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Propagation of a Magnetic Field into a Superconductor*
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The propagation of a magnetic Geld into a superconducting wire of circular cross section is analyzed
theoretically. Upper and lower bounds are obtained on to, the time required for the Geld to reach the axis,
and on R(t), the inner radius of the normally conducting region. The lower bound is just the approximate
result obtained by Sixtus and Tonks, Pippard, and Lipshitz. It has been verified experimentally by Faber
for applied fields less than 1.04 times the critical field. It is believed that for large applied fields the actual
results should be closer to the upper bounds.

1. INTRODUCTION
' "T is generally agreed that the magnetic field strength
- ~ is zero inside a superconducting material even though
there may be a nonzero field in the region adjacent to
the superconductor. However, if the fieM strength in
the adjacent region exceeds a critical value H, the
external field gradually penetrates into the supercon-
ductor and converts it to a normal conductor. While
the penetration is occurring the material consists of a
diminishing superconducting region in which a nonzero
field exists. This conclusion has been tested by Faber'
and by Burwick' who used the following experiment.
A field Ho& H, was switched on instantaneously parallel
to the axis of a superconducting circular cylindrical
wire. The resistance of the wire was measured and found
to remain at the value zero until a certain time to after
the 6eld had been switched on, when it became positive.
Presumably to was the time required for the field to
penetrate to the axis of the cylinder and convert the
entire wire to the normally conducting state.

In this article we consider the theoretical problem of
determining to as a function of Ho and H, . We obtain
both upper and lower bounds on fo for all values of Ho
and H, . We also obtain bounds on R(t), the radius of
the inner boundary of the normally conducting region
at the time t. It seems likely that the actual values of
ts and of R(t) are close to the lower bounds for small
values of P= (Hs H,)/H, and —close to the upper
bounds for large values of P. This has been verified by
Faber for ts when P&0.04. Our lower bound is just the
approximate result obtained by Sixtus and Tonks' in
their study of the propagation of Barkhausen discon-
tinuities. The same formula was also found by Pippard4
and I.ipshitz' in analyzing the present problem.

R(0)=1. (5)

We must find H(r, t) and R(t) satisfying (1)—(5). Then
ts can be found from the equation R(ts) =0.

3. A LOWER BOUND —THE QUASI-STATIC SOLUTION

The solution of the above problem depends upon the
the parameter P= (Hs H, )H, '. When P is —small and

Here a is the radius of the wire and R(t) is the inner
boundary of the normally conducting region, which
must also be found. The time ts at which R(ts) =0 is
the "switching time", i.e., the time at which the super-
conducting region disappears. The 6eld H is zero in the
superconducting region 0&r &R(t), while at the
boundary R(t), H has the critical value H, .At the outer
boundary r= a, H has the value Ho of the applied field.
At t=0, R(0) =tt since initially there is no normally
conducting region. The velocity R& of the boundary is
equal to —(47rott/c'H. )H, (R,t). This follows from con-
servation of Qux. The constants 0- and p are the con-
ductivity and permeability of the normally conducting
material and c is the velocity of light. In the normally
conducting region, H satisfies the diGusion equation
V'H= @rope 'H» provided that 0- is large enough for the
term H« to be neglected,

It is convenient to use the radius a as the unit of
length and the quantity 4+0-p,a'c ' as the unit of time.
Then the equations of our problem become (see Fig. 1)

H„„+r 'H„=Ht, R(t)&r&1 (1)

H(1,t) =Ho,

H(R, t) =H„
R,= H. 'H„(R,t), — —

FIG. 1. The formulation
of the problem in the r, t
plane. The interface at R(t)
starts at R=1 when t=0
and reaches R=O at t=t0.
The magnetic Geld H =0 for
r&R(t), H=H, at r=R(t)
and H = H0 at the outer
boundary r= 1. In the nor-
mally conducting region H
satisfies the diffusion equa-
tion. The velocity of the
interface is given by
Rg —— H'H (Rt)—
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2. FORMATION OF THE PROBLEM

The problem which we consider is that of determining
an axial magnetic field H(r, t) in the region R(t) &r& a
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The "switching time" ts at which R= 0 is, from (8),

t = 1/(4p). (9)

As we expect, (9) shows that tp increases as p decreases.
In terms of dimensional quantities,

1.5— ts rra'op——H./$c'(Hs H,)$—. (9')
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In the Appendix it is shown that (9) yields a lower
bound on ts and that (8) gives a lower bound on R(t).
These results may be explained physically by observing
that the omission of Hi from (1) is equivalent to assum-
ing that diffusion occurs instantaneously. This will

obviously result in a too rapid motion of the boundary.

4. AN UPPER BOUND —THE ONE-DIMENSIONAL
SOLUTION
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To obtain an upper bound on ts and on R(t), let us
consider the one-dimensional problem in which a field
Ho is applied on the two sides of a superconducting slab
of thickness 2a. It is physically obvious that it will take
longer for the superconducting region to disappear in
this case than in the case of the circular cylinder. It is
also clear that it will take longer for the interface to
travel any specified distance than in the cylinder
problem, so that this problem yields an upper bound
on R(t) as well as on ts These f.acts can be proved
mathematically, but it does not seem necessary to give
the proof.

We shall let r denote distance from the median plane
of the slab, and we shall consider only the region v&0.
The solution is obviously symmetric in the median
plane. The formulation of this problem is exactly the
same as that given above in (1) to (5) provided the term
r 'H„ is omitted from (1).It has the explicit solution

( tb lq —1

H=H. y(Ho H.) ~

t exp( —"—)« I

FIG. 2. (a) Graphs of bounds on the switching time to at which
the superconducting region disappears as functions of the fractional
excess applied magnetic Iield p= (Ho —H, )/H, . The lower bound
is given by (9) and the upper bound by (13).The unit in which to

is measured is 4mu'ape ~. (b) Graphs of bounds on t0 '.

positive the field must diffuse slowly, so we may neglect
the term Ht in (1).Then the solution of (1) is

R(t) = 1—2bt&.

I,o-'

(1—r) /2t~

exp (—s') ds, (10)

(H,—Hp)
H =Hp+ inr.

InR
(6)

The two constants in (6) have been chosen to satisfy (2)
and (3). Now we insert (6) into (4), which becomes

R,=p/(R InR).

The solution of (7) which satisfies (5) is given by

E2
t =—+—(lnR ——,').

4p 2p

(7)

0.0
Qo Q2 0.3

Fro. 3. Graphs of bounds on R(t) as functions of t for p= 1. The
lower bound is given by (g) and the upper bound by (11).
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1
H(1) H—(R) =RH, (R,t) ln—

R
2b exp(b') exp( —z')dz= p.

Jp
(12)

«II,drdri. (A3)+
J~ J@

From (11) the switching time is

~,= 1/(4b ).
Making use of (2), (3), and (4) in (A3) gives

(13)
(Ho —H.)H. '=RA lnR

~l
«H, drdr, . (A4)

Equations (12) and (13) give to as a function of p in
terms of the parameter b, which can easily be eliminated.
However, it is just as convenient to keep the para-
metric form.

For p«1, Eq. (12) yields b'=p/2 and then (13)
becomes

Finally we integrate (A4) with respect to t from t=0,
obtaining

R'
pt = —,'+—(lnR —-', )

2fp= 1/(2p), 0 &p«1. (14)

The constant b in (10) and (11) is the solution of the which yields
equation

On the other hand, for p»1, Eq. (12) yields b'= lnp and
(13) becomes

+H —1 rH, drdri. (A5)

t, = 1/(4 lnp), p»1. (15)

In Fig. 2 graphs of the upper and lower bounds on tp are
shown as functions of p. To restore the units the right
sides of (13) to (15) must be multiplied by 4n.a'Opc '.
Figure 3 shows the bounds on R(t) for p= 1.

r '(rH„) „=H, . -
(A1)

Now we multiply by r and then integrate (A1) from
R to r, obtaining

rH, RH, (R,t) = —«H&dr. (A2)

We divide by r in (A2) and integrate again from R to 1,

APPENDIX —PROOF CONCERNING THE
LOWER BOUND

We shall now prove that the values of R(t) given by
(8) and of to given by (9) are lower bounds on the exact
values of R(t) and of to To do this .we first rewrite (1) as

If the integral in (AS) were absent, (A5) would agree
with the quasi-static result (8). We shall show that the
integral in (AS) is positive because H, is non-negative.
Then it will follow that

E.2
pl& «+—(lnR ——',).

2
(A6)

From (A6) it follows that the value of R given by (8)
is a lower bound on the true value of E and that the
value of to given by (9) is also a lower bound on the
true value of tp.

To prove that Hi&0, we differentiate (1) with respect
to 3 and find that H, is also a solution of (1).The value
of H& at r=1 is zero since H=ap at r=1. To obtain
the value of H~ at r =R, we differentiate (3) with respect
to t and obtain H( Rt) R~+H~( Rt)=0. Then using (4)
yields H, (R,t) = H„(R &)R,=H—'II '(R t))0. Thus
we find that H& is a solution of the heat equation (1) in
the region R(t)&r&1 and that H~ has non-negative
values on the boundary of the region. By the maximum
principle for solutions of the heat equation, Bt,&0.
This completes the proof.


