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Photon Decay of Hyperons*
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The photon mode of decay of the Z+ and A' is examined. The lifetime and angular distributions of the
decay products are written in terms of the three physical parameters of the problem without restriction
as to invariance under space reflection, charge conjugation, or time reversal. An estimate of these parameters
is made by use of perturbation theory, and, although ambiguous, it indicates that this mode may soon be
experimentally detectable.

INTRODUCTION

'NTIL recently, the limited number of A, Z, and
particles that have been observed has focused

attention on the analysis of their main mode of decay,
i.e., by the emission of a z meson. In the near future,
it will be of considerable interest to establish and
analyze alternative, less frequent, modes of decay
which have been theoretically predicted for hyperons.
On such group of less frequent hyperon decays modes
is that arising from a universal Fermi interaction. ' It is
the purpose of this paper to discuss, in some detail,
another mode' which should, in some cases, compete
favorably with the Fermi decay mode. This decay
occurs through the emission of a photon,

I"1~I'3+V.

In the case of the Z', this decay proceeds solely
through strong interactions and is experimentally
known to have a lifetime (10 " sec.' For other
hyperons, this decay must proceed through a combina-
tion of weak and strong interactions (since strangeness
is not conserved in the process) and hence its rate
might be expected to be' some fraction (of the order
of the fine structure constant) of the main decay mode.
The decays which will be analyzed in this paper are
the following:

g+~p+v
A' +n+v—

The analysis will proceed in the following manner.
In the first section, the general form of the matrix
element, as a function of two complex parameters, will

be established, without restriction as to invariance

*This work was done under the auspices of the U. S. Atomic
Energy Commission.

' See, for example, R. P. Feynman and M. Gell-Mann, Phys.
Rev. 109, 193 (1958).

See, for example, M. Kawaguchi and K. Nishijima, Progr.
Theoret. Phys. (Japan) 15, 182 (1956), and C. iso and M.
Kawaguchi, Progr. Theoret. Phys. (Japan) 16, 177 (1956).

'Piano, Samios, Schwartz, and Steinberger, Nuovo cimento 5,
216 (1957).

4 An event has been found by George, Herz, Noon, and Solntseff
PNuovo cimento 3, 94 (1955)j in which a single charged particle
emitted from a E=produced star comes to rest and emits a
proton of 26-Mev kinetic energy. They tentatively interpret this
as a hyperdeuteron. M. Goldhaber (private communication) has
pointed out that the energy of the proton coincides with the energy
(26.5 Mev) expected in the decay mode Z+—+p+v.

under space reQection, charge conjugation, or time
reversal. The lifetime for the decay, as well as angular
distributions in the case of polarized particles, will be
written in terms of these two complex parameters and
then it will be shown that the process can be completely
characterized by three real physical parameters.

It then will be assumed that the Lagrangian respon-
sible for the decay does mot contain the photon mode of
hyperon decay as a primary interaction. In general,
when calculating the matrix element for the photon
mode of decay from such a Lagrangian, the integrands
of some of the integrals are expected to have poles.
This will be demonstrated explicitly in the Appendix
by a second-order perturbation calculation. Since the
contribution of a pole to the matrix element is an
imaginary quantity, it will give rise to terms in the
angular distributions which give the appearance of
violating time-reversal invariance. In the second section
it will be shown that these poles correspond to the
succession of two real processes.

Finally, estimates of the branching ratio of the
photon mode to pion mode of hyperon decay will be
made on the basis of the perturbation calculation.

I. PHENOMENOLOGICAL APPROACH

Subject to the requirement of invariance under the
proper Lorentz group, the most general matrix element
for the decay process (1) can be written in terms of
the four-momenta of the initial ferrnion, pi, and the
final fermion, Ps, and the polarization vector for the
electromagnetic field, ep [note that since only one
photon is emitted in (1), the matrix element must be
homogeneous of degree one in the four-vector e„j:
M= (a,+iasv5)v„e„+(a3+ia4v5)p, „e„

+ (a5+zasv 5)pspep+ (ar+ zasv 5)vpvpipe.

+ (a +iaiovs) v"pspe. + (a»+ia»vs)v". pipps e. (2)

where the Y„are the Dirac matrices, 5 the y„„and
y„„are the antisymmetric combinations of two and
three vp $e.g. , v„„=-',(v„v„—v„vp)), respectively, and the
a; are arbitrary functions (complex) of the invariants
which may be formed from the three vectors Pi, Ps,

The representation of the p's is p;=Pn„., pQ P +5 p]Q2+3+Q
. 0 1—z

1 0
. The scalar product of two four-vectors is a.b=aobo

—a.b.

69i
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and k (the four-momentum of the photon). The
matrix element (2) allows for noninvariance under
space reQection, charge conjugation, and time reversal.
It should be noted that in order to introduce polarized
fermions into the problem, it is necessary only to Rank
the matrix element on the left and/or right by the
appropriate spin projection operator.

The matrix element (2) must, of course, be gauge
invariant. By performing a gauge transformation on
(2), and by using the relations

pi= ps+0, k'= 0,

it is possible to show that M must have the form

M = ', (A+i-By, )y„„f„„=(A+sBy, )ke,

(3)

where a—=y„a„, f„„=k„e„k„e„,a—nd A and B are un-
known, invariant functions of the pertinent mass and
coupling constants of the problem.

If it were assumed that the decay Lagrangian
contained a term of the form of (4), then by the usual
rules it would be easy to see that the requirement of
invariance under space reflection, P (or CT by the
Liiders-Pauli theorem), demands that AB=O (i.e.,
either A =0 or B=0); invariance under charge conjuga-
tion, C, demands Re(AB*)=0; and invariance under
time reversal, T, demands Im(AB*) =0.

If, however, the interaction (4) is not considered to
be primary (i.e., if no such term appears in the original
Lagrangian) but is assumed to be compounded from
other terms in the Lagrangian, e.g., the pion mode of
hyperon decay p/us the electromagnetic interaction
Lagrangian, then no such simple statements can be
made concerning invariance under time reversal. In
the following, this latter assumption will be made,
and it will be seen in the Appendix that, starting from a
Lagrangian which is invariant under time reversal,
A and 8 will eo] ful611 the above conditions for time-
reversal invariance.

From the matrix element (4), it is simple to calculate
the transition probability for fermions of spin
The result is

1/7 = ( I
A

I

'+
I
B

I

') (ms'/~) sinh'cu,

where, for later convenience, co has been dined as

co= ln(mi/ms).

(5)

In order to test time-reversal, charge-conjugation,
and space-reQection invariance properties, it is necessary
to consider the angular distribution arising when some
or all of the particles are polarized. Only the cases
when all three particles are polarized will be discussed,
the other results following immediately from these
general cases.

In the case of a circularly polarized photon, the
differential transition probability is

P~ IA —Bk.el'[1—sech~(k. »)(k»)
—k e(sechcvk ss —k.si)], (7)

2 Re(AB*)

IA I'+ IBI'
(10a)

Another way of measuring the asymmetry parameter is
to measure the ratio of the numbers of positive- to
negative-helicity photons, for arbitrary polarizations
of the fermions. Thus

&I—&zEg 1—e~
or e~=

1Vi, 1+n, 1VI.+Ã~
(10b)

The third parameter could be chosen as either

—2 Im(A*B)

IAI+IBI
or

(11a)

IA I'+ IBI'
(11b)

since there exists the relation n'+P'+y'=1. However,
following the procedure of Lee and Yang, the third
parameter will be taken as p~ defined by

P~= (1—n~')l cosy~, y~= (1—n~')'* sing~. (12)

' T. D. Lee and C. N. Yang, Phys. Rev. 108, 1645 (1957).

A

where 0 is a unit 3-vector (space components) in the
direction of the photon propagation, s~ and s~ are unit
three-vectors in the directions of the spins of the
initial and Anal baryon, respectively, and e is a unit
three-vector in the direction of the "spin" of the
photon. e must necessarily be parallel to k and hence
k e(= +1) describes the helicity (&1) of the photon.

In the case of a linearly polarized photon, the differen-
tial transition probability is

P~ {(AA*+BB*)[1—sech~(k si)(k ss)]
+(A*B+AB*)[sechcuk ss —k si]
+(AA*—BB*)[si.ss —2si ess e—k sik. ss]

+j(A*B—AB*)[ss)&si k —2si ess&&e k], (8)

where e is the photon polarization.
In analogy to the analysis of the pion mode of decay

by Lee and Yang, ' it is possible to characterize the
photon mode of decay by just three real parameters.
One of these parmeters may be taken as IA I'+ IBI'
which is, according to (5), proportional to the lifetime.
Another parameter can be de6ned by noting that the
angular distribution of the decay photon from a com-
pletely polarized hyperon at rest is [from (7)]

P ~ (1—n~ cosx)dQ,

where dO is the solid angle of the photon momentum
and x is the angle between this momentum, k, and the
spin s& of the baryon. [Note that for the pion mode
P~ (1+n cosy)dQ. ] The second parameter is thus n
which is defined (in terms of A and B) as
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The geometrical significance of this parameter can
be seen in the following way, Let k define the s axis
and let the linear polarization which is accepted be
perpendicular to s~ (i.t:., sr. e=0) and lie along the
x axis. Then p~ is the azimuthal angle of the transverse
component of the nucleon spin in the rest system
of the hyperon.

It is interesting that the only way of testing in-
variance under time reversal involves detecting the
linear polarization of the photon as well as the initial
and final baryon spins. The cases in which the photon
polarization is not detected Lderived from (7) or (8)]
or in which the photon polarization is circular L(7)j
do not contain terms which afford the opportunity of
detecting such an invariance. It should again be
emphasized that the experimental detection of the
last terms in (8) would mean noninvariance under time
reversal owly if the interaction (4) were considered
primary.

In the following, it will be assumed that (4) is
compounded from a Lagrangian in which the pion
decay modes of the hyperons are primary. This
Lagrangian may be written'

4'1(p ml)4'1+4'2 (p m2) 4'2+ f4'2 (&a+b76)$1+

—e Q QIApg+ Q g~pIygkI p

f9+
(p
—p* A&+Zp+H. c., (13)

8x" Bx"

Q (p

+ie

' An alternative Lagrangian would treat the four-fermion
interaction as primary. The lowest-order matrix element giving
rise to the photon mode of decay is, by the Furry theorem, zero
unless the four-fermion interaction is tensor or vector. For the
vector case, the matrix element involves an integral which appears
in the evaluation of vacuum polarization in quantum electro-
dynamics and which has been shown, by the regulator method,
to be identically zero. The tensor case involves an integral which
can be evaluated by the regulator method. The result is log-
arithmically divergent.

where the isotopic spin indices have been suppressed,
Zp is the free boson Lagrangian, p is the pion wave
function, and e, f, and g are, respectively, the electro-
magnetic, weak decay, and mesonic coupling constants.
(Charge independence is assumed for the strong
pion-baryon coupling. )

In order to gain some insight into the relationship
between the Lagrangian (13) and the matrix element

(4), it might be well to examine some of the symmetries
which the Lagrangian (13) possesses. In addition, these
symmetries will help to simplify some of the calculations
of the Appendix. For example, the connection between
the parameters A and B and the parameters of the
Lagrangian (of which the A and 8 are functions) may
be found by noting that a symmetry that is obeyed
by the total Lagrangian and which leaves the commuta-
tion rules unchanged will also be valid for the matrix

element of the decay. Thus, consider the transformation

P,~e'Qr a—+ae ' b be—'~ (14a)

under which the Lagrangian is invariant. In order that
the matrix element be invariant, A and B must trans-
form as

A—+Ae—'~ B~Be '~. (14b)

Now, to a good approximation, it can be assumed that
the weak interaction occurs only once, and thus A
and B depend linearly on a and b. Further, consider
another transformation under which the Lagrangian
is invariant:

A~v4» A~v4A;
p,—+—p," A;+—A, ; q

—&—q, (15a)

for i = 1, 2, 3. Then, from the matrix element, one has

A—&A; B—&—B. (15b)

Combining the results of (14b) and (15b), it can be seen
that

which leaves the Lagrangian invariant. ' The condition
on the matrix element is

K ( m1 m2 g1 g2) K'(ml m2 gl g2) ~ (18)

Under

$1~75lbl ml~ m1 gl~ g
a~ i b, b + i a, —(19)——

it follows that

Kl( mls m2) g1) g2) K2(ml)m2ygl)g2) ~ (20)

The Lagrangian is also invariant under

-v; g g; g
—g; f-f(»)-

and therefore from the matrix element one finds

K;(mr, mg, —g„—g2) = —K, (mg, m2, gr, g,). (22)

Thus, if g~=0, g2=0, then E;=0.
These symmetry properties of the theory have been used before.

See, for example, A. Salam, Nuclear Phys. 4, 687 (1957).

A = fbK2(m~, m2, gr, g2,p'),
8= faK, (m„m2, g„g2,lj,'), (16)

where E~ and E~ are unknown functions of the masses
and strong-coupling constants. Explicit use of the
invariance of the Lagrangian under change in sign of
the meson mass has been made. (The dependence on
p' will be understood but not explicitly noted in the
following. )

Next, consider the transformation

ki~v@4) A~7 4'&~

my~ mr, m—2~—me, (17)
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t'coshco —-,'rle —"+1 )Ibl'=I
(cosh' ——,'tie "—1 I

(25)

From dimensional arguments, A and 8 must be
inversely proportional to a mass. It can be seen from
the perturbation calculation in the Appendix that the
natural mass dependence is

A ~ 1/(mt+ms), B~ 1/(mr —ms). (23)

Because of (16) and (23), it is convenient to introduce
the new parameters 2' and 8' dered by

A= fbA'/(mt+ms), B=faB'/(mr ms). —(24)

H it is assumed that the asymmetry parameter in the
pion mode of decay is a maximum, then there exists a
relation between a and b, namely

hfs (ie+d7s) YA'18 (26)

In this case the condition between c and d for a max-
imum asymmetry parameter for the pion mode is

(cosh(o —-', rle "+1) t'cosh(o —1)
(27)

Lcoshco —srrle "—1I (cosh&o+1I

If now the branching ratio for the photon mode to the
neutral pion mode of hyperon decay is calculated,
it can be shown that for both scalar-pseudoscalar
and vector-pseudovector weak pion coupling, the
branching ratio assumes the form

If the pion mode of decay has a vector-pseudovector
weak interaction, then the third term in the Lagrangian
(9) is to be replaced by'

{(IA'I'+IB'I')(sinh'cu ——,'rle ")+(IA'I'—IB'I') lser")Csinhcv
8= )

I (cosh~ ——,'rie )'—1$'
(28)

where C is the charged-to-neutral branching ratio for
the pion mode of decay.

II. UNITARITY OF THE 8 MATRIX

As has been shown by Kawaguchi and Nishijima'
and Iso and Kawaguchi, ' it is possible to analyze the
photon mode of hyperon decay by use of the unitarity
of the S matrix. The procedure is to substitute S=1+R
into the unitarity condition, StS=1, and then form
the matrix elements. The result is

&p~IR'+Rl —»=Z&p~IR'I &w) @KIRI».

The sum is restricted to a sum over a nucleon and a
single pion state because this is the main process on
the energy shell (the intermediate state 1Vy is smaller

by a factor 1/137). By introducing the reduced
R-matrix elements (f I Rl i)= (2w)45'(p~ p, )Rq;, the-
above relation may be written

—(2w)'6(p, —p,)I( R)„t, +R„,, j
= (2rr)4o4(pr p,)ED' R~, rR~, ~„*—, (29)

where D& is the two-particle (nucleon-pion) density
of states and the sum still contains an angular integra-
tion as well as a sum over energy and spin. Since the
initial and Anal states are eigenstates of the total
angular momentum, the R matrix is symmetric and
the left-hand side of (29) is proportional to the real

part of the E matrix.
From a perturbation theory point of view, the left-

hand side of (29) is equal to the contribution of the
poles calculated in the Appendix. The right-hand side,
which corresponds to the succession of the two real

processes of hyperon decay by emission of a pion and of
the inverse of pion photoproduction, is the product of
the R matrices for each process, calculated by perturba-
tion theory to lowest order, and summed over the
available states with the appropriate density function,
DN7r ~

Now, according to the Kroll-Rudermantheorem, "
meson photoproduction near threshold is correctly pre-
dicted by perturbation theory. In addition, the weak-

coupling pion mode of hyperon decay is also given
correctly by perturbation theory, provided, in analogy to
meson photoproduction, the renormalized decay coupling
constant is used. But (29) is an S-matrix element
between real (i.e., clothed) baryons. Therefore, it is
to be expected that near the threshold for the photon
mode of hyperon decay, the real part of the S-matrix
element is given correctly, to all orders in the meson
coupling constant, by the contribution of the poles
in the weak-coupling theory, provided the renormalized
coupling constants are used. Apparently, no such
statement can be made concerning the imaginary part
of the S-matrix element.

III. PERTURBATION ESTIMATES

Although a perturbation calculation involving the
strong mesonic coupling constant usually cannot be
expected to give quantitatively correct results, it is

If the technique of Feynman is used LR. P. Feynman, Phys.
Rev. 76, 769 (1949), Appendix Dg, an "equivalence" can be
demonstrated between the vector-pseudovector matrix elements,
arising from (26), and the scalar-pseudoscalar matrix elements,
arising from (13),which holds in lowest order perturbation theory
This "equivalence" is (fo)'= (hc)'(m& —m2)' (&b)'= (hd)'
X (m&+mm) . In determining the branching ratio (2g), this
"equivalence" was assumed to hold to all orders in the strong-
coupling constant.IN. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).
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TABLE I. Branching ratios (photon mode to neutral pion mode)
for scalar-pseudoscalar weak coupling and pseudoscalar strong
coupling for various values of the real parts of the parameters
and for the perturbation value of the imaginary part.

Hyperon

Z+ [case (1)g
Z+ [case (2)j

Re A'=0
Re B'=0

~1/850
1/2500

~1/1100

Re A' =Im A'
Re B' =Im B'

~1/425
~1/1250
~1/550

Re A' and Re B'
given by

perturbation
theory

1/21
~1/670

1/66

sometimes profitable to examine the properties predicted
by such a calculation. This is done in the Appendix.

Table I lists the values of the branching ratio as
predicted by perturbation theory (see the Appendix).
Since the unitarity condition shows that the real part
of the S-matrix element [ImA' and ImB'] is given by
perturbation theory, the value calculated for this
quantity in the Appendix is used throughout the table.
On the other hand, the imaginary part of the S-matrix
element is most probably incorrectly predicted by
perturbation theory. Therefore the branching ratios
are listed for several different values of this quantity.

In Table II, the branching ratios are listed for the
diferent combinations of weak and strong coupling,
i.e., scalar-pseudoscalar weak coupling with pseudo-
scalar strong coupling, etc. , by using both the real
and imaginary parts of the S-matrix element as
calculated from perturbation theory. The branching
ratio for the A is unchanged by the diferent couplings
so that only the Z branching ratios are given.

In both tables, two cases for the Z are listed. This
arises from an ambiguity in the relative phases of the
couplings for Z+—&m+m+ and Z+—&p+m'. Case (1)
corresponds to a relative phase difference of zero and
case (2) to a difference of s-. (See the Appendix for
further discussion. )

TA33LE II. Branching ratios from perturbation theory for various
combinations of weak and strong couplings.

-strong
plingu

Hyp SP -P SP —A VA -P VA -A

Z+ [case (1)] ~1/670 ~1/460 ~1/530 ~1/370
Z+ [case (2)) 1/66 1/57 1/320 1/430

Although the branching ratios for these decays cannot
be unambiguously predicted, their existence is to be
expected. It is hoped that with the increasing numbers
of hyperons available, this experimental branching
ratio can be determined.
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APPENDIX. PERTURBATION CALCULATION

It will be assumed in this section that the weak
interaction which is indirectly responsible for the
gamma-decay process is the pion mode of decay of the
hyperon being considered and that its interaction is
of the form ia+bys The stro. ng coupling of the pion
to the baryon will be assumed to be of the pseudoscalar
symmetric type. This Lagrangian has been given in
(13).

It will be convenient to discuss initially the decay of
a neutral hyperon. The pertinent Feynman diagrams
are shown in Figs. 1 and 2, and the corresponding
matrix elements in momentum representation are

I
d'q ys(ps q+m,—)e(p, q+ms—)(ia+&ys)

-Q2

(q' —I ') DP —q)' —~ '][(P —q)'—

gt fe
t

I'd'q (ia+fr7, ) (Ps q+~,)e(P,—q+m, )Vs ~—3P= u 2 'Q
~lp

V—')L(P —q)' — '][(P —q)'—

(A.1)

(A.2)

gsfe t
d'P Vs(P+~s) (ia+b Is) (Pt+Ps —2P) s

)
Q2 ('Sl,

16s.4j aJ (ps ggss)[(pr p)2 ps][(ps p)2 ps] l

(A.3)

grfe t d'p (ia+bys)(p+mr)ps(pt+ps 2p) e-
M2~= — t72 Ql)

167r'i ~ (p' —mp) [(pt—p)' —p'][(ps —p)' —p']
(A.4)

where q and p are the four-momentum and rest mass,
respectively, of the virtual x meson.

It is now pro6table to notice that under the simul-

taneous operation of C and interchange of the indices
1 and 2, M'~~M'~ and M's~M's Therefore, it is

necessary to calculate explicitly only two of the four
matrix elements, the others being obtained by the
substitution 1+-+2. In the following, the matrix elements

(A.1) and (A.3) will be calculated explicitly.
Since the problem being considered involves a free
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4 4p

Fzo. 1. Lowest order Feynnman diagram leading to the photon
mode of decay in which the weak interaction occurs erst.

photon, k'=0, the matrix elements, (A.1) and (A.3),
may be put into the following form:
M' "=up/(Ap' '+iBp 'yp)e

+ (A' '+iB 'yp)kejlt. (A.5)

As seen in Sec. I, gauge invariance requires that
Ap'+ApP and Bp +BpP must each be identically zero.
This may also be checked explicitly in this case by
calculating the coefficients of e from (A.i)—(A.4).

h.=x'—(e'"—1)x(1—x)y+g (1—x),

hp ——(1—x)'—(e'"—1)x(1—x)y+zfx,

where q is dined as

zf = Is'/zzzps. (A.7)

U'nder the transformation g—&1—g, there results
6 +-+Ab, therefore, only one denominator need be
considered. Thus

The coe%cients A b and 8 b are

g pfe t' t' (e"—1)x'(1—x)y —x'
Aa d'g dy

16''m2~ o ~ o

g,fe z
' t' (e"+1)x'(1—x)y+x'

8 = dg
'

dy

(A.6)
gpfe t' t' (e"—1)x'(1—x)y —x(1—x)'

Ab

g pfe p' t' (e"+1)x'(1—x)y+x(1 —x)'
J3b —

~ dg, dy
1~m,~.

bgpfe t' r
' L(e~—1)x(1—x)y —x'jfxz (1—x))

Aa b 1 dg d'y

16zr'zzzp~ p ~ p
x' —(e'"—1)x(1—x)y+zf (1—x)

(A.8)

where the set B P may be obtained from the set A~' by the transformation (19),i.e., (20) becomes A ' + B~ P. ——
(The quantity to the left of the semicolon is to be associated with the A' while that to the right with A p.)

If (A.8) is integrated over y, A P becomes

bg pfe p'dxLx; (1—x)gA"=
16zr'zzzp -

p
e"+1

e"x'—g (1—x) e'"x' —(e'"—1)x+sf (1—x)—1+ ln
(e'"—1)x(1—x) x'+sl(1 —x)

(A.9)

If this expression is integrated by parts, then

bgpfe t' dx
A = g

16zr'zzzp" p e"+1
Pe x'+ (e"+sf)x+e" ln(1 —x))(e'"—1)Lx' —zf(1—x)'$

Le'"x' —(e'"—1)+sf (1—x))t x'+zf (1—x)j (A.10)

It should be noted that if

(e"—1)'& zl Li.e., (zzzt —zzzp)'& p'j (A.11)

the second terms in (A.10) have simple poles. These
values of co are such that the mass difference between
the initial and Anal baryons is greater than a real pion
mass. In this case, the poles then correspond to the
emission and reabsorption of a real meson. As was seen

in Sec. II, this corresponds to the successive real
processes of baryon decay into a pion followed by the
inverse of pion photoproduction. It is the contribution
from these poles that gives rise to terms Lthe last
terms in Eq. (8)jwhich have the zzppeczrzzzzce of violating
time-reversal invariance. The same statements apply
to the functions 8 b. However, as was mentioned

just before Eq. (A.5), only the terms corresponding to
the diagrams of Fig. 1 have been considered so far
(they correspond to the emission of the pion by the
weak decay interaction). In order to End the contribu-
tion from the diagrams of Fig. 2, it is only necessary to
substitute e"—+e ", g&~g2, phage '". As may be readily
seen in this case, the second terms in the equations
corresponding to (A.10) do not have poles. Thus, only
the diagrams of Fig. 1 can contribute terms which

give the appearance of violating time-reversal in-

variance. It should be noticed that in the limit as
~—+0, A and A go into the functions Bj and 82'
which were introduced by Bethe and de Hoffmann"

"H. Bethe and F. de Hoffmann, Mesozzs azzd Fzelds (Row,
Peterson, and Company, Evanston, 19SS), Vol. Il, p. 291.
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(based on the work of Fried" ) in order to represent
the anomalous magnetic moment of the nucleon.

Upon evaluation of the integrals (A.10) it is possible
to calcula, te the complete matrix element for each of the
pertinent decays. For simplicity, all the weak pion-
baryon coupling constants will be taken to have equal
magnitudes. However, one ambiguous point still
remains. This concerns the relative phase of the weak
coupling of charged and neutral pions to the Z. If it
is assumed that time-reversal invariance is valid for
the pion modes of Z+-decay, then this relative phase
must be either zero or ir (neglecting final-state interac-
tions). There also exists the question as to the relative
phases of the weak pion coupling to diferent baryons.
For simplicity, this phase will be assumed to be zero.
As a result, two limiting cases will be considered for
the Z: the relative phase is (1) zero, and (2) ir. It will
be assumed that global symmetry" is valid. As an
example, decay (1') proceeds in the following manner.
(Note that if the A—Z mass difference is neglected,
the intermediate A.' and 2' states cancel because of
global symmetry. )

&+~p+~'~p+~'+ v~p+ v,

Z+~ri+~+~e+7r++y~p+y, (A.12)
Z+—kZ++ sr'—+Z++s'+7~P+ y.

The parameters in the matrix element (4) are then
)assuming the branching ratio (Z+~p)/(Z+ —+e) = 1j

'p~
)4

I
/

/

kkk
l
I

//

imp

flap

I

(a) (b)

The numerical evaluation, assuming m~+= 2327m„
mikk ——2180m„ is for decay (1'), case (1)

gf
(—1.00—0.17i),

16''(mi+m2)

Kf
(+0.27+0.71i);

16~'(m, —m, )

Fxo. 2. Lowest order Feynman diagram leading to the photon
mode of decay in which the strong interaction occurs first.

A =A~ —%2A'+A"
B=BN 92B'+B'~. —

In case (2), they are

A=A +v2As+A'
B=B +%2Bs+B'~.

(A.13)

(A.13')

for decay (1'), case (2), it is

bgfe
(—3.62—0.36i),

167rs(mr+ms)

cgfe
(0.86+1.04i),

1&n-'(mi —ms)

(A.16)

A =%2(A'+A')
B v2(B +Bb)

's B. D. Fried, Phys. Rev. 88, 1142 (1952)."M. Gell-Mann, Phys. Rev. 106, 1296 (1957).

(A.14)

In these equations A' and B' are obtained from A'
and 8, respectively, by interch'anging the indices 1
and 2. The parameters for the decay (1") are bgsfe

(—2.87+0.10i),
16~'(m, +m, )

rig sfe
(+0.89—0.73i) .

16m (mi —ms)

(A.17)


