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Integral Representation of a Double Commutator
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An integral representation is found for the vacuum expectation value of a double commutator. The
problem of incorporating the Jacobi identity into such a representation remains unsolved.

I. STATEMENT OF RESULTS

ET xi, xs, xs be three space-time points, and A (x),
- ~ B(x), C(x) three scalar fields which may be the

same or different. The vacuum expectation value of a
double commutator will be denoted by

mutator, analogous to Lehmann's original investigation'
of the single commutator. In order to analyze the double
commutator completely, one would have to find a repre-
sentation which includes the information contained in
the Jacobi identity

D(y,s)=Dc»(y, s)=(LG(»), L&(»), A(»)57)0, (1) ""y" + "' " + """
P= S] X2y 3= $2 X3.

It is assumed that the theory is invariant under proper
inhomogeneous I orentz transformations, but not neces-
sarily under space or time reQection.

The Fourier transform of D(y, s) is

The problem of satisfying Eq. (8) seems quite dificult. '
It seemed worthwhile to place the representation (6) on
record, since it is simple and may be of some practical
use, although it fails to include this basic symmetry
property of the double commutator.

II. PROOFS

~(p,q) = D(y s) ex%&p. y+&q. s5deyd4'

From the assumption that 6elds commute at points
separated by a space-like interval, we deduce

D(y, s) =0 if either y'&0 or both s'&0, (y+s)'&0. (4)

From the assumption that there exists a complete set of
states which are eigenstates of the total energy with
non-negative eigenvalues, we deduce

F(P,q) =0 if either qs&0 or both P'&0, (P—q)'&0. (5)

It will be shown that the conditions (4), (5) imply the
existence of an integral representation

We erst prove the uniqueness of the representation
(6), if it exists. For this purpose we introduce the mixed
position-momentum function

I%I

G(y, q) = D(y, s) expLiq s5d4s

Equation (6) is then equivalent to

GO W (Il
G(y, q) =e(y q))l ds)l dt) D.

0 0 0

X c(os, t, ))i5(y' —s)5(q' —t) exp( —i)iy q5, (10)

with (ces, t, ))tdetermined in terms of (lsfr, t,X). We have
to prove that (cos, t, ))—=i0 if G(y, q) =—0. The integral on
the right of Eq. (10) is a function of three real variables,
(y', q', y q) . If G=—0 this integral vanishes in the physical
range where (y q)'~&y'q'. But because the range of
variation of X is bounded, the integral is an entire
function of (y q) for fixed y', q'. If the integral vanishes
for physical values of (y q), it must vanish also in the
nonphysical range. But then the Fourier integral with
respect to the variable (y q) can be inverted, giving
the result co(s, t,X) =0.

The proof of existence of the representation (6) is a

~
00

ds dt d)~ lf (s,t,)~)a, (y)a, (s+)~y), (6)D(y, s) =
"0

in which iP(s, t,)i) is a function of the real parameters s, t,
)t in the indicated ranges, while A, (y) is the usual
invariant commutator function for a free field with
mass s:.There is a complete symmetry between position
and momentum-space, since the Fourier transform of
Eq. (6) has the form

~CO OD ~l
I'(p, q) = ds i dt) d)t ~t(s, t, ))tA, ( )qA, (p —)tq), (7)

0 0 0 ' H. Lehmann, Nuovo cimento 11, 342 (1954).' It is known that the Wightman function W(y, s)
with a weight-function @(s,t,X) which is expressible in =(C(xe)&(xs)A(~i))o can be expressed in terms of the double

terms of P We shall ~rove also that the representation comrnutators D(y, s) if and only if Eq. (8) is satisfied. Therefore
an integral representation of D(y,s) satisfying Eq. (8) would auto-

(6) or (7) is unique, so that the weight-function ip or 4 matically include the deep results of Wightman and Kallen con-
is determined when D or P is given. cerning the dorriain of regularity of W'(y, s). See G. Kallen,

~ ~ ~ ~ Proceedings of Seventh A nnla/ Rochester Conference on High-EnergyThe rePresentation is Preliminary to an attemPted i@le)ear physics zy5'7 (Znterscience publishers, Inc. , New @or
analysis of the analytic structure of the double corn- 1957), Session IV, p. 17.
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simple deduction from the work of Jost and Lehmann'
on the single commutator. Suppose that the vector y
has the special form (2a,0,0,0) with a)0. Write

D(y, s) =d(a, w), w= s+-,'y, (11)

and consider d(a w) as a function of the vector w= (wp w)
for fixed a. By Eq. (5), the Fourier transform of
d(a, w) with respect to w is zero outside the light-cone.
By Eq. (4), the function d(a, w) itself vanishes in the
region

lwl) lwpl+a. (12)

According to Theorem 2 of Jost and Lehmann, ' these
conditions are sufhcient to ensure that d(a, w) possesses
a representation

D(y, s) =D(—y, —s) (18)

Since the right side of Kq. (6) is even in y and s jointly,
Eq. (18) is sufFicient to complete the proof.

We have proved Eq. (17) only for positive a. Writing
a'=y'/4, and using the inva, riance of D(y, s) under
proper Lorentz transformations, we may conclude
from Eq. (17) that Eq. (6) holds for ally in the future
light-cone. For space-like y, both sides of Eq. (6) are
zero. It remains to prove that Eq. (6) holds for y in the
past light-cone with the same weight-function P. For
this purpose we invoke the TCP invariance of the
theory, which according to Jost4 is a consequence of the
local commutativity which has already been assumed.
The TCI' invariance implies

d(a, w) = d22t i dt[C, (u, t)
ACKNOWLEDGMENTS

in which the integration over the three-vector u extends
over the sphere lul &~a. Since d(a, w) has three-dimen-
sional rotational symmetry, the weight-functions 4 l and
C» will be functions of u' and t only.

The problem now is to convert the "horizontal"
representation (13), in which the auxiliary variable is
the space-like vector u, into a "vertical" representation
in which the auxiliary variable is a purely time-like
vector. Let v denote the time-like vector (a,0,0,0). The
conversion is made by means of the identity

APPENDIX. VERIFICATION OF EQ. (14)

We wish to verify that Eq. (14) holds for every
4-vector w. Take the Fourier transform of Eq. (14)
with respect to m; all components vanish on both sides
except on the mass shell with mass t:. Thus Eq. (14)
reduces to

sin[b(r' —t) t]
2 = p(b) I da e"'"Ip([t(b' —s')]l). (19)

(r —t) *

)~dpu b(u' —b')d, (w —u) Both sides of Eq. (19) are entire functions of t. It is
therefore sufficient to verify Kq. (19) for real negative t.
Setting 3= —nz' and taking the Fourier transform with
respect to r, Eq. (19) becomes

I thank Dr. Jost and Dr. Lehmann once again for
+42(u, t) (8/ plw)p] A( w u),—(13) their help, and especially for their refusal to be satisfied

with anything less than the Jacobi identity.

in which Ip is the Bessel function with imaginary argu-
ment. We defer the verification of Eq. (14) to the
appendix. Substituting Eq. (14) into Eq. (13), we find

with

F00 O

d(a, w) =
) dt) dv ti(a, t)v)h, (w —v),

p —a
(15)

Writing v= (2
—X)y and using Eq. (11), we deduce

from Eq. (15)

~l
D(y,)= I dt~ dX

0 0

Xv(a, t,X)h, (s+Xy), y= (2a,0,0,0). (17)

3 R, Jost and H. Lehmann, Nuovo cimento 5, 1598 (1957).

a

p(a, t 0)=22r I bdbci(bp, t)Ip([t(b2 —v2)]:)
lvl

+2 (8/Bv) )f bdb C (b', t)I,([t(b' —a')]'*). (16)
lvl

p(b)9(b' —2')J [222(b' —a') l]

~i~ ~.dgdr p(g)$[g2 r2 2222]

Xexp[i(bx —pr)]. (20)

2
p(b) Jp(mb) =—

JI sin(mb coshe)dg,
p

(21)

which is a standard formula for the Bessel function.

R. Jost, Helv. Phys. Acta 30, 409 (1957).

This formula is the two-dimensional analog to the
standard expression for the commutator-function of a
free field in four dimensions. To prove Eq. (20), observe
that both sides are invariant under I,orentz transforma-
tions of the 2-vectors (b,p) and (x,r). The right side,
being an odd invariant function, must vanish when

(b, it) is space-like. It remains only to verify Eq. (20)
for time-like (b,s); in this case, because of the Lorentz
invariance, we may assume without loss of generality
that a=0. When 2=0, Eq. (20) reduces to


