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Dirac-Like Wave Equations for Particles of Zero Rest Mass, and Their Quantization*
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The basic algebraic structure of the Maxwell equations (in a particular form) is iirst abstracted. This
structure is then used as a model for wave equations for other massless particles. Gauge-independent wave
equations of Dirac type (more precisely, of Pauli type) are thus found for every half-integral positive spin.
Multiple-spin equations of Dirac types are also found. The single-spin equations are then quantized. The
in6nite-dimensional equations are not considered.

1. INTRODUCTION
' ANY papers have been written on wave equations

~ ~ for massless particles of arbitrary spin. ' Most of
these approaches utilize spinor analysis with the result
that the equations so derived are complicated in ap-
pearance. Also, although spinor notation facilitates
quick derivation of wave equations, it frequently ob-
scures the underlying structure of a theory.

The present theory is an algebraic (nonspinor) one

which takes the photon as a model for all massless

particles. Most important, however, is the fact that the
wave equations yielded by this theory have an ex-

tremely simple and usable form, namely the Dirac form

n„V'Q=O, (p=O, 1, 2, 3)

where the e's are square Hermitian matrices satisfying

fn, ,n, )+.=28,;, (i, j=1,2, 3). (1.2)

Besides being simple in form, these equations have
the following desirable properties:

(1) For every positive half-integral spin there is an

equation.

(2) The dimension of the matrices of the spin s
equation is only 4s.

(3) The equations are gauge-independent; i.e., only
transverse particles (or states) enter the theory.

(4) The spin —,
' and spin 1 equations are the (2-

component) neutrino and photon equations, respec-

tively.

(5) Massless particles with more than one spin state
can also be described by these equations.
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V'& = cl/cix„, ii = (0,1,2,3),

Xo= —t, X&=X, X2= y, X3=S,

(2.3)

(2.4)

then the free-held Maxwell equations can be written

n„V'Q=O. (2 5)

[n, ,n;7~=28;;, (i, j=1, 2, 3)

and the relations

(2.6)

The n s are Hermitian and satisfy the Dirac anti-
commutation relations4

2. MAXWELL EQUATIONS

It has been shown by Moses' that the Maxwell equa-
tions can be written in a gauge-independent, Dirac-like

n&ns= in&, (cycl. 1, 2, 3).

Equations (2.6) and (2.7) imply

(2.7)

*A preliminary report of this work was made at the 1958 New
York Meeting ol the American Physical Society (J. S. Lomont,
Bull. Am. Phys. Soc. Ser. II, 3, 36 (1958)j.' See the reference list in the book by E. M. Corson; Introduction
to Tensors, Spinors, and Relativistic lVave Equations (Hafner
Publishing Company, Inc. , New York, 1953), p. 177.

2 H. E. Moses, Suppl. Nuovo cimento 7, 1 (1958).

fnr, ns) =2ins (cycl.), (2.8)

'We take c=A=1, —g00 g11 g22 g33 1 ~

4 Greek indices run from 0 to 3; Latin indices from 1 to 3.

and conversely (2.7) and (2.8) together with the fact
that n,s= I imply (2.6).
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8x"=co~"g„,x") (2 9)

(2.10)

If under the infinitesimal Lorentz transformation These equations describe the structure of the theory to
be investigated.

Equations (3.3), (3.4), and (3.5) of course imply the
Dirac anticommutation relations

f transforms according to the equation (0.;,n;g+ = 28,, (3.12)

of = —oi«"E—

Ep, v Epp)

(2.11)

(2.12)

where the six independent E„„'sare 4X4 matrices, then
it follows that the E„„'sand nz's satisfy the commuta-
tion relations

LE„,~i,g = —~„(g,~+g.o~i,)+~,(g„~+g.e*~). (2.13)

These relations are also satisfied by the n's and E's of
the Dirac electron theory. Since the E's are the infini-
tesimal transformations of the Lorentz group they must
also satisfy the commutation relations

LE.)„E«.j—= g i,E-+g),—.E.,
+g„«Ei„g„,Ei,«. —(2.14)

The condition (3.4) on. the n's diGerentiates these n's
from the Dirac (or nonzero rest mass) n's because it can
easily be shown' that there is no Hermitian matrix P (of
the same dimension as the a' s) such that

p2 I
P,~'3+= o.

(3.13)

(3.14)

where

Hg=i (8&/BI), (3.15)

The n matrices used here might be called Pauli n
matrices because of the analogy to the Pauli spin
matrices.

The wave Eq. (3.1) can be written in Hamiltonian
form as

3. GENERALIZATION
Since

B=—ie V. (3.16)

The basic algebraic structure of the Maxwell equation
of the preceding section will now be extracted to provide
a basis for describing a large class of Dirac-like wave
equations for zero-rest-mass particles.

The wave equations will be assumed to be of the form /=0, (3.18)

(3.1"/)

it follows that II satisfies the zero-rest-mass Klein-
Gordon equation

a«V+= 0, (3 1) Wllele

where P is a column matrix, the n's are Hermitian
matrices of the same dimension, '

and

np= I)

ain, =ino (cycl.).

(3 2)

(3.3)

From (3.4) together with the Hermiticity of the n, 's it
follows that

Pn&, noj =2ino (cycl.). (3 5)

8x' =co""g

the wave function f transforms according

III = 'oi«"E——

Ep, p EJpp)

(3.6)

(3.7)

(3.8)

(3 9)

then the E's must satisfy the commutation relations

LE.„~~&= —~.(g.~+g,~~)+~.(g.~+g.~~), (3.10)

fE„,E„„g= g„K„„+g„K'„„+g„„—K „g„.K „.(3.11)—
' I is the unit matrix of appropriate dimension.

Furthermore, if under the infinitesimal Lorentz trans-
formation

= Vo —Vo' ——V«V«. (3.19)

Finally, the covariance of the wave Eq. (3.1) under
the proper, orthochronous, homogeneous Lorentz group
can be demonstrated.

8(ni V~/) =n),,(8V~)/+a), V"bf
=Quoi «g«yV"Q oQgV (d«K«yap

= (co" g«ni, V" oi«"E ~—yV—
2~« "~,(g,—i,+g,~i.)V"

+o~ ay(g«x+g«oak)V )f
=0 (3.20)

I am indebted to H. E. Moses for pointing this out in a private
dlscusslon.

4. LIE ALGEBRA Q',

From (3.5), (3.10), and (3.11) one sees immediately
that the 9 matriCeS ni, n2, n3 E23 E3i E]2 Epg Ep2,
Ep3 form the basis of a Lie algebra Q,. All possible
matrix forms of the n's and E's can therefore be found
by finding all representations of this algebra. Since the
algebra 8 is semi-simple )as is shown by (4.8)j the
representations of Q are all direct sums of irreducible
representations. Therefore, only the irreducible repre-
sentations need to be found. It must be born in mind
that only those representations satisfying the condition
(3.4) are usable.
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If we let
K= (Epp, Ep),E),),
Q (Epl)Ep2)Ep3) y

M= K+-,'in,

K= R+-,'n,

(Mpp, 3IIp),M) p) = M,

(M p&, M'pp, Mpp) =K,

(4.1)

(4.2)

(4.3)

(4 4)

(4 5)

(4.6)

O', =2+ R. (4 g)

This relation essentially reduces the study of 6, to the
study of the well-known algebras 2 and (R.

5. IRREDUCIBLE REPRESENTATIONS OF 8,

In this paper attention will be restricted to the hnite-
dimensional irreducible representations of 8. These can
be constructed from the hnite-dimensional, irreducible
representations of 2 and R very easily.

The irreducible representations of 2 can be labeled

by two discrete indices m, +=0, —,', 1, —,', . . . The
irreducible representation 6 „hasdimension (2m+1)
X (2n+1). The irreducible representations of (R can be
labeled by a single index j=0, 2, 1, —,

' ~ ~ .The irreducible
representation 6; has dimension (2j+1).If

~„„-+D("")(M'„„)in 6„,, (5.1)

then the M„„'ssatisfy the commutation relations of the
Lie algebra 2 of the Lorentz group

L~.)„Jif,.] = —g)„~.,+g)„~„
+g„„M),„—g„M),„.(4.7)

Furthermore, the 3f„„'scommute with the o.'s, and
the o.'s form a basis of the Lie algebra R of the three-
dimensional rotation group. Hence, the Lie algebra 0', of
the n's and E's is the direct sum of the two Lie algebras
Rand I,,

For D'*'(n, ) one can take the Pauli spin matrices

/0 1) (0
D'*'(n)) =

I I, D"'(np) =
(0)' '
Ei 0)'

(1 Oq

Eo —1)

(5.8)

The n matrices (5.7) are now seen to be Hermitian.
Let us call the usable irreducible representation of 0', ,
defined by (5.6) and (5.7), I',„.

6. SUBALGEBRA 2'

C{——K'—Q',

Cp=K R.

These satisfy the relations

Lc„E„„g=o,

LCpE„„j=0,

(6.1)

(6 2)

(6 3)

(6.4)

so that in an irreducible representation of 2' they are
represented by scalar matrices. Let us furthermore
define

The elements E„„of8, generate a subalgebra which is
isomorphic to the Lie algebra of the Lorentz group, so it
will be called 2 (to distinguish it from the subalgebra
2 generated by M„„).When the irreducible representa-
tion F,„of0', is restricted to the subalgebra 2' it
becomes a representation of Z'. Let us call this
"subduced" representation I'„.The question to be
answered in this section is how I"'„decomposes into
irreducible representations of 2'.

To answer this question we shall evaluate the eigen-
values of the two Casimir operators

D,= M' —K',

Dp ——M K.
(5.2)n,—&D(» (n;) in

~D(m, ,n)(~ )(g)I{j)

n ~I(m, n) (g) D (j) (n .)

then
(5.3) Then

(5.4)

where I(&') andI' "' are the(2 j+1)-and(2m+1)(2~+1)-
dimensional unit matrices, respectively, in an irreducible
representation of 8. Furthermore, every irreducible
representation of 0, is of this form (for some m, e, j).

The restriction (3.4) means that the usable matrices
D(') (n,) must also form an irreducible representation of
the Pauli ring. ' Since the only irreducible representation
of the Pauli ring is two-dimensional, only the irreducible
representation

(5.5)n ~D(k) (n,)
of (R is usable.

The usable irreducible representations of 8 are
therefore

C,= (M—-', in)' —(ffi'.—-'n)'
= M' —iM. n —-'n' —S'+S n —-'n'

= M' —PP—-', —i (M+ iK) n,

or

Ci—Dx+$= —i(M+i9R) n.

Similarly

Cp —Dp ——,'i= —-', (M+iK) n.

Using the relations

L(M n), (R n)]~——2Dp+2iK n,

(M. n) '= M'+ iM. n,

Z '0,'

(6.5)

(6.6)

(6.7)

(6.g)

(6.{))

(6.10)

(6.11)

M —&D(" "'(M,) (g) I('*),

n ~I(m, n) {g)D(~~) (n,)

(5.6)

(5.7)

one easily finds

f (M+iPQ) n)'=Dg+2iD2+2i(M+iK) n. (6.12)
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C2. &'&i{(m+-', ) (m+-', ) —n(n+1) },
'"z{(m ——,') (m+-2') —n(n+1) }. (6.18)

Corresponding to each irreducible component of
I' "„there is one pair of eigenvalues (yi, y2), where yi
and p2 are eigenvalues of C& and C&, respectively. From
(6.15), (6.16), (6.17), and (6.18) we see that there are
only two possible pairs:

(1): pi= —2{(m+ —',) (m+2)+n(n+1) },
(6.19)

y =i{(nz+-,') (nz+-,') —n (n+ 1)},
(2): yi ———2{(m ——,') (m+-,')+n(n+1) },

(6.20)
f2= i{(m ,') (m+—-',—)—n(n+ 1)}.

These two pairs correspond to the irreducible com-
ponents 6 +„nand 6;,„.Hence

Combining (6.12) with (6.7) and with (6.8), one finds

(Ci—Di+ 2)' —2 (Ci—Di+-,')+Di+2iD2 ——0, (6.13)

4(C2—Dz —zz)'+4z(C2 —D2—4z) —Di —2zD2= 0. (6.14)

We are now in a position to compute the eigenvalues
of C~ and C2 in the representation I',„.In the irreducible
representation 6, n of 2 the operators B-i and D~ are
scalar operators (since they commute with M'„„),and
are given by the well-known expressions

Di= —2{m(nz+1)+n(n+1)}I, (6.15)

D2 i{m(—m—+1)—n(n+1) }I, (6.16)

where I is the (2nz+1) (2n+ 1)-dimensional unit matrix.
From (5.6) we see that in the irreducible representation
F „of8 the operators Di and Dz are given by (6.15)
and (6.16) if I is taken to be the 2(2m+1)(2n+1)-
dimensional unit matrix. If C~ and C~ are in diagonal
form the Eqs. (6.13) and (6.14) become Lwith the use
of (6.15) and (6.16)$ quadra, tic equations for the
eigenvalues of C~ and C2. Solving these equations, one
finds for the two distinct eigenvalues of C~ and of C~ the
following:

Ci. "'—2{(m+-', ) (m+ ,')+n(n+-1)},
(6 17)

&2& —2{(m —-,') (m+-,')+n(n+1) },

equation
6) ' KII'. (7.2)

( ) —g, {ag

(7.3)

(7 4)

where A; is the (2j+1)-dimensional irreducible repre-
sentation of (R', it follows from the Clebsch-Gordan
series that

m+l+n

g=lm+l nl

(7.5)

m—2+n

j=lm—l nl

(7.6)

The wave equation will thus in general describe
multiple-spin particles.

8. ZERO COMPONENTS OF zt1

From (2.1) we see that the It for the photon field has
one component which is zero in all frames. It will now be
shown that this condition can be generalized in a
covariant way.

Let us consider P in the representation in which
I",„„('is completely reduced into D~, , „and6;,„,and
let us require the components of II transforming under

;, „
to be zero in one frame. These components will

then be zero in all frames since they do not mix with the
nonzero components when transformed. Thus, one can
require

Hence, a knowledge of the matrices representing E23,
E31 and E12 will tell us how f transforms under a
rotation, and therefore what the spin of a particle
described by II can be. The eigenvalues of E2 a—re in
fact the possible values of spin of a particle described
by II.

From (6.21) it is seen that under a Lorentz trans-
formation II is transformed by the representation 6 +I „

Q+A;, . To find how It transforms under a rotation it
is only necessary to find how these representations
decompose when restricted to rotations. Let 6 +, „('
and 6;,„('be the representations of (R' "subduced"
by 6 +...n and 6;,„.Then, since

rm, n= ~m+zr, nO+~m —22, n
(8)

This is the desired result.

(6.21)
(8.1)

'7. SPIN

Let us consider now the subalgebra of 2' generated by
E23, E3~, and E~2. Since this algebra is isomorphic to the
Lie algebra of the three-dimensional rotation group let
us call it 6I' (the prime distinguishing it from the
isomorphic algebra N. generated by the n's). Under the
infinitesimal coordinate rotation

then

t
hll h12)II=

l

( h21 Iz22 J
(8.2)

where y is (2m+2) (2n+1)-dimensional, and the zero
part is zero in all frames.

It must also be shown that (8.1) is valid at all times
if it is valid at one time. If the Hamiltonian (3.16) is
expressed in the block form

6x= —u)(x, (7.1)

the wave function II transforms according to the

|'h11

(Izzi xi
(8.3)
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Consequently, if lt is an eigenvector of II then

h2gx=0, (8.4)

A unitary matrix U which transforms the representa-
tion I", ; ()') given by (9.5) and (9.6) into completely
reduced form can now be given explicitly. ' Let

so that if ()t is a linear combination of eigenvectors of II,
(8.4) is still valid. Hence, for such a lt

f It))X I (&r)X l'—=w=l
Bt Ehsr7f) ( 0 )

(8.5)

m+-,' = s. (9 1)

Since the nonzero components of lt transform under a
rotation according to the irreducible representation 6,
of (R', the particles described by iP have spin s.

The irreducible representation 6, ;, 0 of Z is given by
letting

M—+—i(r (s—-', ),
off —(r (s—-', ),

(9 2)

(9.3)

where (r(s ——,) is an irreducible 2s-dimensional triplet of
matrices satisfying

and we see that the zero components are zero at all
times.

9. SINGLE-SPIN EQUATIONS

The class of equations defined by putting e=p, and
the components of lt transforming under 6;,() equa, l to
zero will now be considered in detail. ' Furthermore, only
these equations will be considered from here on. For
clarity the index nz will now be replaced by the index

(2s)'*

0

0
0

0 0 0 0 0

(2s—1)'* 0
0
0
e

1
0

(2s+1)X2s, (9.8)
0

+1
N2= 0

. 0

0 0 ~ ~ ~

p 0 ~ ~ ~

0 ~ ~ ~

0

(2s)-'*g

(2s+1)X2s, (9.9)

0„0
()r ——(—1)'

.0

+1 0
0 v2

0 0 ~ ~

p ~ ~ ~

0

(2s—1)*

(2s—1)X2s, (9.10)

ns—- (—1)'
(2s—1)'

0

0

p p ~ ~ ~

(2s—2) f 0
0 0

+1 0.
(2s—1)X2s. (9.11)

The 4$-dimensional unitary matrix U is defined by

[o.&,
o.sj =ios (cycl.). (9.4) (9.12)

That is, (r(s —-,') is the spin vector matrix for spin
Using (9.2), (9.3), (5.6), (5.7), (5.8), (4.3), and

one Ands for the representation I', ~ 0 of 0', .

E~ i(r(s —,') (3I—('*)— ,'iI(' —l '—)D(~) ((r),

Q~ (r (s 1)(8)I(l) tI(~—f,(03D(l) ((r)

(l~I(s—
2 0) D(2) ((r)

$——12'
(4 4)

(9.5)

If E„„is given by (9.5) and (9.6) then

((r(s)
UK@- = —i!

& 0
(9.13)

(9.6)
The transformed n's can be explicitly computed also.

(9.7) The result is

where

( 1)2a—1

b j.=
2$

[(2s—1)2s]'

—(1X2)-:

UuV-t=!
t'a

Eht d3

a= (1/s) &(s)

d = —(1/s) (r (s—1),

[(2s—2) (2s—1)j'*

—(2X3)'

[(2s—3) (2s—2) &*'

~ ~ ~

(9.14)

(9.15)

(9.16)

(9.17)

r An equivalent single-spin theory was found by C. L. Hammer and R. H. Good, Phys. Rev. 108, 882 (1957).The Hammer-Good form
of the Maxwell equations, (V'0++ ~)if=0, where p; =E;+iH;, was also given by L. Silberstein, Ann. Physik 22, 579 (1907), 24, 783
(1907), Phil. Mag. 23, 790 (1912), and P. Weiss, Proc. Roy. Irish Acad. A46, 129 (1941).

'Reference 1, p. 5j..
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i—( —1)s

2s

'[(2s—1)2s]*'

(1X2)-:

[(2s—2) (2s—1)]l

(2X3)I

0

L(2 -3)(»—2)]'* (9.18)

(—1)' ' [1X(2s—1)]&
b3=

0 ~ ~ ~

0 0 ~ ~

[2X (2s —2)]l 0
(9.19)

The form of o used here is (for spin s)

0
(1X2s)l

&1=
0

(1X2s) I

0
I 2X (2$—1)]'

0
[2X (2s —1)]l

0

0 ~ ~ ~

0 ~ ~ ~

[3X(2s —2)]-'* (9.20)

—(1X2s) '
02= 2$ 0

(1X2s)'* 0
0 [2X (2s—1)]'*

—[2X (2s —1)]l 0

0 ~ ~ ~

0 ~ ~ ~

r

�[3
X (2s—2)]&

(9.21)

s 0
0 s—1
0 0

0
0

$—2
(9.22)

For s= —,
' and 1 these single-spin wave equations become

the equations for the neutrino and photon fields, re-
spectively.

Using the above explicit form of 0., one can find the
eigenvectors of H. If one considers only the nonzero
components of P and puts

10. QUANTIZATION

Let" g (x,t) be the nonzero part of P and let us expand
it in the form

P(x,t) =C dsk k' —'b+(k) N~(k) e'&~'—"&

P= u(k)e'" * (9.23) yc td'k k' 'b t{k)st (k)e"" *+"" (10.1)
then one finds that there are only two states belonging
to a given momentum k. These are the states with spin
parallel and antiparallel to k. The corresponding eigen-
values of H are k and —k, respectively. ' For the mth
component of st+(k) one finds

2s
N, , „(k)=[2k(krak,)]-

I

Es+ml .
where

[b, (k) b, (1)7= [b,'(k), b, '(l)]=0,
[b, (k),b,t(1)7=kb, „8(k—1),

6) p= &.

(10.2)

(10.3)

(10.4)

where C is a constant. Then the following commutation
(or anticommutation) rules will be shown to be covariant.

where

I=k,+ik„. (9.25)

X (~l*)s+™(k~k.) -", (9.24) To prove the covariance of these commutation rela-
tions the transformation properties of the u's"- and 6's
will be determined. Let us consider the infinitesimal
rotation

It should be noted that k'=k —roxk, (10.5)

and
k rrst~(k) = wskg~(k)

st,t(k)st, .(k) =8„..
Denoting the parallel and antiparallel states

respectively.

(9.26)

(9.27)

by + and —,

"The fermion 6elds have been treated in detail in Rarita-
Schwinger form by C. G. Bollini, Nnovo cimento 8, 39 (1958).
Also, all nonzero spin fields have been quantized independently
by C. L. Hammer and R. H. Good, Phys. Rev. 111,342 (1958)."Iam indebted to Dr. C. L. Hammer and Dr. R. H. Good, Jr. ,
for a private communication indicating this line of derivation of the
transformation property of u, {k).
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where ~ is a real 3-vector, and

k'= k.

Using the relations

(10.6) ~X(k—1) vb(k —1)=0, (10.18)

(k —t) V8(k —I) = —k 'kb(k —1), (10.19)

together with (10.17), one finds that
(1o 7)

8{kb(k—1))=0.
[(A o), (B (r)] =iAXB 0,

together with (9.25), one easily finds that
(10.20)

Then, by making use of the commutation relation
(where A and B are 3-vectors)

(k'. ir)(1+i~ e)e, (k)=esk'(1+i' e)u, (k). (10.8)

Hence, n, (k') is proportional to (1+i~ 0)N, (k). Since
(1+i~ e) is unitary to first order in ~, it follows that
(1+i~ e)u, (k) is normalized. Consequently,

This completes the proof of the covariance of the
commutation relations. These commutation relations
reduce to the usual ones for the neutrino and photon
fields.

The annihilation operators a, (k) are defined by

N, (k') =e'&(1+i' e)tt, (k). (10.9) a, (k) = k lb, (k), (10.21)

H one considers now the infinitesimal coordinate rotation the nu~ber operators by

SC= P dak kX, (k).
e=g 48k= —~Xk,

5X= —u)(, X, (10.10) iV, (k) =a,t(k) a, (k),
g=iu (qk, and the Hamiltonian by

one sees that the Fourier expansion (10.1) will be form-
invariant if

(10.22)

(10.23)

so that u, (k') is given by (10.9), and The Hamiltonian satisfies the usual condition

b+'(k') = e
—

'f~b+(k), (10.12)

b 't(k') =e-'~b '(k). (10.13)
P(x, t) = exp(itX)P(x, 0) exp( —itX). (10.24)

From the preceding quantization it is clear that only
transverse quanta enter this theory. Consequently, the
theory is gauge independent.

The four-dimensional commutation relations in con-
figuration space are

An arbitrary Iorentz transformation L can be ex-
pressed in the form

L=RgL,R2,

where R1 and R2 are rotations and L, is a transformation
to a parallel frame moving in the s direction. Since it has
previously been shown' that the b's are scalars under
L,-transformations, it follows that under any infini-

tesimal Lorentz transformation the b's are transformed

by a phase factor as in (10.12) and (10.13). As a result
of this transformation property of the 6's the commuta-
tion relations (10.2) are seen to be covariant. Further-
more, the commutator Pb, (k),b, (1)] is easily seen to be a
scalar.

To prove the covariance of the commutation relations
it remains only to prove that kb(k —1) is a scalar. If

= fv'/' —'e( —iv){i/v'j 0" ""( i~)—
—iso Oi'+" t'( —i/)) A($ —y), (10.25)

where
p=&1)

7 0
=ct/cl s,

(10.26)

(10.27)

(10.28)fol S= p) 1)6k= ~Xk+eik,

8k= 6V'k)

(10.15)

(10.16) k e (k e/sk)' —(m/s)'
8(k) = g for s) 1, (10.29)then"

b{kb(k-1)) = ev kb(k-1) sk 1 (nz/s)

+k{ ~X(k )+' (k )) ' b(k ) (1 ) and the product is over all positive eigenvalues m of 0,
'2 Note that 6 is used in two ways in I'10.17). except m= s.


