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Improved Sum Rule for Electron-Deuteron Scattering*
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A qualitative discussion of the approximations implicit in the present theoretical treatment of the deuteron
is presented. An improved sum rule which relates the total elastic and inelastic scattering of electrons from
the deuteron to the free electron-nucleon cross sections is derived. It has the property of reducing to the
correct relativistic result upon neglect of binding. It is proved that the use of folded nucleon and nuclear
form factors is correct. It is shown that the finite nucleon size does not affect any real photon process.

I. INTRODUCTION it depends on the structure of the bound state. The last
effect might be estimated by using a "physical"
argument such as used in an estimate of the mesonic
contribution to the photodisintegration of the deu-
teron. ' Just as in this case, the meson-nucleon scattering
resonance will certainly affect the electrodisintegration,
but because of the nucleon electromagnetic form factors,
its relative effect should be considerably reduced. These
effects cannot be calculated with perturbation theory
due to the strong coupling and the resonance. Dis-
persion theory or a Chew-Low approach might prove
useful. These mesonic corrections will not be dealt with
in this paper in detail. A qualitative estimate of these
effects is discussed in Sec. V.

In order to "see" the neutron, a large momentum
transfer q is required. The nucleon magnetic moment
scattering is then large compared to the proton charge
scattering. Hence, we shall evaluate the sum rule in
the limit of large q. Any attempt to describe such a
situation with the Schrodinger equation is questionable.
For example, at the experimentally interesting values
of energy and q, the difference between relativistic and
nonrelativistic kinematics is about ten percent. The
cross sections for a Pauli nucleon and a Dirac nucleon
differ by the same amount in this range because of the
difference between the three- and four-momentum
transfer which occurs squared as the coefficient of the
magnetic-moment term. To try to patch up a
Schrodinger result by the ad hoc introduction of rela-
tivistic corrections is ambiguous and, therefore,
unsatisfactory. We shall consider a Bethe-Salpeter
deuteron with an instantaneous potential which, with
the neglect of nucleon pairs, reduces to a Breit deuteron.
A survey of the approximations that are made will be
carried out.

First, we will examine a simple model in order to
make a qualitative estimate of the kinematic effects.
Consider the deuteron to be a superposition of six
states —the nucleons moving with a velocity ~V

parallel to the incident electron momentum, per-
pendicular to the incident and final electron momenta,
and perpendicular to the incident but in the plane of
the incident and final momenta. The total cross section

. 'HE sum rule which relates the total elastic and
inelastic scattering of electrons from nuclei to

the scattering from free nucleons is well known. It has
been derived for the particular case of the deuteron by
Jankus' with certain approximations. His result is that
the total scattering from the deuteron is equal to the
elastic scattering from a free neutron and proton.
Recent experimental results on electrodisintegration of
the deuteron' promise to yield information on the
electromagnetic structure of the neutron if the cor-
rections to this approximate result can be evaluated.
These corrections may be divided into two classes:
kinematic and mesonic.

The kinematic corrections may be further divided
into two classes. A knowledge of the free scattering
cross sections over a finite energy range is required by
the width of the momentum distribution in the deu-
teron. This suggests that the total cross section be
written in terms of the free cross sections and their
derivatives evaluated at the free kinematic values.
This correction will be treated in detail in this paper.
Since the nucleons are bound, their energy and mo-
mentum are not related in the usual way (E'Q p'+Ms).
This allows the addition of terms to the nucleon current
operator which will not contribute to free-particle
scattering, and hence are not susceptible to a phe-
nomenological analysis. The estimation of these terms
with perturbation theory is completely unreliable. A
dimensional argument of questionable validity will be
used to get a qualitative estimate of these terms,

The mesonic corrections may be arbitrarily divided
into three overlapping classes: the exchange of charged
mesons which yields an additional current in the
deuteron, the exchange of mesons which affects the
structure of the electromagnetic vertex for any single
nucleon, and the exchange of mesons by the outgoing
nucleons which cannot be described satisfactorily by a
static potential. The second effect might be thought of
as a "warping" of the nucleon form factors although
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will be an average of these six situations and an average
over the velocity distribution. 4

At large momentum transfers, the magnetic moment .
scattering is predominant. Neglecting terms which are
small for backward scattering, the Rosenbluth cross
section for point nucleons in this limit becomes

o.=CL1+kp'(1 —x')/M] 'dQ'/o~,

where x' is the cosine of the scattering angle and ~g
is the relative velocity. The various quantities are
evaluated in the frame in which the nucleon is initially
at rest. Since this is a uniquely defined frame, the cross
section can be written in an invariant form. The
transform. ation of the solid angle is easily found by
considering the invariant formed by the three-mo-
mentum volume element divided by the energy. The
transformation of the incident Aux is included. Invoking
the conservation of four-momentum, we find

o =C(kpPp/k; P)(kr P/k, "P)'(dQ'/dQ)dQ, (1)

where P is the initial four-momentum of the nucleon.
This can be evaluated in the lab system to give

o (o)/o (0)= (1+e'/2) (1—et+ o'/2) —'

XI 1—»/(1+y)+o'/2(1+y)?' (2)
where

v kf ='vkts,

v k, =ok t, .

y= k, (1—x)/M.

The total point-nucleon cross section to order ~2 is

OT/op = 1+ s(o'')Avt 1+3(1+y) '+ (2x—3)(1+y) ']. (3)

For ho=470 Mev, 0= 135', we find

o r/o p= 1—0.17(e')A„.

Since (e')A„0.04 for the deuteron, the kinematic
corrections are small for point nucleons. This type of
analysis can easily be extended to finite-sized nucleons

by introducing the variation of the form factor. The
algebra is cumbersome and only the result will be
quoted. Assuming Gaussian nucleons with the proton
rms radius, the total cross section for the above con-
ditions is found to be

o-r/o. p
——1+0.71(e')A, .

The kinematical corrections are essentially due to the
curvature of the free cross section as a function of e.
The introduction of form factors inQuences this curva-
ture, and therefore affects the corrections. The variation
due to the form factor is more important than the
curvature of the Rosenbluth point cross section in this
energy-angle range.

The calculations of this note will confirm these

4 A more detailed and significant calculation using this type of
approach has been performed by Mr. A. Goldberg (private
communication). His results agree with the ones presented here.

qualitative estimates and extend the considerations to
interactions in the final state.

II. THEORY

In order to examine the lowest order relativistic
corrections, we will assume a Breit deuteron; that is,
the sixteen-component wave function of the two-
nucleon system satis6es the equation

L~n '+G=' ~34 (P») =o, (4)

where V is the (assumed) instantaneous binding
potential and the G's are the inverse Dirac operators,
(y P—M). This is a one-particle equation and neglects
the effects of nucleon pairs as well as the retardation of
the binding potential.

The Breit wave functions are assumed to be factorable
into a product of the proton and neutron spinors and a
scalar wave function. The spinors are further assumed
to be the same as free-particle spinors. This, coupled
with the assumption that the current operator is the
same as for a free particle, reduces the current of the
bound two-nucleon system to the current of the free
two-nucleon system with a weighting factor roughly
corresponding to the momentum distribution in the
deuteron. This assumption on the current operator will
be examined in the next section. The binding certainly
alters the small components of the spinors, but this is
neglected although it is of the same order as the cor-
rection terms which will be retained. This effect could
certainly be estimated via perturbation theory, but
because of the approximations of the same order
already made on the nucleon current operator, it was
not considered entirely consistent to retain these
corrections.

The matrix element for the transition is (see Sec. III)

J e

M=8(P' P q) ~

d—'LLx—(L,k; P)j„"P(L——,'q; P)
g2

+neutron), (5)

where P and P' are the initial and 6nal center-of-mass
momenta of the two nucleons, X is their final asymp-
totic relative momentum, y is the scattering-state
solution, and p is the bound-state solution of Eq. (4).
It is important to notice that the initial and 6nal wave
functions are defined with different c.m. momenta.
This leads to a 6nal-state wave function relativistically
contracted with respect to the initial state. This effect
has been calculated for elastic scattering and found to
be quite large (the elastic form factor for a zero-range
potential is reduced by 15% for q=3X10" cm ').'
This effect in the case of inelastic scattering might be
expected to be less important, but has not been calcu-
lated.

The spinor functions have the usual orthonormal
properties. The Breit wave functions can then be

' R. Blankenbecler (to be published).
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written as the inelastic cross section becomes

and

g =u, (L+-,'P') u„(—L+-,'P') x (L,k),

g=u, (-',P+L——,'q)u (-', P—L+-', q)p(L —-', q).

The matrix element becomes

~=&(P' P q—) — d'LLU. ")x(L,k)0(L—lq)
g2

+neutron7. (7)

do/dQ. = (2~) ' P td'k d'P P.'dP.o(P' P—q)—
spin

,9")(J ')
&& IP+(k,q) I' Dj.")(j")+(j.")U"¹

g4

Defining a cross section for nucleon scattering

V.')(J.') '
o'=2m P p

spin

The structure of the current operators to be used in
this equation will be discussed in the next section. It is
to be noted that they are not indentical with the free-
particle current operators.

Since the initial proton and neutron spins are corre-
lated in the deuteron, the spin sums must be performed
with care. The only e8ect of this correlation is in the
cross term between the neutron and proton current,
since in the individual nucleon terms, all possible
orientations between the electron and nucleon are
possible whether bound or free. The cross term is
negligible in any case because it will involve a term of
the form

(j„)(j„")S(P'—P—
q) ~(L,l )y(L ——;q)x(L',I )

)&g(L'+-', q)d'L d'L' d'P„d'P„,

which for free final states becomes approximately

allows the inelastic cross section to be written as

) d'k ~
d~/do, = P.'dP,

(
)8(Po' Po qo—) )Pg—(k,q) )'

E(2~)oh
x L (~"+~")/p7.

For free final states, Ii+ becomes the Fourier trans-
form of the deuteron wave function, which for any
reasonable model is peaked at k q/2. This value of
the relative momentum corresponds to the free scat-
tering value and will be used as an expansion point. To
simplify the algebra, it is convenient to assume non-
relativistic kinematics in evaluating the correction
terms, while treating the zero-order term exactly. The
entire problem will be treated nonrelativistically and
at the end of the calculation, the correct kinematics
will be restored to the zero-order term. One must
confirm the consistency of this scheme at each stage
in the calculation.

The energy-conserving delta function can be written
as

t (j &)(j ")y(k+-', q)y(k ——,'q)d'k d'P'8(P' P q). — —

F(q)oi,ot.;o I d'k y(k+———',q)y(k).
and to write the total inelastic cross section as

8 (Pp' —Pp —
qp) =8(P,—P, (k'))

LOESS/ojP,

7
—',

where P, (k') is the positive root of the argument of the
The elastic-scattering form factor corresponding to delta function. This enables us to define an inelastic
this value of q is density of Anal states as

pr =P'LojE/&P. 7 '(2or) ',

Neglecting the k dependence in the nucleon currents,
we see that the cross term is approximately proportional
to the deuteron elastic scattering form factor at twice
the q value in question. This is completely negligible
at the experimentally interesting values of g. The effect
of Gnal-state interaction could hardly be expected to
change this result radically in this range of q. The
physical reason is that any q which is large enough to
expose the nucleon will certainly "ignore" a structure
as large as the deuteron.

Upon dining the inelastic deuteron form factor as

F~(k,q) = t d'L x(L,k)y(La-', q),

where

p)doke
d~/dfl. = '

( I IP+(k,q) I'LK,
E (2or)')

&= (~"+~")pr/p I z. z.(»)=
The term in the brackets varies slowly with k com-

pared to the inelastic form factors. Since F+ is a sharply
peaked function of k, it is convenient to expand the
slowly varying factors in a Taylor's series about this
maximum.

In order to evaluate the correction terms of interest,
an explicit form for g must be used. This weight func-
tion is approximated by assuming that it satisles a
Schrodinger type equation. This ignores the contraction
e6ect in the Anal state and the retardation of the
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potential. At large momentum transfers, the once
iterated Born expansion should be adequate. From the
nonorthogonality of the initial and final states, an
error is being made of the order of the elastic scattering
form factor compared to one. This is completely
negligible for large q.

Writing V as the potential that binds the deuteron,
we find

x(L,k) =8(L—k) —(L'—k' —ip)
—'V(L —k). (10)

The ingoing boundary condition must be used in the
final states. Inserting Eq. (10) into the inelastic cross
section, keeping only linear terms in V, we find the
expression

dtT r dak

I+(k—pq) I'
«, & (2~)P

V(k —L)
+2P O'L P(k —-', q) P(L—-', q) 8, (11)

where P means principal value. To the order to which
we shall evaluate this expression, L—-', q(k') can be
replaced by L—-', q(L') in the second term, owing to the
peak of V and the wave functions at I. k.

The first term is evaluated in the following way:
performing the angular integrations, we find

of Eq. (11) becomes after a change of variable

qp I' dP P 6 8
, l4(P) I' exp

np ~ (2m.)' np q r (&p,)

It should be kept in mind that q is a function of qp.

Upon expanding the exponential operator to second
order in I', this becomes

$2

1+(P')
0.'p 6QQ g P (gap)

where 8' is the Laplacian with respect to ~qp.
Since the bracket in Eq. (11) is a function of q(k')

only for large momentum transfer, it is convenient to
expand the second term in another form:

Ã)~(»=expL(k' —iqp')~7[»~op. ) ~= ~/~(-:qp').

It then becomes

t
d'k d'L V(k —L)—2P P(k ——',q(k')) P(L——,'q(I.'))
LP—kP (2~)P

X(1+(k —:q")~)[»
The term independent of 6 vanishes because it is a
symmetric integral of an antisymmetric function of I
and k. By symmetrizing the term which is first order
in', we fin

' d~4IO(k —pq) I'=Lkq(k')7 'LG(k —
pq)

—G(k+ pq)).

k = -,'q (k'). (12)

The second term is much smaller than the first through-
out most of the range of k for any reasonable wave
function. The first term is strongly peaked when

(2~) ' d'k d'L y(k ——,'q(k')) V(k —L)
4

XP(L——,'q(L'))5 [».
Expanding the arguments of the wave functions
according to Eq. (13), we find

)P—P'q
=-n-p(2~)- "d Pd P'y(P)VI Iy(P')Z[»

n )
=n—"(V)Z[B),This defines the expansion point kp. Neglecting the

binding energy, this is easily shown to be the free
scattering value. Expanding q about this value, we find

where %=4 to 6 and depends on the shape of the
potential. For example, if V is a zero-range potential,
N=6; if V is a Vukawapotential, S~5; if V is a square
well, E 4.

Using the relation i=pi(k)/p(k)n(k), which follows

from the definition of P and o., and also holds for
relativistic kinematics if the appropriate changes are
made, we find for the total inelastic cross section

~~/«. = (~"+ ")p[1+(P'»), (16)

k —ipq(k') =np(k ——',qp); np= [1—ipBq/Bk)p. (13)

For values of k large enough so that this expansion is
not valid, the wave function is near zero. Using the
same expansion point in the second term and undoing
the angular integrations, we get

&p qo"«.I4(k —lq(k')) I'= ~d~ I4(nok —lnpqp) I'
J q(k') ~

where

(V)=—(P'),|2 ~
a' pqp(~ +~")

(~'+ ")&=I,I,I, n(qp) I

(3np') Bqp' ( q(-', qp) )
2y8

(np(~ +n")), (1&)
&no"qo& &go

Expanding the brackets in Eq. (1) with the displace-
ment operator

&(k)= expL(k —-'qo) ~)[&(lqo)7,

where 6 is the gradient with respect to ~qp and does
not operate on the qp in the exponential, the first term and 2V~4 —6.
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This is our result if the nucleon cross sections in Eq.
(17) are identified with the free-scattering cross sections.
The approximations implicit in this identification are
discussed in the next section. We shall now examine the
deuteron current operator in detail.

The current operators must now be constructed.
The structure of the nucleon current operator has been
investigated in fullest generality by Zemach. ' By
considering the Green's function for the dressed nucleon
and invariance and conservation properties, he has
derived the form of the operator. It can be written as

III. CURRENT OPERATOR
JP 2P +JR (21)

The bound state of the two-nucleon system is
described by the Bethe-Salpeter equation, ' which can
be written in the form

Gi G2 V V12$

where V~2 is an integral operator which is itself known
only as an infinite series in the meson-nucleon coupling
constant and represents the sum of all irreducible
diagrams of the interacting system. The one-particle
Green's functions contain their respective mass oper-
ators. The matrix element of interest in terms of the
8-S amplitudes is'

M=(f~ [j„"A„(x~)G„'+j~&A„(x„)G„'
+ (6Vi2/|'A „)A„(x)]i i), (19)

where A(x) is the Mgller potential generated by the
electron,

A„(x)=(f
~
J„'(i)q-' exp[iq x].

The 8-S amplitudes are eigenfunctions of the c.m.
momentum I'. It is convenient to transform to mo-
mentum space, where the amplitudes are defined as

~i)= (27') 4exp[iP X] I d4P f(P,P) exp[iP x],

where j~ is the current operator which contributes to
the free-scattering process and j vanishes when its
expectation value is taken between free spinors. The
free part of the current contains the effect of nucleon
structure by the inclusion of form factors. Some of these
functions are measured in electron-proton scattering,
and agree roughly with those calculated from meson
theory and dispersion relations.

The bound part of the current will, of course, con-
tribute to free electron-proton scattering if more than
one photon is exchanged. This effect for electron-proton
scattering has been calculated by Drell and Ruderman"
and Drell and Fubini" using dispersion relations and
found to be small for the energies and angles of experi-
mental interest. The destructive interference which led
to the smallness of their result need not be present in
the case of the deuteron. An examination of the photo-
disintegration cross section in the resonance region
leads one to expect that the interference is construc-
tive. '2 The bound-current contribution to electro-
disintegration may well be large also.

We shall now use a dimensional argument to get an
estimate of these terms for a bound nucleon. A typical
term in the bound-current operator has the form

e[y„or ~„„q"]X(q,p)G '/M, (22)
(f( =(2m) 'exp[ iP X]—

X td4L 0'(L,k; P') exp[ iL x]. —

Inserting these into the matrix element, neglecting
the contributions due to the coupling operator V~2, and
performing X, x, and p integrations, we find

where X(q,p) is a matrix function of the four-mo-
mentum transfer and the nucleon momentum. X is a
dirnensionless function and is assumed to be of order
unity for small q and reasonable p. ' Inserting this into
Eq. (6) and using the 8-S equation, we find a contri-
bution to the current of the form

e(f
~ [y, or ~„q"]X(q,p) V12/M

~
i).

It is assumed that as a function of q, X is similar to
the free form factors. At least for small q this seems to
be a reasonable assumption because the characteristic
length involved in both terms is the meson Compton
wavelength. This means that the bound-current terms
are roughly of order (V/M) relative to the free ones.
For an instantaneous potential, this reduces im-
mediately to the average potential energy in units of

+neutron . (20)

The omission of the current due to the coupling
operator V~2 neglects not only the meson exchange
current but also the interaction with the nucleons
while two or more mesons are being exchanged. The
retardation of the lowest order ("ladder" ) potential
is, of course, correctly described by Eq. (20).

8 C. Zemach, Phys. Rev. 104, 1771 (1956).
'E. E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454

(1956).
S. D. Drell and M. Ruderman, Phys. Rev. 106, 561 (1957)."S. D. Drell and S. Fubini (unpublished)."The essential difference is that in the proton case, the nucleon

must act twice with the virtual photon field of the electron in
order to get a proton line off the mass shell. In the deuteron, the
nucleon need act only once because it is already off the mass shell.

6 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);
J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452, 455 (1951).

7 K. Nishijima, Progr. Theoret. Phys. (Japan) 14, 203 (1955);
A. Klein and C. Zemach, Phys. Rev. 108, 126 (1957).

(~.')
M= 8(P' —P—

q) d'L Oj „"G„'f(L ,'q)—-
g2
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the nucleon mass. For a reasonable deuteron model,
this is an effect of a few percent. This e8ect is com-
pensated at least for small q by the normalization
condition to be imposed upon the two-nucleon ampli-
tudes, which is a requirement on the total charge of the
system. ' If X(q) does not fall o8 with q as fast as the
free-form factors, then these terms will become more
important. The only practical course to take is to
neglect the contribution of the bound terms to the
current operator. This allows us to express the deuteron
scattering in terms of the free-scattering cross sections.

The form of the matrix element given by Eq. (20) is
quite untractable. Assuming an instantaneous potential
and neglecting nucleon pairs in the initial and final
state, the matrix element reduces upon performance of
the I.o integration to Eq. (5). Since the approximations
made in going from Eq. (20) to Eq. (5) involve only
the binding potential and nucleon pairs, rot the scat-
tering kinematics, it is clear that the four-momentum
transferred by the electron is the argument of the
nucleon form factor. A nonrelativistic treatment is
ambiguous on this point. The difference between the
value of the nucleon form factor with a three- and a
four-momentum transfer is crucial in the interesting
range of q. This treatment is unambiguous on this point.

By considering a trivial generalization to the e-
nucleon system, this approach justifies the use of the
"folded" charge distributions if the three- and four-
momentum transfer are approximately equal. It is
clear that the finite size of the nucleon will not aGect
any real photon process. There have been errors in the
literature on this point, and they have been based on
the results of the "folded" charge distribution, which is
seen to be incorrect for real photons.

This treatment does not justify the use of the four-
momentum in the Schrodinger wave functions. It seems
to be impossible to do so. However, one has an intuitive
feeling that a comparison with the three-momentum
result yields a measure of some of the relativistic un-

certainties in the problem, since the same transcription
in the case of elastic scattering does not spoil the
experimental agreement. That this prescription is not
to be taken seriously can be seen from its application to
photodisintegration where the four-momentum transfer
is zero, and the energy dependence of the cross section
is lost. The calculation with the four-dimensional
momentum transfer has been carried out by Hofstadter
and Yearian. '

One may legitimately ask the question, why introduce
the 8-S approach if one is not going to improve on a
Breit (or even the Schrodinger) treatment of the
problem. The only defense is that the 8-S approach
simplifies the discussion of the bound-current terms,
settles unambiguously the question of three- ~s four-
momentum transfer in the nucleon form factors, and
makes clear the approximations implicit in Eq. (4).
With the neglect of these bound-current terms, the
cross section fT& may be identified with the free-

TABLE I. Values of 6,.

Nucleon
model 75o 90o f20o $35o

Point
Gaussian

Exponential

4
6
4
6

—0.15
0.22
0.40
0.28
0.45

—0.19
0.55
0.86
0.54
0.80

—0.24
1.24
1.78
1.06
1.47

—0.26
1.56
2.22
1.30
1.78

V. DISCUSSION AND CONCLUSIONS

This development of the sum rule is perhaps better
than the previous ones because it reduces with the
neglect of binding to the correct relativistic limit. In
this calculation we have essentially replaced the Pauli
spinors by free Dirac spinors in order to achieve this
limiting behavior. The kinematic corrections evaluated
in this paper are found to be relatively small. However,
the omission of many other terms of the same order
seems to preclude a satisfactory interpretation of the
data in terms of a neutron moment distribution to

. better than about 20%%uo in the total cross section. This
is reQected as a smaller error in the "radius" deter-
mination.

A covariant description of the bound state would
seem essential in such a high-energy process as we are
attempting to examine. The e6ect of nucleon pairs and
the retardation of the binding potential has been
neglected and may well be important in this energy

scattering cross section, given by the Rosenbluth
formula.

IV. NUMERICAL RESULTS

Since 6 defined by Eq. (17) involves a ratio of cross
sections, a small error is introduced in its evaluation by
using nonrelativistic kinematics. The proton charge
scattering has been neglected. The neutron was assumed
to have the same moment form factor and radius as the
proton.

The algebra of evaluating the derivatives of the
various quantities is straightforward but somewhat
lengthy. The numerical results are presented in Table I
for an incident electron energy of 470 Mev.

It is seen that the introduction of form factors changes
the sign of the corrections and completely dominates its
Inagnitude. An attractive potential in the final state is
found to decrease the result, because it allows the
nucleon to scatter from the electron with an eRectively
larger q, and hence a smaller cross section. With form
factors, this decrease has roughly one-half the magni-
tude of the eGect due to the variation of the cross
section over the momentum distribution.

Since (p') = 15—40 Mev for any reasonable deuteron
model, an upper limit to the correction is 9%%uo at
135'. It is smaller at the other angles considered. The
approximations considered in this paper break. down
for small q, or forward scattering, so that the result at
75' might be viewed with caution.
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range. There seems to be no satisfactory method for
estimating the bound-current terms. A calculation of
these terms would be equivalent to the discussion of the
free nucleon current form factors from first principles,
and dispersion relations. may offer a fruitful approach.

Some information about this effect and the mesonic
corrections might be found by performing the experi-
ment at a small momentum transfer where the proton
charge contributes most of the scattering. Since the
magnetic moment form factors are roughly known from
from the large-q experiments, their contribution can be
evaluated quite accurately at small q. A Schrodinger
description of the deuteron should also be more accurate
in this region. A comparison with the free-proton charge
scattering results would shed some light on these efI'ects.

The determination of the neutron size by measuring
the total inelastic cross section suBers from the mesonic
and kinematic corrections which are most important
when the electron has endured a large energy loss.
Experimentally, it is also more

dificult

to make
measurements under these conditions.

The mesonic corrections have been crudely estimated
in the following way. The photodisintegration cross
section is known as a function of the photon energy.
This cross section is reduced by multiplying by nucleon
form factors having a four-momentum transfer roughly
corresponding to the photon energy involved. The
electromagnetic field produced by the electron is
assumed to have a distribution of equivalent photons
which is zero for a photon energy greater than the

energy loss su6ered by the electron. The electrodis-

integration total cross section is then an integral over
the product of the reduced photo cross section and
distribution function. By assuming reasonable dis-

tribution functions, the effect of the meson resonance
was found to be of order 5—15% at 135' and falls off

rapidly for smaller angles. For larger angles or q's, the
form factors damp the meson resonance and the effect
saturates at 10—20%. This approach may grossly
underestimate the contribution from the meson ex-

change current if the meson form factor is much larger
than the nucleon form factor for large momentum
transfer. This term is relatively small below the
resonance region, however.

Another method for the interpretation of the experi-
ments is suggested by this work, '3 which would seem
better than the total cross-section technique. One
calculates the spectrum of inelastically scattered
electrons near its peak, which corresponds to the
expansion point of this paper. The neutron form factor
is found by matching the measured peak value with the
calculated value which is appropriately weighted with
the proton and neutron form factors. The advantage of
this procedure over measuring the total inelastic cross
section is that the mesonic and kinematic corrections
are presumably important only if the electron has lost
a large amount of energy, and hence should appear on
the low-energy side of the peak. The mesonic corrections
in the final state should also be hampered by the
relatively narrow width of the resonance. The static
final-state-interaction corrections are also small near
the peak and may be safely neglected. Unfortunately,
the height of the peak is somewhat sensitive to the
deuteron model assumed. The peak height is very
insensitive to the substitution of the four-momentum
transfer for the three-momentum transfer. This should
not be taken to mean that the relativistic corrections
are necessarily small here, because the wave-function
normalization must also be changed in some (unknown)
manner.

Once the neutron form factor has been determined
by this method, the total cross-section measurements
and the results of this paper can yield a measure of the
unknown but extremely interesting relativistic and
mesonic corrections. It seems that this experiment can
supply information not only on the neutron but also
one the structure of the two-nucleon bound state.
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