC

(P+lj„(0)l~~+')(~~+&ltI, j,(0)lo)(2~) b (p +p„)
(10)

E„+Ep

(4Er~Er ) '(uv IImFt(q')y„+ImFs(q')o„, q, Imp+)
= ——,'(2' )

—r* P„(2s-)45'(p —
q)

x(p+lm.-j..(o) IN'")(~"'I j.(0) Io)
(4E~+Ev ) '~.(P+—P )-=—(12)

The imaginary parts of Fj and F2 thus appear in Eq.
' Bremermann, Oehme, and Taylor, Phys. Rev. 109, 2178

(1958); Bogoliubov, Medvedov, and Polivanov, Institute for
Advanced Study Notes, Princeton, 1956 (unpublished).

The second term of Eq. (10) has no singularity as is
readily seen in a coordinate system in which the electron
is at rest. The first term is singular whenever

v= P++P =P—
and the minimum value of q' satisfying this condition
is 0, corresponding to the threshold for production of
three photons.

The reality condition, Eq. (8), may be proved di-
rectly by comparing Eqs. (7) and (9) in the coordinate
system in which the positron is at rest with the complex
conjugate of the corresponding expression obtained from
Eq. (7) by combining with the operator the positron
state vector instead of the electron state vector and
transforming to the system with the electron at rest.
There results

Ft(q') v.=Fi(q'*)*vox,tvo,

F,(q') ~„,= Fs (q'") 'go~„,'v o,
—

or F&(q') =Fr(q'*)* and Fs(q') =Fr(qs*)".
Using reality condition Eq. (8), we have a direct

relation betweem ImF~, ~ and the discontinuity across
the branch line; explicitly, by Eqs. (7) and (10),

(12) as a, sum of contributions from various intermediate
states. The contribution of each state n vanishes for q'
less than the square of the total mass corresponding to
that state.

Separating off the contributions from the electron-
positron intermediate state (the dispersion graph in
Fig. 3), we write

ImF =g-"+ P g"
nQee

(13)

Reap g

ReF, , ,+
1—Imply, 2

Re(bt, sFs, t*)

1—Imag, 2

+ P g„''/(1 —Imat, s). (14)
nQee

Inserting this into Eq. (6), we obtain an integral equa-

1' We have dropped a one-time commutator in Eq. (9) because
it is a constant in the dispersion variable and does not contribute
to our discussion.

Choosing one-half the sum of ingoing plus outgoing
boundary conditions for the intermediate state sum,
we preserve the correct reality condition for each indi-
vidual contribution to A„(p+,p ), and hence of
A„(p+,p ) itself in any approximation which neglects
contributions of some states e. The contribution of the
electron-positron intermediate state in Eq. (12) is
proportional to the form factors themselves, the pro-
portionality factors being essentially just the physical
electron-positron scattering phase shifts. Thus, we
write, with a and b representing partial scattering
amplitudes,

ImF t, s ——Re (at, sF t, s*)+Re (br, sFs, t*)+ P ge"
ngee
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tion from which the functions F&(q') and F2(q') may be
determined. In particular, the electric charge emerges
as F~(0) and the anomalous magnetic moment of the
electron as —2F2(0).

Our problem is then reduced to the nontrivial evalua-
tion of a, b, and g„ in the right-hand side of Eq. (14).

III. EVALUATION OF ABSORPTIVE AMPLITUDE

In this section, we calculate the absorptive amplitude
in the approximation of neglecting all but the electron-
positron state, a=ee. In support of this, we refer back
to Sec. I and note that the amplitude of all higher
states has a threshold dependence down by a factor of
1/137. Since, however, the dispersion integral ranges
over all values of momentum transfer and experimental
information on QED is available only up to 200
Mev/c, ' neglect of the higher states in Eqs. (13) and
(14) is not a defensible approximation. It is, however,
an interesting one to pursue in order to obtain, perhaps,
a qualitative insight into the behavior of the form
factors. After carrying out the calculations in this
approximation, we shall discuss this point further.

We turn now to the calculation of amplitudes u~, ~.

As pointed out above Eq. (14), these are related to the
ee scattering amplitude, and in particular to scattering
in the '5& and 'D& states, the only states which a photon
can produce, according to angular momentum, parity,
and charge conjugation selection rules. With neglect
of the annihilation channel for the ee interaction, one
can follow the discussion of Blatt and Biedenharn' for
two-channel reactions and relate these amplitudes to
the two eigenphase shifts and one mixing parameter for
the '5~ and 'D~ states.

We do this as follows: First, from Eq. (12), the ab-
sorptive part is written as

L~.(p+,p )j .= pl~. (-p+,p--)3 -.+2L-4. (p+,p-)j -.,

with

X 2 (2-)'b'(p++ p q+ q)——
spins

x(P+ I
~~-i (o) I

q+q-"')(q+q-"'
I i.(o) I o) (»)

We may then write for the electron-positron scattering
amplitude'

(2E, )—:(p,l~, q. (0) Iq, q '+')

Sx'
(i)' ' 'C( g(1M@'m, ')

pE~ Mll'pp'

XCii(1Mps)(b( )
—5( g

=' =')

X F v~ *(Qy) I'i~(Qp), (16)
S. D. Drell, Ann. Phys. (to be published).
J. M. Blatt and I,. C. Biedenharn, Jr., Revs. Modern Phys.

24, 258 (1952).

in terms of the center-of-mass system, with Ep=Ep+
=Ep and p= p+= —p; Q„and 0, are the angles of the
final and initial relative momenta, and we have dropped
all but the J=1 and 5=1 terms, since only these
are relevant here. m, and m, ' denote the initial and final
spin projections of the electron-positron system.

For the pair production vertex in Eq. (15), we have

(q+q-"'li. (0) l0)=(4Ep+E-) '

(~p-IF~*(P)v.+F2*(i')~..i. I ~p+) (17)

with /„= (q++q )„.The complex conjugates of the form
factors appear here because the outgoing boundary
condition on the pair state changes the sign of the
discontinuity of the matrix element across the branch
cut. This may be easily seen by rederiving Eqs. (9) and
(10) with the outgoing boundary condition. The change
in the sign of the jump corresponds to replacing Ii by Ii*
according to reality condition Eq. (8).

In order to perform the angular integral remaining
after the delta function is satis6ed in Eq. (15), we must
further reduce Eq. (17), explicitly exhibiting its angular
variation in the center-of-mass system. We carry out
this reduction by introducing the Pauli two-component
spinors,

1
m— (E, +m, )l-

q/(E, +m, ) ~
'

and vq+~=iy„lq+ +*, in the representation with y„
imaginary, transforming to the center-of-mass system
q=q = —@+=pe, E,=E& =E&+, and doing the spin
algebra. Denoting the photon polarization unit vector by
e„= (ep, e) and introducing the unit vectors e = (—) e
with components

e,= (—1, i, 0)/v—2,

ep
——(0,0,1),

we obtain for production of the ee state with spin

magnetic quantum number m„

(q+q-, m."'
I i.(o) I o)e.

=%2em, * (Fg* 4m, F,*)e—
F,*—4m, F,*y q'

+ I

—4F2*-
E+m. & E,

=V2em, *. e(F~*—4m, F2~)

m, 't—qe yl 1——I(F,*y4EpF,*) .
E,)

Carrying out the angular integral in Eq. (15) and
performing the magnetic quantum number sums by
straightforward application of identities for Clebch-
Gordon coeKcients, as given in the present notation
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in Appendix A of Blatt and Weisskopf, "we obtain

Imn = ReTpp (2) l Re(To,P*)
e~+

I

—
I

E9) 1—ImT„'1—ImTpp

I 2) '*Re(T on*)
ImP=

I

—
I(9) 1—(2/9) ImT22

2 ReT22
+—

9 1—(2/9) ImT22
where

Rep, (18)

)2E+my fE+2mg
I4mF„

& 3E ) E 3m )
]m Eq —)E mq-

p(E) =
I IF~—

I
14mFs&E) (19)

arid

1
T p= (S 1) —e, —

2j

lrCOSSee22&o+Sjnsee»&2 S Sjn2e(e22&o —e»&2)s=l. . . . I, (20)
I 1 sjn2e(e»bo e2262) sjnseestso+cosqee2222)

in terms of the eigenphase shifts 8p and 82 for the 'S~
and 'D~ states and mixing parameter e. The argument
of bp, 82, and t is E, the energy in the center-of-mass
system, which is given by q'=48' in terms of the argu-
ment of the form factors Ii 3 and Ii 2.

Equations (18), (19), and (20) are in principle a
complete solution to our problem in the approximation
of keeping only the contribution of the ee-intermediate
state to the absorptive amplitude. In practice, however,
this is not a very useful solution since we do not know
Bp, 52, and e for electron-positron scattering. In order
to obtain approximate values of these phase shifts,
we return to Eq. (16) and calculate the ee scattering
amplitude in renormalized Born approximation; i.e.,
we write

This is equivalent to retaining only the pole in the
dispersion relations for ee scattering. It is then only
necessary to insert Eqs. (21) and (17) into Eq. (15) and
to perform the spin sums by standard trace techniques.

' J. M. Blatt and V. F. Weisskopf, Theoretical NNcleur Physics
(John Wiley and Sons, Inc. , ¹wYork, 1952),

(2Ev-) '(P+
l
~.-i.(o)

l
q+q-"')

=es(16Ep+Ev Eq+Eq )

(up p„uq )(vq~y„vv+)

(P q )'-—-
(uv p„vv+)(vq+youq )

I (21)
(1++P)'-

There results from this approximate calculation of the
absorptive amplitude the following expression:

The single angular integral which remains to be per-
formed in Eq. (22) diverges logarithmically for p—+1.
This divergence arises as follows: The Moiler scattering
amplitude becomes infinitely large for forward scatter-
ing because an infinite number of partial waves con-
tribute in the limit p= coso—+1. The phase shifts them-
selves are also infinitely large in Born approximation,
there being no finite partial-wave expansion of a scatter-
ing amplitude with angular variation

I sins(8/2)j '.
In the vertex under consideration here, there are,
however, only two eigenphase shifts for the '5~ and 'D~
states appearing as we have seen in Eq. (20). In order
to remove this divergence, then, we must give an exact
treatment of the forward scattering amplitude. This
it is possible to do because the two-body problem re-
duces to a one-body problem for forward scattering
angles and the exact amplitude for scattering in the
forward direction is available from analysis of the rela-
tivistic Coulomb scattering problem. That this is in
fact so is easily seen if we transform to a coordinate
system with one of the particles, say the positron,
initially at rest. In the limit of small-angle scattering
the positron remains at rest in this reference frame, does
not fiip its spin, and serves only as a point source of
the Coulomb interaction.

We must also give an exact treatment of the scattering
amplitude near threshold since the Born approxima-
tion is not valid as q'—&4m, ', and makes the scattering
amplitude become infinitely large there. It is also
possible to do this because the two-body problem again
reduces to a one-body problem at threshold and the
exact phase shifts are available for Coulomb scattering.

We first show that an exact analysis of the forward
scattering angles replaces the divergent expression by
the following:

dp —+ C=0.577 (23)

e' (qq —4m,s) '*

ImF, y„+ImF so„„q„=.
4r E q' )

(2q' —4m, ' ~
X (ReF1| +ReF2o"q )-:

I

0 q' —4mos )

dl2 (13—
I

—ReFry„+ReFsrr„, q. I

r1—p &12

)m 2~ m, '
ReFr 4— (ReFr+8m, ReFs)

& q' I q' —4m'

1
Xl v„+ o..q. I . (22)
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the Euler-Mascheroni constant. The Born approxima-
tion amplitude, Eq. (21), is applicable for scattering
angles tIt)8;„with 8;„((1,but &0 so that only a
finite number of phase shifts contribute. For 0(0;„we
replace Eq. (21) by the real part of the exact amplitude
expressed here for convenience in the coordinate sys-
tem in which the positron is at rest":

P (—)'(P ImCr —(1+1)'ImCrpt}Pr(p),

where to order e'/4w,

e' f'q' —4m, ') *'

ImF, (q') =—
l

4w 0 q' j
13 2m.s m,s(2C—1)

X C——— +
12 3g q2 —4m, 2

m.2

Since the forward Coulomb scattering amplitude is
spin independent and since pB is the only rapidly
varying function in Eq. (15) in the forward angular
cone defined by 0;„,it is clear that the identification in
Eq. (23) follows, "and we can now write from Eq. (22),

e'1(—)'1 l 1
ImCt&o= ——— +2C 2 2

4n- v n=1 Q

XReF t(q') —Sm.
q2 —4m,2

ReF&(q )
I

Thus

YB
4~

2C—1++ 2(2k+1)
L=l

ImFs(q') =- (—-', m, ReFt(q')
4w [q'(q' —4m.')]'*

+ (C—1)(q' —2m ') ReFs(q')] (27)
l 1

F ( ) I, (24) We turn next to the threshold problem and note that
at threshold (P +m, e—+0) Eq—s. (18—20) imply

We wish to join the contribution of Eq. (24) to the
absorptive amplitude to the Born approximation contri-
bution, Eq. (22), for p) 8;„.This requires the integra-
tionofy~(p) over the angular interval @=1to p= cos8;
= 1—8;„'/2. Since in fact only a finite number of phase
shifts contribute, we are justified in interchanging the
order of integration and summation in Eq. (24),
obtaining"

J 7adij
$g

8 1 1 1p
2C—1—P Z, (-;8,„')

~

+-
~

. (25)
4s. 2p ' t r ()+1 l j

The sum in Eq. (25) converges rapidly for l)8;„'and
is readily evaluated, using the generating function for
I egendre polynomials:

1 1) ( 2
P F((-,'8;„')

) +—
~

=2 ln~ (
—1.

k)+1 I j E8

We obtain finally

1 e' ( 2
y~dp= ) C—ln

i&I ln 47rp— 8m in

( («ossmin dp
(26)

4wp'E J, 1—
f j

"N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Oxford University Press, Oxford, 1949), second edition, p. 80."E.T. Whittaker and G. N. Watson, Modern Analysis second
edition, (Cambridge University Press, Cambridge, 1950), fourth
edition, p. 333.

as
Im(Ft 4m, P&)~tan8e Re(F,—4m, F&)

f q' —4m.'):
s, =( /~0,

q'

and Eq. (27) gives

(e') C
Im(F, —4m, P,)~~ —

~
Re(F,—4m, P,).

E4 '2p,

From the analysis of Coulomb scattering, it is known
that

( e'
y C jr e' ) C

tangos ——
]
—

f

t 4s.j pt~b (4w j 2s~.~.

4m

for
g2

and that tanbp goes through an infinite number of
resonances with logarithmically increasing rapidity as
v, ,„,—&0. In order to give the correct threshold behavior
to the absorptive amplitude, it is necessary only to
factor out (e'/4w) Lq'/(q' —4m.s)]l in Eq. (27) and make
the substitution

8 1 2—+ —tanbp.
krv, C

"The correspondence of kinematic factors between Eqs. (22}
and (26) comes out this way: putting amplitude (26) into (15)
gives

fd~.fd~ s(p++p ~+ ~ ), , f,'„.2=-d.
1 Ey

where Ep /p is expressed in the system with the positron at rest
and may be written in invariant form as

p- P+ V' —2m.'
L(p .p )2 ~ 2)~I Lq2(g2 4er 2) j$

corresponding to the coefficient of the logarithm in Eq. (22).
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This leads to the equations and the form factor variation

/2
ImFi(q') =

I
—tanBp

I

EC

q' —4m'p 13 2m'~'I c——
q' E 12 3q' )

m.2

X
4'

q2 —4m, 2

ReFi+ (C—1) ReF2 .

Within the framework of our approximations, Eqs.
(27') represent the absorptive amplitudes for the elec-
tromagnetic vertex. Inserting them into dispersion
integrals Eq. (6), we obtain the following integral
equations for the electromagnetic form factors:

f
Fi(q') =-

71 ~4me2 g g ZC

(2 ) (' 13 2m, '

(C ) 0 12 3q"

q"—4m/ (2C—1)mP
+ ReFi(q")

Sm.'

de
21

IFp(q')=- '

X' "4me~ g
—

g
—Ze

(2 )t m,
&&

I
tan8p

I I
ReFi(q")

EC ) E 4q"

—2me
+ (C—1) ReF&(q") l. (29)

Our discussion of the form factors is based on Eqs. (28)
and (29).

IV. DISCUSSION

Let us first fix our attention on the moment form
factor. The close agreement between the perturbation
predictions of QED and experiment establish, to order
e'/4pr, the moment value

m.2 Sm,'
+ (2C—1) ReF i— ReF, , (27')

gl2 (f2

( 2
ImFp(q') =

I
—tanbp

Iic )

(2m' Iql')
Fp( —IqI')=——i~~pl ( Iillp 4m 2)

for space-like momentum transfers mP«
I qI

'& (several
hundred Mev/c)'. This behavior of Fp(q') is reproduced
by Eq. (29) if the charge form factor Fi is repla, ced by
its perturbation value,

Fi(q')~Fi(0) = e,

for q'& (100 Mev/c)'. To this approximation the
moment form factor in the right-hand side of Eq. (29)
may be neglected since it is smaller in magnitude than
Fj and dies out suKciently rapidly for large q values.
Equation (29) then simplifies to

1 " dq" |'2 ) (' em, g
Fp(q')=—, . I

—tan~o II —,I, (3o)
4m.~q"—q' —ip &C ) & 4q') '

which agrees with experiment. Note also that the rms
radius of the anomalous electron moment is 1/m„ the
electron Compton wavelength.

Turning next to the charge form factor, we ask
whether there exists a solution of Eq. (28) of the form
used above for F~ in fitting the observed moment
structure. First of a, ll, it is easy to see from Eq. (28)
that there is no valid expansion of F~ in powers of e', in
contrast with the above discussion for F2. Explicitly,
if one attempts to write

F,(q') =P, (f') e'+P, (q') e'+

the coefficient pi(q ) is infinite. This reflects the fact
that perturbation theory does not yieM a charge form
factor which satisfies a dispersion relation of type (A)
with no subtraction, since, to lowest order in e, Fi (q') = e

I
see Eq. (4)$, a nonzero constant for q'—+ pp. This is in

violation of the assumption that the dispersion integral
(2) exists. The subtracted form (8) of the dispersion
relation, of course, provides a convergent expansion
equivalent to the usual perturbation theory. Secondly,
upon comparing the coefTicients of Re Fi(q') in Eqs. (28)
and (29), we see that Eq. (28) for the charge form factor
weights the region of high-momentum transfers by an
extra power of (q'P/m'). In fact, since (2/c) tanbp —+e'/4'
over almost the entire range of momentum values,
Eq. (28) tells us on dimensional grounds that (q'2/m')
values up to exp(137) will contribute. The neglect
of all but the ee intermediate state in the absorptive
amplitude is probably not valid at these large momen-
tum transfers. Ignoring this for the moment, we may
solve Eq. (28) in the following way. We assume that
mFp(q')«F, (q'). Then

1(e) e
F.(o) = ——

I
—

I
=—p~~p

4 &4 )2m.

1
F (q')=-

~ „, . g (q") ReF (q"), (31)
~ ~4me2 g g
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where It is possible to show that this results in an anomalous
moment differing even in sign from the perturbation and
experimental results. We conclude that within the ap-
proximations made, it is impossible to satisfy both the
requirements that the solutions reproduce perturbation
theory and that the form factors vanish at in6nity.
This is very likely due to the inadequacies of the
approximations, particularly in the high-momentum
region.

One may turn to the subtracted dispersion relation
(8). For this case, the choice I=0 is acceptable, since
all that is required is that Fi(q')/qs-+0 as q'~eo. Thus,
perturbation theory is reproduced by Eq. (8).

It is interesting to note in this connection that the
particular subset of diagrams included here has changed
the asymptotic behavior of the form factor from that
indicated by perturbation theory. It is therefore not
inconceivable that inclusion of all diagrams might
produce form factors vanishing at inanity in support
of the no-subtraction philosophy. It was to be hoped
that the subset of diagrams actually included would
itself be sufhcient to produce vanishing form factors;
this would have occurred if the sign in,Eq. (33) had
been reversed.

It may be worth remarking that if we accept the
solution Eq. (34) with n=0 for low-momentum trans-
fers, one obtains a mean-square radius

2 ( 13 2trte )
gi(q') =—«»s

I
C'——

C & 12 3q' )
q' —4m, ' m.2

X + (2C—1) . (32)
g2 (f2

Note that as q"~,
(8 ) ( 13)

gi(q')~I —
I I

c——
I «

(4nrl E 12i
(33)

According to Omnes, '4 the general solution to Eq. (31) is

F(q')
Fi(q') = exp' (q') j,

(qs 4m 2)o
where

g p 8g
p(q') =— tan-'g, (q"), (35)

sr & 4m' q's(q's —q' —ie)

I is an integer, and F (q') is a polynomial.
I' and e must be chosen so as to give the correct

boundary conditions Fi(0) = e and Fi(oo ) =0. The most
appealing choice would be N=O, and F(q') =e. From
Eq. (35), however, it is easy to see that

1 'e ( 13) ( q
p(q')~ —-tan ' —

I
&——

I

. 4rr ( 12) E4rrt, sl (e'y1( 33~ 1
2c——

I
&o.

44srJ sr E 20) rtt,s
(37)

as g
—+, and therefore with this choice of E and e, it is

impossible to satisfy the condition Fi(oo) =0. We trace
this difhculty to the sign in Eq. (33). This is most un-
fortunate since this solution is practically a constant
(=e) for the range of q'/4rtt, s contributing to the mo-
ment form factor, and therefore reproduces perturba-
tion theory. "It is as a result necessary to set m equal
to 1. If this choice is made, the resulting Fj is

The second moment of 'the charge distribution is thus
observed to have a negative mean-square radius. It is
of interest to recall here the analogous behavior of the
photon or boson propagator in field theory. "

Finally, Eqs. (28) and (29) superficially look as
though they might be an eigenvalue equation for the
fine-structure constant e'/4 r. sIn fact, they are not, but
have solutions for any value of e'/4 Esrquations (28)
and (29) clearly cannot determine the charge e, since
they are homogeneous in Ii

& and Ii 2. As to whether the
inclusion of other intermediate states in calculating the
imaginary parts could determine e uniquely, we have
no information.

e
Fi(q') = expl p(q')].

1—(q'/4rtt. ')
(36)
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1 13 e gexp ———c —ln
m 12 47r 4me2

and deviates from perturbation theory for q')m, ~e"'. For such
large values of momentum, Landau and collaborators have argued
that electromagnetic processes must be damped out if e'/4 s
= 1/137 is to result from a consistent QED which starts from a
real nonvanishing value of the bare charge e0. See L. D. Landau,
in diets Bohr artd the Deoelopmertt of 7tloderrt Physics (McGraw-
Hill Book Company, Inc. , New York, 1954).


