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The Fermi-Thomas-Dirac equation is modified to include correlations between electrons. An application
is made to the equation of state. No numerical work with the modified equation is reported.

I. INTRODUCTION
~

~

~

~ ~

INCH its invention by Fermi' and Thomas, ' and
later modification by Dirac, ' the statistical model

of the atom has been used by many authors4 to study
those properties of solids, and of heavy atoms, which

may be expected to be reasonably independent of the
detailed structure of the outer electron shells of the
atom. Generally, such matters as the equation of state
at high pressures, ' and the development of the periodic
system' are well treated by the model, indeed, in the
latter case, the model is more accurate in predicting
the values of the atomic number Z at which the first
s, p, d, f, etc. electrons appear, than one has any right
to expect. However, matters that depend upon the
edge of the atom, such as the atomic diamagnetism,
which is proportional to the mean square radius of the
charge distribution in the atom, are poorly given by
the model.

The root of the trouble is twofold. In the first place,
the original model supposes, at each point in space, a
degenerate free electron gas, and the interaction
between electrons is ignored, except for the mean
screening effect of the electron cloud. This is an approxi-
mation which is accurate for high density of electrons,
therefore in the interior of heavy atoms. The erst step
in improving this part of the approximation was taken
by Dirac, ' who included the exchange energy of a free
electron gas, thereby accounting approximately for the
tendency of electrons of like spin to keep away from
each other, an eGect which evidently reduces the energy
of the system. Various eRorts have been made to take
into account the tendency of electrons of unlike spin
to stay apart (because of their Coulomb repulsion), an
effect which is clearly in the same direction, but these
have been largely frustrated for lack of an adequate
theory of this so-called correlation energy. This gap
has now been, if not filled, at least penetrated, by the
elegant work of Gell-Mann and Brueckner, and of

Gell-Mann. ~ This paper will be devoted to a minor
extension of their work, which will lead to a modified
Fermi- Thomas-Dirac equation. As a special application,
we shall deal with the equation of state, though the
modified equation is generally applicable. The manner
in which we shall incorporate the correlations is exact
at high densities, and probably not wildly wrong at
any density.

The second basic error of the model, not unrelated
to the correlation energy, is rooted in the circumstance
that electrons do not interact with themselves. A crude
effort to take this into account was made by Fermi and
Amaldi, ' by simply multiplying the charge distribution
each electron sees by the factor (Z—1)/Z. We shall
not discuss this correction here, though it would be
easy to incorporate it into the model in the manner of
Fermi and Amaldi.

We shall also work at the absolute zero of tempera-
ture. The procedure for going to a finite temperature
exactly is given by Feynman, Metropolis, and Teller, '
and can be carried over with much pain, though with
no difhculties of principle, for those problems in which
the temperatures are comparable with the atomic
energies.

II. CORRELATION ENERGY

We consider a degenerate electron gas of maximum
momentum pr, and density (number of electrons per
unit volume) tt. Then it is known that these are con-
nected by the relation rt = 2 && (4sr/3) X (Pe/2vrh) s, where
5 is Planck's constant divided by 2sr, or n=Pss/3sr h'.
This relation is correct even in the presence of inter-
actions, though pt must then be interpreted as the
maximum momentum before the interactions are
turned on. We will be interested, for reasons that will

appear in the next section, in the removal energy of an
electron at the top of the distribution, that is, with
momentum p&. The first term is simply the kinetic
energy of the electron, Ps'/2trt, and the second is the
exchange energy, —e'pF/srA, which was included in the

Work done under the auspices of the U. S. Atomic Energy Fermi-Thomas equation by Dirac. We shall show in
the appendix that Gell-Mann's scheme leads to an

Wisconsin. expression for the correlation energy, correct in the
' E. Fermi, Z. Physik 48, 73 (1928). high-density limit, of —(trte'/sr A') (1—ln2) lnps+con-' L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1926).
3P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930) stant. The constant term is of no consequence for the

See, for example, P. Gombas, Statistische Theoric des Atoms
(Springer-verlag, Wein, 1949). ' M. Gell-Mann, Phys. Rev. 106, 369 (1957).

~ Feynman, Metropolis, and Teller, Phys. Rev. 75, 1561 (1949). E. Fermi and E. Amaldi, Mem. accad. sci. ist. Bologna 6, 117' M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957). (1934).
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Fermi-Thomas model, since it amounts only to a
redefinition of the zero of energy. We shall modify this
expression in such a way as to leave it correct in the
high-density limit, but render it exact in the low-density
limit, ' thus obtaining what we hope will be a reasonable
interpolation formula, correct, in any case, at the two
extreme limits.

Wigner' has pointed out that, in order to do this, one
need only note that a very dilute gas of electrons, at
absolute zero, will crystallize into a body-centered cubic
lattice, for which one can calculate the correlation
energy exactly, by Madelung type techniques. The
result" is (for the total energy at low density, including
the exchange energy) —0.89e'/r„where r„ the "mean
spacing between electrons" is defined by (4n r,s/3) =I '.
LIn fact, of course, the actual mean spacing between
nearest electrons is not r, but is I'(4/3)r„but we
conform to the standard nomenclature in the field. "$
Since p& is related to r, by the equation trpsr, =A,
where n= (4/9pr) &, the low-density energy is

me'(1 —ln2) (0.89rr7r —1)prp p'ap

E„„=— ln 1+ , (1)
pr'A' (1—ln2)A

where ap ——As/wee'. We take then, for the total removal

energy of an electron at the top of the Fermi distri-

bution,

pp

happ

+tot ++porr
2m xh

(2)

P E Wigner, .Phys Rev..46, 1002 (1934)."It should be noted that there is some ambiguity in the litera-
ture about this number. In his original work, Wigner calculated
the energy of a body-centered electron lattice, and compared it
with the energy of a uniform distribution of electrons, obtaining
3/4 for the number we have given above as 0.89. Later PE. Wigner,
Trans. Faraday Soc. (London) 34, 678 (1938)g, he recalculated
the energy of the lattice, and obtained the answer 0.90 for the
coeKcient. We shall use the value 0.89, which we have obtained
by an independent calculation.

'P. Hertz, Math. Ann. 67, 387 (1909); see also S. Chandra-
sekhar, Revs. Modern Phys. 15, 1 (1943).

"Tlus ys

Eo, (Rydbergs) = —(2/pr ) (1—ln2) lnL1+9.0a(pzap/A) j.
If we now expand this near the high density limit, we find

—(2/prp) (1—jn2) ln (nP p ap/Pt) —0.137.

As will be shown in the appendix, the exact expansion is
—(2/prp) (1—ln2) in (ttp p ap/i't ) —0.117.

The difference between the numbers 0.137 and 0.117 gives some
measure of the error associated with our interpolation formula (1).

—0.89e'np p/A.

Since the exchange energy is —e'pz/prA, the low-density

correlation energy is —(0.89trpr —1)e'p&/prA. Remem-

bering that the high-density limit is

—(me'/pr'A') (1—ln2) lnp p+ const,

a suitable interpolation formula might be"

pp

happ

eV(r) + — +E,.„=const.
2m mk

(3)

Note that e, the charge on the electron, is intrinsically
negative. This equation, plus Poisson s equation

7'V = 47rm—e= 4pFpe/3—prAp, (4)

completely determines the model. The boundary con-
dition at the origin is V —+ Ze/r, and we shall make the
usual assumption of spherical symmetry, encasing each
atom in a spherical cell of its own, of a volume equal to
the atomic volume in the material under consideration.
Thus the edge of the cell is de6ned by ro such that
V'(rp)=0, expressing the fact that the total charge
contained within ro is zero.

It is customary at this point to de6ne a collection
of new variables and constants, which we do as follows:

r p p' e'pr (1—ln2) e'
+E,.„+ lnoa, (5)

Z8 .2m xk

x = r/Pa p, where P = (9pr'/128Z) ', (6)

pFap ( r ) ' ppap pras'

A E2Zao) 2
'

a= (2P/pr'Z) l

b= pa', where p= s (1—ln2),

1—ln2
c=~a, where 0 =

2 (0.89uvr —1)

In terms of these, Eqs. (3) and (4) become

fp" (x)= vpx-l,

(8)

(9)

(10)

q = v' —avail —pa'x in(tra+vs —l).

The boundary conditions become

q (0)= v (0)= 1,

xptp'(xp) = q (xp).

(12)

(13)

(14)

Equations (11) and (12) are the basic equations with
which we shall henceforth deal. Neglect of the last two

III. FERMI-THOMAS MODEL

The Fermi-Thomas model of the atom is based on
the idea of a degenerate gas of electrons at each point
in the atom in statistical equilibrium in the space-
varying mean potential 6eld. We will not discuss the
general question of the range of validity of such a model.
The condition for equilibrium is that it should not be
possible to gain energy (free energy, if the temperature
is not zero) by transferring an electron from one point
in the atom to another, so that the removal energy
should be the same at all points in the atom. So, if the
electrostatic potential at a point is V(t),
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terms on the right-hand side of (12) would lead us to be
original Fermi-Thomas model, while neglect of the last
term only would yield the Fermi-Thomas-Dirac model.

For the Fermi-Thomas-Dirac equation (i.e., p=0,
above), it is now possible to construct a power series
solution, useful near the origin, to which one can then
join a numerical integration. However, in our case, the
logarithmic term in (12) changes the analytic character
of the equation in the neighborhood of the origin, so
that a power series does not exist. However, a double
power series in x and inc does exist, and the first few
terms are given below. 2 is the slope parameter which
determines the value of xo, the radius of the cell, and
we have defined a logarithmic slope function Q(x)
=A —(pa'/4) lnx. Then, if oo(x) =P„f(n, x)x", we have

f(0,$) =1,

f(1/2, x) =0,

[n(xo)]' ( 2Z)
-**8 v(xo) '

ao'44(Xo) =
3s' (Pxo) 3or'i axo'*

(16)

For the latter, we must take into account the internal
forces of the gas, since, even in this approximation, "

g+ & =~kinetic~ p~potentialq (17)

and it is necessary to know both kinetic and potential
energy to 6nd the pressure.

To achieve this, we consider a virtual expansion of
the electron gas, keeping the number of particles
constant. Then

forces on the electrons [this is in fact the definition of
the edge, and is represented by Eq. (14)j, so the
pressure is just that of an electron gas at that point.
Hence we need to know the density and pressure of the
electron gas at x=xo. The former is given by 44=pi '/
3x'A', so that

f(l,x) = 2A 'a'—-
p= NV(BE/—BV)= ,'mph(BE/-Bpp), (18)

f(3/2») =4/3,

f(2») = 4a

4 j1 16p)
f(5/»x) =-Q+

I
-+

E5 75)

1 t'1 po. p)
f(3,*)=-+

I
—+—+- la',

3 &48 4 8I

6 3 282 5u 4
f(7/2, x) =—Q'+a'Q —+ +—+—

35 35 1225 14 35

(15)

p= ~[&(p~)—Ej. (19)

Since, as is shown in the appendix, the correlation part
of the difference in parentheses in (19) no longer
contains a logarithm, but is just —0.021 Rydbergs, we
have, if we introduce w(xo) = (pi ao/fi) =»(xo)/m. axo*,

where E is the mean energy per particle, including
kinetic, exchange, and correlation energy. In the
appendix, we show that this is simply related to the
difference between the mean energy per particle, and
the energy at the top of the Fermi distribution, namely,

X
4900

1587p' 3po-' 3po- 387p
+ +- a4,

4 4 560

m' 5
1—

ma05 15m' 4n-m

0.052

( 4 pao) f 77 67p)
f(4») =

I

—+ IQ+ i +
415 8 ) (480 450)

t
p'o. 19p' po p+ + + +

4 16 384 24 192&

We see that the correlations, represented by Q and p,
do not begin to aGect the interior of the atom until the
terms in x&, whereas exchange, represented by u,

appears in the coefficient of x'. [The appearance in

f(1,x) is meaningless, since A is an arbitrary constant. ]
IV. EQUATION OF STATE

To relate a solution of (11) and (12) to the equation
of state, we need to calculate the pressure associated
with a given xo. The simplest way to do this is to
observe that, at the edges of the atom, there are no net

We should observe that a free atom is defined by zero
pressure at the boundary so that, for a free atom,

M' —(5zv/4n. )—0.052 =0. (21)

This leads to a minimum value of (ppao/A) at the edge
of an atom of 0.50, as contrasted with the value 0.40
without correlations.

"See Feynman, Metropolis, and Teller, reference 5. Their
arguments apply equally well to our case.

APPENDIX

We want to establish our expression for high-density
limit of the correlation energy of an electron at the top
of the Fermi distribution. This expression, given in the
text, is

E„„(Rydbergs) =—24r '(1—ln2) lnp ++const. (22)

There are two ways to do this. Gell-Mann and
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A p~'f(p~) (24)

where f(pp) is the mean energy per electron, in par-
ticular (23). If we now change pz by bpz, the change

8rueckner have calculated the average correlation
energy per electron by writing down the important
part of the perturbation expansion for the energy of
the electrons in Coulomb interaction with each other,
summing over the electrons, and summing the pertur-
bation series. One can do just this, summing over all
electrons but one, then setting the momentum of that
one equal to pz. This will give the correlation energy
of one electron of momentum p p, due to its interaction
with all the other electrons, and, in fact, leads to (22).

A simpler procedure is as follows, exploiting the mean
energy expression of Gell-Mann and Brueckner,

Ecorr= —2m '(1—ln2) 1n(aps~o/5) —0.096, (23)

where the bar over the E„„indicates that this is not
the correlation energy of an electron at the top of the
Fermi distribution, but is the mean correlation energy
per particle. To obtain the former, we consider the
variation of (23) with change of p~. A change in p~
means that the density of electrons is being changed,
since that is proportional to pz', say App'. The total
energy per unit volume is, then

in energy density is

A~p~ LP~'f(p~)3. (25)

The change in the number of electrons is

3App'App, (26)

and all these extra electrons are added to the top of
the Fermi distribution. So the removal energy of an
electron at the top of the distribution is the quotient
of (25) and (26), or

P~ df(p~)
f(P~)+

3 dpp
(27)

and this relation is valid for kinetic, exchange, or cor-
relation energy. Applying it in particular to (23), we
And

E„„(p~)= —2m '(1—ln2) ln(appao/A) —0.117, (28)

measured in Rydbergs, which is the expression given in
the text. The difference E„„—E,.„(pp) =0.021 Ryd-
bergs remains correct, even when we use our interpo-
lation formula (1) for E„„(pp), provided we connect
the two through (27). The number 0.021 is just
-'n —'(1—ln2).


