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Magnetization Mechanism and Domain Structure of Multidomain Particles*
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The free energy of a two-domain cube of iron is considered with and without an applied magnetic field.
It is shown that the two-domain configuration may exist only beyond a certain critical size (200 A), that
the wall characteristics are size dependent and that their values are substantially diferent from the values
assumed in bulk material. Moreover, magnetization by wall motion is shown to be a "hard process. "

I. INTRODUCTION

HE magnetic behavior of large multidomain
particles is similar to that of bulk material. We

therefore reserve the name of multidomain particles to
those particles that are too large to be single-domain
and too small to contain more than a few domains
(i.e., two or three). The study of these particles raises
some basic problems in ferromagnetic theory, and some
of the questions long settled for bulk material reappear
in a new and more complex form due to the greater
role of the magnetostatic energy. Some of these ques-
tions are: What are the width and energy per unit area
of the walls in the multidomain particles? How do these
properties depend on particle size and shape? What is
the magnetization mechanism in these particles, or
more specifically, can wall motion still be considered as
an "easy process"? Directly related to these questions,
are the problems of inertia, viscosity, and motion of
the wall in high-frequency fields.

We consider in this paper some of the questions

raised above, confining ourselves to the two-domain

cube. Brief preliminary investigations' ' have already

suggested substantial differences between the wall

properties in bulk material on one hand, and thin films

and fine particles on the other hand. We undertake

here a more systematic and more complete study. In
part II, we outline the methods used in computing the

magnetostatic energies involved in the subsequent

parts. These methods are based on a paper by Wright, '
extended and corrected by Rhodes and Rowlands, '
hereafter referred to as RR. The essential results of

the latter paper are summarized in Appendix A. We

have recast and extended some of these results in a
form more suitable for our needs. In part III we analyze

the characteristics of a wall in a two-domain cube of

iron, the size dependence of these characteristics, and

the criteria for the existence of such a two-domain
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configuration. ' In part IV we calculate the character-
istics and the position of the wall in presence of an
applied field.

II. MAGNETOSTATIC ENERGIES

We start out by de6ning an "effective demagneti-
zation factor. " I et E be the magnetostatic energy of
a body of volume v of arbitrary shape uniformly mag-
netized in some direction x, the magnetization density
being designated by I. We de6ne the "effective de-
magnetizing factor" E by the equation

E,=v(—',1Vj'), or 1V,= 2E,/vis.

This average energy definition disregards entirely
the 6eld distribution and reduces to the standard
definition when the shape of the body is ellipsoidal.
Moreover, the effective demagnetization factors along
three mutually perpendicular directions satisfy the
relationship

1V +1Vv+1V.= 4sr, (2)

just as in the classical case of the ellipsoid. The proof
of this (or a similar) relation has been independently
established by several authors (in particular, Brown
and Morrish, ' Rhodes, ' and the author). It is to be
noted however, that the only published proof, that of
Brown and Morrish, applies only to cases where the
demagnetizing field H is uniform, and this reduces
considerably the generality of relation (2). The proof
that we give in Appendix B makes absolutely no
assumption on the demagnetizing field distribution.

Using the relations in Appendix A, we calculate the
magnetostatic energy E.of a rectangular parallelepiped
of dimensions a, b, c uniformly magnetized along the
c direction. This energy is made up of the self-energy
of two "charged" rectangular areas and of their inter-
action energy. This leads us to the following result:

E,= v2I'g(b/a, c/a) =2Isvg(P, r1),

and the corresponding demagnetizing factor:

1V.=4g(b/a, c/a) =4g(p, r1), (4)
5 The results of part III and their derivation were reported at

the Washington Conference on Magnetism and Magnetic Ma-
terials, November, 1957 [H. Amar, J.Appl. Phys. 29, 542 (1958)].

e W. F.Brown and A. H. Morrish, Phys. Rev. 105, 1198 (1957).' P. Rhodes (private communication).
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TABLE I. The function g (p,q) =Lt (p,0) t(p—,g)]/prI.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

0.1

1.4989
1.9212
2.1300
2.2552
2.3385
2.3982
2.4430
2.4782
2.5065
2.5290
2.5476

0.2

1.0261
1.4321
1.6655
1.8172
1.9233
2.0016
2.0622
2.1100
2.1488
2.1810
2.2077

0.3

0.7868
1.1453
1.3700
1.5245
1.6370
1.7222
1.7992
1.8432
1.8873
1.9240
1.9551

0.4

0.6405
0.9554
1.1636
1.3125
1.4243
1.5108
1.5799
1.6362
1.6828
1.7223
1.7556

O.S

0.5410
0.8100
1.0109
1.1515
1.2593
1.3445
1.4134
1.4702
1.5178
1.5580
1.5926

0.6

0.4687
0.7184
0.8935
1.0251
1.1277
1.2101
1.2775
1.3337
1.3811
1.4215
1.4561

0.7

0.4139
0.6392
0.8002
0.9231
1.0204
1.0993
1.1646
1.2194
1.2661
1.3061
1.3409

0.8

0.3703
0.5758
0.7244
0.8393
0.9313
1.0065
1.0693
1.2135
1.1680
1.2072
1.2416

0.9

0.3352
0.5238
0.6616
0.7691
0.8560
0.9277
0.9880
1.0393
1.0835
1.1217
1.1555

1.0

0.3062
0.4804
0.6088
0.7097
0.7918
0.8600
0.9178
0.9672
1.0099
1.0472
1.0800

0.2818
0.4435
0.5636
0.6586
0.7363
0.8013
0.8565
0.9041
0.9453
0.9815
1.0134
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Fzo. 1. (a) Charged rectangular areas, energies given in Appendix
A; (b) parallelopiped partitioned in two antiparallel domains.

where t=abc, p=b/a, q=c/a. Similar expressions for
E„E~may be obtained by cyclical permutation of a,
b, c.We have introduced a new function g (p, q) expressed
in terms of RR functions by the equation

g(p q) =E~(p 0) F(p,q) j—/pq (5)

The introduction of this function is justified by its
important physical meaning as proportional to the
magnetostatic energy and the demagnetization factor.
Equation (A5) shows the elaborate computations
involved in evaluating g(p, q). These computations
have been considerably reduced by using two properties
of the function g(p, q). These properties, obtained by
simply transcribing Kqs. (A4) and (2), are, respectively,

g(p, q) =g(p ',qp ') (5a)

g(p, q)+g(q, p)+g(pq ',r') (5b)

Inspection of these properties shows that if g(p, q) is
known over the "unit square": 0&p&1, 0&q&1, its
value for any pair of positive values of p, q can be simply
derived. Table I gives g(p, q) over the "unit square. "

The energy of a rectangular block uniformly mag-
netized in a direction defined by its direction cosines
tr, p, y (with respect to axes parallel to a, b, c) can be

determined from considerations in the appendix and
in this section. lt is

E(~,P,7) =»I'{~'g(p/q, 1/q)+O'g(q p)+7'g(p, q) }, (6)

and the corresponding demagnetizing factor is
X=2E/BP. For a cube (p=q=1);

E= 2vPg (1,1)= -s'~Pw N =err,

which shows complete isotropy. For a parallelepiped
with square cross section (a= b) uniformly magnetized
in a direction making an angle 8 with the c axis, the
magnetostatic energy is

E=2vP(g(q 1)+sin'8)g(1&q) g(q&1) j) (g)

We conclude this section by considering a rectangular
block of dimensions a, b=pa, c=qa partitioned by
two planes perpendicular to edge 6 in three uniformly

magnetized sub-blocks of respective widths: $a, rla, I'a
)Fig. 1(b)). The energy is made up of the respective
energies of the three blocks and of the interactions
between blocks. The interaction between the middle
block and an end block may be shown to be zero, due
to obvious cancellations. The only interaction left is
that between the two antiparallel blocks, and it can be
calculated with the help of Eqs. (A3), (5). The resulting
expression for the energy E~ is

E~/2a'I'= q( pg(p, q) ~g—(%q)+ (k+—~)g(k+~ q)

+ (n+t )g(n+t, q)+(g(6q)+I g0,q)

+~g(n/q, 1/q)) (9)

IIL TWO-DOMAIN CUBE IN THE ABSENCE
OF AN APPLIED FIELD

Consider a cubic single crystal of iron, whose edges,
parallel to the easy axes of magnetization (L1001
directions) have a common length a. The cube is
assumed to composed of two ferromagnetic domains
separated by a 180' wall of width y= pa. For symmetry
reasons the two domains will be of equal width. Subse-
quent analysis (part IV) will confirm this fact. The
total magnetic energy is made up of two parts, the
magnetostatic energy Esr and the wall energy E (sum
of magnetocrystalline and exchange en.ergies). Using
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th e same reducing factor 2c'P as in the precedin
section, we may write the total "redo a re uced" energy as
= M~e . The term eM is found to be

e = —g(1 1)+(1+v)gl
1 rl

i 2')

The de i
lation

erivation of this result and the d l

ons have been published elsewhere. ' The results are
summarized in Table II and in Fi . 2. The

r a below the critical size of 200 A the
single-domain behavior isi energetically more favorabl,
an escribe the size dependence of the w ll h
istics.

e wa c aracter-

IV. TWO-DOMAIN CCUBE WITH AN APPLIED FIELD

fi ldH
e now proceed to anal z

e on the width
yze the eGect of an applied

, energy, and displacement of the
wall in a two-domain cubic particle in order to ain

'
g o e magnetization mechanism

of
' '

. e e intensity adds toof multidomain particles. Th fi ld
'

e variables of size, shape, wall width, etc. We sh

c oosing a cube of edge a=400 A. The re preceding

y
'

ows that in the absence of an a lied fi ld
the cube is divided

'' 'ded into two equal antiparallel domains
separated by a 180' wall of width 160 A
The effect of an applied held will be to chan e the

approximatel .

widths of the wall and of the dom
'

the field He e parallel to the magnetization den 't
of the two dom

'
ion ensity in one

will be lar
o omams, the width x=pa of th t da omain

If = u de'
ger than the width s= fa of the oth de ot er omain.

y= gu esignates again the wall width h
x+ +s=a. Thy — . he total energy may now be considered
as a function of the three variables, x, y, II or, q H.
For a given value of H the " d
madema e of two parts: (a) the sum e~+e„of the m

explicitl and b
n wa energy which does not contain H

I' y, ( ) the energy e~ of interaction between
the particle and the field. Thus

7

e(kn, H)=e4r(g, n)+e (n)+e~(h n H)

The wall ener egy (g) is the same function as that
used in the case t'H=O~. ~= ~. The magnetostatic ener
may be obtained from formula ~9~ b s

a (A) emln

300 0.840
400 0.740
500 0.690
600 0.655
800 0.620

1000 0.595

y (A)

145
160
175
190
205
225

0'min

3.521
3.205
2.945
2 777
2.542
2.335

&min

0.238
0.188
0.145
0.122
0.094
0.067

6
Bm&n

0.802
0.707
0.659
0.625
0.592
0.568

amia

0.483
0.400
0.350
0.333
0.256
0.225

interaction energy density is W —IH 's,"
p

'
y. One thus obtains fors omain, " res ectivel .

ea= (1 2$ n)H/—4I=—1./05X10 4(1—2$—)H.—
YI . (13)

Since 0($, 1, the absol te v l e f
—$—g) cannot exceed unity. In tabulatin e or e

for a constant value of H on o
va ues o' g, g, satisf in
gives eM, e e fo

f, ,
' y' g $+q 1.A ssmple computation

or every set of values of
($, g= 0, 0.1, 0.2, 1 . Th

o
hus, the total energy

e 0,$,4l) is calculated in tables with twi wo entries, and
i s minimum approximately located. It is found that
for relatively small values of H of the o

e s e static minimum" remains practically

2. 1

2.0

l.9
t M3

1.5

g -» lOOA

y =pa

MF&ÃF

l, 4

l ~ 3

e
l.2

I.O

0.9

0.8

TABLE II. Size dependence of the wall che wa c aracteristics of a cubic

h
ar ic e. o umns 3, 4 ive thet; (i c '). Col n 5ns and gj.ve t e act o

a en y the wall

and of the same cube 'f
eraioo t eener iesofg t e two-domain cube

e un' orm y magnetized.

e4r = —g(1 1)+(8+v)g(k+n, 1)+(n+l) g(l +a, 1)
+kg(61)+t g(l 1) (12)

With $+
wall and the a

. The interaction energy b t heweent e
e applied field is zero provided the s in

orientations are symmetrical about the m
wa . us, t e only interactions to be consider d

the two domains with the field. The

0.7

Q.6

I l l I I I I I I

IO 50 l00 200 300 400
I

500
I I
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y (A)

FIG. 2. e. &e"uced energy e per unit volume of
t' l f t'o of th ll

of the size parameter a.
e wa width y =pa for vanous values
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I.O

EXTRAPOLATED

TABI,E III. Field dependence of the position ( and width g of
the wa11. The corresponding values of irrf= (Irr/I) =g —

1j give
the initial magnetization curve.

H (oersteds) $H

0.5—

I

0 I 2

y i yP~Q~+~Q~XZ~ «. ' H = o
q y y ~~~~~//~~ ~ ~ Iooo
t 0 ~ 0 mWZZZilM«ao»

y y F///////////////~ ~ aooo

I t
I
I I
I I

I I I & I 1

4 5 6 7 8 9 IO I I

H x lO ~ OERSTED

FIG. 3. Initial magnetization curve of a two-domain cube based
on six calculated points and extrapolated for B)4000 oersteds.
The illustration shows the position and thickness of the wall for
increasing values of the applied field IJ..

0
500

|000
2000
3000
4000
6000

0.30
0.32
0.35
0.46
0.52
0.62
0.70

0.40
0.40
0.39
0.36
0.34
0.32
0.30

0.30
0.28
0.26
0.18
0.14
0.06
0

0.00
0.04
0.09
0,19
0.38
0.56
0.70 ?

material, and dependent on the size and shape of the
particles.

(b) Wall motion is not necessarily an "easy" process
of magnetization. A single-domain criterion for cubic
particles has been derived. An approximate method of
evaluation of the magnetostatic energy of multidomain
rectangular blocks has been described. It should be
pointed out that the magnetocrystalline part of the
energy has been evaluated indirectly (as part of the
wall energy) and only for uniaxial anisotropy.

unchanged. The tables have been computed for the
following values of H: 500, 1000, 2000, 3000, and 4000
oersteds.

Table III summarizes the results of these compu-
tations giving for each H value, the position and width
of the wall, the relative size of the two domains, and
the specific magnetization i' Ilr/I= $——

Figure 3 illustrates the results of the table, showing
how the wall position and width vary with the applied
field. In the same figure an "initial" magnetization
curve is sketched, using the data in the table, and is
extrapolated for H) 4000 oersteds. (For H ~& 4000
oersteds the second domain vanishes and the assump-
tions underlying our computation break down. )

The most striking result is that it takes a relatively
strong field, H~500 oersteds, to move the wall even
by a small amount and a very strong field, H&4000
oersteds, to get rid of the wall and saturate the particle.
This implies that in these particles, magnetization by
wall motion is a hard process in contrast with the wall
behavior in bulk ferromagnetic samples. In this par-
ticular case the contrast is even stronger. Equations
(6) and (7) show that the energy of a uniformly
magnetized cube is independent of the magnetization
direction and magnetization by rotation is a perfectly
easy process. But this latter result holds only when
E,=Ey=E, .

CONCLUSION

The analysis of the energy and domain structure of
a two-domain single-crystal cube of iron has been used
to show, in small multidomain particles:

(a) The wall characteristics may assume values
remarkably different from those assumed in bulk
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APPENDIX A

Consider the three rectangular surfaces 2, 8, C
LFig. 1(a)$ with uniform charge densities o.to.sos, re-
spectively, and let (AA), (BB), (CC) denote the self-
energies and (AB), (BC), (AC) denote the mutual
energies. These energies can be evaluated in terms of a
function F(p, q) of two variables or of a derived function
Z(p, q)=p 'F(p, q). The results are

(A A) = o tsa'F (p 0) = o tsa'p'Z (p,0),

(AB) = 2o tosas(FP, q) = 2o.,o.sa'P'Z(P, q),

(AC) = o tos(F(p+p'+r, q)+F(r, q) F(p'+r, q)—
—F(p+r, q)}. (A3)

(A1)

(A2)

Function Z(p, q) is shown to have the following prop-
erty:

Z(p, q)=p 'Z(p 'qp —'). (A4)

The complete expression for F (p,q) as given by Rhodes
and Rowlands is

F(p,q) = (p' —q') sinh —'$1/(p'+q') lj
+p(1—q') sinh 'Lp/(1+q')&g+pq' sinh '(p/q)
+q' sinh '(1/q)+2pq tan 'L(q/p)(1+p'+q')&j
—~pq ——', (1+p' —2q') (1+p'+ q'):+-', (1—2q')

X (1+q') ~+s (p' —2q') (p'+ q') '*+-', q'. (A5)
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1
dS*C'=— drr7*4&,

paAPPENDIX 3

A table of numerical values of Z(p, g) is given by Rhodes We shall now use the vector identity'

and Rowlands in the range 0&p&1.1, 0&q&1.6.

Consider an arbitrarily shaped body uniformly

magnetized in the x direction. let F1 dS2 be two

elements of area about points I'1 I'2 on its surface, and
dSt dSs the corresponding vector areas. The elementary
"magnetic charges" about Pt, Ps are I dSt Idst, ,

——
I dSs= Ids&„respectively. Denoting the distance

~
PtPs

~
by r» r», we m——ay express the total magneto-

static energy as

dstgss 1 dst+S„
~

~ ~

r12 ~12

where C may be a scalar, a vector, or a tensor (dyadic)
and where the star stands for a dot product, a cross
product, or an ordinary multiplication. Taking the
origin at E1 and allowing I'2 to be any point of the body,
we have

t'dSs f ( 1 ) rts
drsq,

(

—
[
= —

)
drs =, drs

rtQ " & rrs & rts' &12'

The integral in (81) may thus be rewritten as

i. dS& dSs f t dSt rst
dT2 = ~fdr, (4~) =4~n,

dS, dS,
X,+Xy+X,=—

r12
(81)

H x, y, s are three mutually perpendicular axes, we have
and (81) leads to Eq. (2) of the text, namely,
ItI +I'„+E,=47r.

H. B. Phillips, Vector Analysis (John Wiley and Sons, Inc. ,
New York, 1933),p. 72, Eq. (127).
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Large-Signal Surface Photovoltage Studies with Germanium

K. O. Jo~wsow
RCA laboratories, I'rinceton, Xem Jersey

(Received July 2, 1957)

Studies of the surface photovoltage of germanium were carried
out over a considerably wider range of excess carrier densities
than previously reported. Ambient induced inversion and accumu-
lation layer surfaces were studied on p- and n-type Ge with
resistivities ranging from 1 to 15 ohm-cm. The photovoltage was
measured with ac methods and the excess carrier density was
monitored by changes in the specimen conductance. The observed
dependence of the photovoltage on the excess carrier density
agreed quite well with theory that considers the surface space
charge, but neglects charge changes in fast surface states. Com-
parison of the observed and theoretical curves is believed to give
the surface potential to within about one kT/e unit for potentials

less than about SAT/e units, even if the effect of previously
reported fast states is neglected. Excursions of the surface po-
tential over the ambient cycle were found to be about the same
as those reported for other types of surface measurements.

The large signal photovoltage, in the range of surface potentials
covered in the present work, is insensitive to fast states having
the range of parameters extant in the literature: sensitivity is
largely restricted to unreported parameter values. Since no
evidence for fast states was observed in the present experiments,
it is concluded that the present results are at least consistent
with-previously reported fast-state parameter values.

I. INTRODUCTION

HE model shown in Fig. 1 is the presently accepted
one for semiconductor surfaces. ' Electric charge

represented by Z„and Z f, is immobilized at the surface
in two diGerent types of surface states. The first type
of state, called "slow, " is located on or within the
surface oxide layer. These states are affected by the
ambient atmosphere and usually contain a relatively
large amount of charge. Charge exchange with the bulk
occurs slowly, with time constants of the order of

' R. H. Kingston, J. Appl. Phys. 27, 101 (1956).

seconds. The model in the 6gure applies for e-type
material where the slow-state charge Z„ is negative and
the whole system is in thermal equilibrium with no
injected carriers present. The second type of trap state
is considered as existing at the interface between the
oxide and the bulk material. These states, with a charge
Zf„are called "fast" because the charge transfer
between them and the bulk is measured in times of the
order of microseconds, or less. These states are thought
to be relatively independent of ambient changes and
also to be associated with the surface recombination of
holes and electrons.


