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Conductivity of Nonyolar Crystals in Strong Electric Field. II*
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The distribution function of the "hot electron" is investigated in germanium for the case of a small applied
electric field, where both acoustical- and optical-mode scattering exists. The electron energy loss due to the
interaction with the optical mode is found to be quite large and it eliminates large parts of the quantitative
discrepancy between the previous theory and experiment.

where pp is the low-field mobility for pure lattice
scattering, c is velocity of sound waves, Ii is the in-
tensity of the applied Geld, k is the Boltzmann constant,
and T is the absolute temperature. If the Geld is sufh-

ciently weak, we can expand the distribution function
and keep only terms of the first order in p:

fo(y) =&" "L1+P l (y+P)3 (3)

where 1V„ is the normalization constant and y=E/kT.
Now, we define a quantity g. by

~= (~(~)—uo)/~o. (4)
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I. INTRODUCTION
' 'N the previous paper, ' which we shall denote as I,
~ - we investigated the conductivity of nonpolar crystals
in a strong electric Geld. We used a simplified model in
which the energy surfaces are assumed to be spherical
and the conduction electrons interact only with acous-
tical modes of vibrations. We solved the Boltzmann
equation approximately for this model and found that
the conduction electron distribution is not Maxwellian,
and nonohmic current characteristics follow from the
new distribution of electrons in the strong electric Geld.
Although the simplified theory can give a qualitative
description of observed nonohmic current in germanium
and silicon, the result is by no means satisfactory in the
quantitative sense.

I et us denote the distribution function by

f(k) =fo(E)+&.g (E),

as usual. Here IC and E are the wave number vector and
energy of conduction electrons, respectively, and s is
the direction of the applied Geld. Then, as seen in I,
fp(E) is given by

fp(E) = (E/kT+ p)" exp( —E/kT). (1)

Here p is defined by
3' Pp=——F'
16 c'

By using (2) and the usual current expression, we have

CO

P1+— »(y+P)y'e "dy
g J,

ln(y+ p)ye
—"dy t . (5)J, i

According to observations for m-type germanium
samples, o- is proportional to F' and the absolute value
of o/Ii' is about —1.5)&10 r cm' v ' at room tempera-
ture. ' Equation (5), on the other hand, gives a value
about two hundred times larger than that observed.
As we shall see later, the large discrepancy should be
ascribed to the oversimplification of the model.

An assembly of conduction electrons which is in
equilibrium with a lattice in a strong electric Geld
would receive more energy from the field than it can
dissipate by interaction with acoustical modes of vibra-
tion. Since the dissipation rate of energy by the interac-
tion with acoustical modes increases with increasing
electron energy, the average energy of the assembly of
electrons must increase in the strong electric field so as
to transfer more energy to the lattice and maintain the
electron in an equilibrium state. Therefore, the dis-
crepancy mentioned previously suggests that the average
energy loss of an electron in colliding with a phonon
is greater than has been considered in paper I. On the
other hand, we know that the temperature dependence
of mobility in e-type germanium is given by a T ' "
instead of a T "law. We can imagine three possible
mechanisms underlying this deviation from a T "law:
(1) interaction with optical modes of vibration, (2)
intervalley scattering, and (3) E dependence of the
electron effective mass. However, the second e6ect can
be eliminated as too small, judging from the acousto-
electric eGect observed by Weinreich. ' In the following
we shall consider the e6ects upon the hot-electron
problem of scattering with the optical modes, assuming
that the deviation from the T " law depends only
upon conduction electron-optical mode interaction. 4

Thus we are considering effect (1) as most important
and yet we cannot deny the possible importance of (3).

2 J. B. Gunn, in Progress in Semiconductors (John Wiley and
Sons, Inc. , New York, 1957), Vol. 2, p. 213.' G. Weinreich, Bell Telephone Laboratories (private
communication) .

4 T. Morgan, Bull. Am. Phys. Soc. Ser. II, 3, 13 (1958).
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(8/aIl, +Laf/aI). =0, (6)

for a system which consists of conduction electrons and
both acoustical and optical modes of vibration. Here
the operator ttBf/Bt)F is given by

r)f eF ( dg h' dfo)=—
I g(E)+lE +—&.

r)I s h ~ dE m dE)

and the operator [8f/Bt), consists of two terms:

II. BOLTZMANN EQUATION

We use a simplified assumption that the shape of
the energy surface is spherically symmetric in k space,
although the assumption is not correct in n-type
germanium and silicon. We neglect also the Coulomb
interaction between conduction electrons. ' Then we can
describe the Boltzmann equation,

Here 8 is defined by

VD'm' ph'p'q
I

1
(12)

irMA4(2m) l &2m ) &exp(hoo/kT) —1)

where A~, the characteristic energy of an optical phonon,
is assumed to be a constant, D is a coupling constant
between conduction electrons and the optical mode of
vibrations, p is the first nonvanishing reciprocal vector
of the lattice, and e(E) is a step function equal to one
for E&A~ and equal to zero otherwise.

Inserting (9) and (11) into (6) and equating the
terms of the same angular dependence, we have a
pair of equations,

E' 2E 8
E'fo'+I +2E Ifo+ fo +

QE. k kT ) kT h(u+E

L~f/r)1) =Lr)f/r)1)-+ I r)f/r)I) (8) XI LE(E+hco))l{fo(E+hcv) exp(h&o/kT) —fo(E) }
Evaluation of the first term is not dificult, because we
can expand the functions fo(E+A&o,), fo(E Ace,), a—nd
exp(Aa&, /kT) with respect to Aoo, (Aoo, is a frequency of
the acoustical mode of vibrations), and retain terms
through second order in Ace, . After some computations
we get the following expression (see I):

g = 9+(,~ms (kT)/s ~A4 (2m) & . (10)

t/ is the volume of the crystal, m is the eGective mass
of the conduction electron, M is the mass of the ion,
and C is a coupling constant between conduction elec-
trons and the acoustical mode of vibration. ' On the
other hand, the operator $r)f/cit]„ is given by'

Bf F 1

{IE(E+h(u)]-*'
8$ ()p AM QE

X [fo(E+hoo) exp(ha&/kT) —fo(E))

+e(E)fE(E h)]'oPofo(E h—(u) fo(E) exp—(h(o/—kT))

&.g(E)gf—E(E+h~))'+e(E) «p(hem/kT)

XLE(E—h ))-:7}. (»)
~ According to the experiment of K. Seeger, 0- depends on the

number of conduction electrons j K. Seeger, Bull. Am. Phys. Soc.
Ser. II, 3, 112 (1958)j. We wish to express our gratitude to him
for helpful discussions about the hot-electron problem.

'Here C is defined according to F. Seitz, Phys. Rev. 73, 549
(1948).

af 2 d'fo )E' q dfo
E yI y2E I

r)t ., QE dE' &kT ) dE

2E ( E, i+ fo—
I IEg(E), (9)

kT &2mc')

where 2 is defined by

+e(E)$E(E h&o)]' {fo (E hoo) fo (E) exp (hoo/k T)}]
eF( dgq=—

I g(E)+sE I (»)
h E dEP

In general we cannot expand the function fo(E+A(o) or
fo(E Ate) with res—pect to Aa&, because Aoo is not neces-
sarily small as compared with E.Therefore, by including
interaction with the optical mode of vibrations the
problem becomes more dificult to solve. However, if the
intensity of the applied field is small enough, we need
to consider only terms linear in p, and we can solve the
problem approximately.

IIL SMALL QUADRATIC CHANGES IN NOBILITY

Let us assume that

and
fo(E) =x(E)N exp( —E/kT)

g(E) = t (E)N„exp(—E/kT),

where S is the normalization constant of the usual
Maxwell distribution function:

N, I exp( E/kT)QEdE=1, —

and fo(E) is assumed to be normalized in the sense

AQE 8
+—

I (E+h(o) -*'

2mc AM

~eFhq df,
+e(E) exp(h~/kT)(E —h )') g(E)=

I I . (14)
( m)dE
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ffp(E)QEdE=1. Then, Eqs. (13) and (14) become

A p E'q
Ex"+

I
2E— Ix'

~E & kT)

+ [[E(E+&~)]'{x(E+&~)—x(E)}
fi(o+E

+p(E) [E(E—kpi)]'{x(E—kcu) —x(E)}exp(k&o/kT)]

eFfidfp ( A p B 2mc'
g(E) =- E~+—

m dE (2mc') A A&u

X[(Ejap~)-'*+ p(E) exp (kp~/kT) (E—Api) l],
dfp ( d$ 1=

I P — [1+pk(E)—p«&] I exp( —E/kT))dE E dE kT
(20)

and ($)=1V "$(E) exp( E/kT)Q—EdE. (21)

eF ~
-dt- t-

—

~
Here «) means the average value of $(E), which is

=—
I

{'(E)+-', — E
I (15) defined by

dE kT

AQE B
+—[(E+ka) l

28sc A co

Since Eq. (19) still has to be solved, we introduce here
a rather crude approximation. We expand $(E+Api)
and ((E—App) with respect to Ace, and take terms
through the second derivative of $(E) into account.
Then we obtain finally a simple second-order differential

uation:

+p(E) exp(kp~/kT) (E—Ap~)-:] {(E)

)e»i ~dx x i eq

&m) (dE kT)' 8 —
d2$

x'+—{-,'[x(x+1)]l+ (x)e'-,'[x(x—1)]l}
dx2

8
+ —sx'+ 2x+—{[x(x+1)]-*'

d$—p(x)e'[x(x —1)]&} —+(sx—1)=0, (22)
ds

respectively.
As seen from (16), t is of first order in F, so that the

right-hand side of (15) is quadratic in F. If we neglect
terms of the order of the magnitude of Ii2, we see from

(15) and (16) that x(E) is constant and E,t (E) is also
constant. Inserting t (E) into (15), we have

E'
q )By

I

E'x"— x'+2Ex' I+ I

kT ) EAkpi)

X{[E(E+&~)]-'[x(E+@~)—x(E)]

+p(E) exp(kpr/kT) [E(E—k(u)]-*'[x(E—kpi) —x(E)]}
t'E= —p EkTx"+(kT—2E)x'+1 —1 Ix . (17)
EkT )

where x=E/Ape and s=hpi/kT. A solution of (22) is
easily found to be

fS ' (1—se)
g(x) =g(xp)+exp —

I
Q(s)ds

xP ~*p R(u)

Xexp Q(~)d~ d~, (23)Jt 1

$0

where g=dP/dx and
let us now put

x(E)=1+p«E)- p«&

Q(x) =[—sx'+2x+ (B/A) { }]/E(x),
R (x)= [x'+ (B/A) {. . }],

Z'+2Ee' I+1
kT ) EAkpp) Bi dx

x'+—-[x(x+1)]&+px
A2 dSX{[E(E+k )]-:[g(E+& )—«(E)]

+e(E) exp(kpr/kT) [E(E—Spi)]'*
1dx+ —sx'+ 2x+—[x(x+1)]l+p —2px—

for small values of p; then we have the following and xp is any small value of x. In order to determine the
equations: value for small values of x, it is more convenient to start

from (17). By expanding x(E+hpi) and x(E—Api) with
respect to Ace, we have

(E
xLS(&—k~) —S(E)]}+I —1

I
=0, (»)) + p(sx —1)x=0. (24)
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0.1
0.2
0.3
0.4
0.5
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.4
2.8
3.0
3.8

0(&) —&5&

—0.0176—0.0159—0.0138—0.0116—0.0095—0.0075—0.0049—0.0007
+0.0005

0.0028
0.0050
0.0071
0.0091
0.0126
0.0155
0.0166
0.0183

&(5f)

0.0173
0.0210
0.0220
0.0217
0.0207
0.0193
0.0164
0.0134
0.0118
0.0113
0.0108
0.0102
0.0096
0.0081
0.0062
0.0051—0.0017

Ratio at
320 K

2.01
1.49
1.56
1.26
1.10
1.00
0.96
0.85
0.96
1.00
1.01
1.01
1.01
1.01
1.02
1.03
1.05

TABLE I. Computed values of Lt(x) —(5)g and v(x) at 320'K. trons can dissipate much more energy to the lattice
by interaction with the optical mode of vibrations than
expected from the previous computation in I.After some
numerical computation we have obtained the theoretical
value of o/F' for 320'K and 90'K. They are —1.3X 10 r

and —1.6)&10 5 cm' v-', respectively. These are to be
compared with the corresponding experimental values
of' —1.5)& 10 ' and —2.8&( 10 ' cm' v ' "In Table I we
show some values of [p(x)—(p)] andri (x) at 320'K. Next,
we must estimate the error which is introduced with the
replacement of [((x+1)—f(x)] by rl(x)+-', dri/dx. By
solving (23) we obtain numerical values of $(x) and
rl(x) for many points along x, so that we can examine
the accuracy of the approximation by computing the
ratio

[~(+1)j

where p(x) is defined by

I'(x) =xQxe " 8 25$cx*+—
A Ace

X([x+1)'+e(x)e'X[x—1$'*) . (27)

By using g (E) in (20) with the condition p=0, we can
derive the usual formula for mobility. The two param-
eters A and 8 are determined so as to give the observed
value of the mobility of m-type germanium at room
temperature (3900 cm' v ' sec ') and the observed
value of the temperature dependence of mobility in
the temperature region from 100'K to room temperature
(that is, T '").Since the parameters A and 8 involve
temperature, it is more convenient to introduce a new
parameter J by

(2mc'/Aco) (8/A ) =Js/(e' —1),

which is independent of temperature. By using observed
values we determine J as about 0.14, so that the con-
tribution from the optical mode of vibrations to electron
scattering is rather small below room temperature.
However, the effect of the optical-mode scattering for
the energy loss of conduction electrons is remarkable
even at room temperature, because it is proportional
to the factor 8/A, which is (Ace/2nzc') times larger than
Js/(e' —1)." Therefore, an assembly of conduction elec-

7 Since we use a simplified model, it is rather difFicult to define
the effective mass uniquely. Here we assume that it ig determined

We see easily that this equation has a solution for small
values of x;

7f (x)=1+p (SA/38) x'*. (25)

The parameter 0 which shows the degree of departure
from the ohmic law is also given by

1d( f"
o = —p ——+(p)—g(x) I'(x)dx F(x)dx, (26)

s dS J,

If this ratio is close to unity, the expansion of g(E+fuu)
with respect to A~ may be justified. The result of this
computation is depicted in Table I, and we see that
the ratio is fairly close to unity except for small values
of x. Thus we have found that the nonohrnic current
is a small applied field is given approximately by

j=eras(1 Ep), —

where ~ is about 0.00425 and 0.057 at 320 K and 90'K,
respectively. Although the present solution is meaning-
ful only for small applied fields, we may regard it as the
first part of a series expansion representing the true
solution of (17). Thus, we suppose that it exhibits the
nonohmic features of the current in m-type germanium
fairly well, as long as ~p is much smaller than one.
Since p=1 corresponds to an applied voltage of 185
volts/cm at room temperature, the value of Kp=0.2 at
room temperature corresponds to an applied voltage
of 1000 volts/cm. Therefore, the theory predicts that
the mobility at room temperature is reduced to 0.8 of
the low-6eld mobility, when the applied voltage becomes
1000 volts/cm. This prediction is in reasonable agree-
ment with observations. "

Since the value of 0- predicted with the previous
theory is about two hundred times larger than observed,
the agreement of the present theory with experiment is
rather surprising. Although the model used here is still
too simple, we may say that a large part of the quantita-
tive discrepancy between the theory and experiments
is eliminated by considering both acoustical and optical
modes of scattering.

by a relation 1/m = (1/3) (1/mal+I/ms+1/mq), and the observed
values of the cyclotron mass; nz1 ——1.58 and m&=F3=0.082. By
using the values c=5.4X10' cm sec ' and 8=320'K, we obtain
the value (Ace/2mcs) =800.

s By using another value (fur/2mc') =400, we have found that
the value of 0 becomes about twice the value obtained by the
assumption (duo/2mc') =800. As long as we discuss the order of
magnitude of 0., the ambiguity in the effective mass is not serious,' Arthur, Gibson, and Graville, J. Electron 2, 145 (1956),"J.B.Gunn, J. Electronics 2, 87 (1956).


