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The magnetic properties of the Bardeen-Cooper-Schrieffer model of a superconductor are investigated by
means of Bogoliubov's mathematical method. A derivation of the Meissner e6'ect is given which is strictly
gauge invariant in every step.

1. GENERAL DESCRIPTION OF METHOD
' 'N their paper on the theory of superconductivity, '
~ - Bardeen, Cooper, and Schrieffer ("BCS") analyze
the magnetic properties of their model of a supercon-
ductor and arrive at a result indicating a "Meissner
effect."The correctness of this result has been doubted.
Indeed the Hamiltonian used lacks gauge invariance, '
and a longitudinal vector potential (A q cosy r,
B=VXA=O) appears to induce a supercurrent. But
Bardeen' has argued that the virtual states excited by a
longitudinal A have a more complicated character, in-

volving collective modes, such that the choice of the
gauge V A=0 is a physically meaningful simplification.
Anderson4 has elaborated this argument; he points out
that the sum rule which guarantees gauge invariance
is, in the BCS theory, violated only by very small terms.
Still, the question remains whether even with the gauge
V A=O the naive calculation can be trusted.

To make a more convincing argument it is necessary,
not only to use a strictly gauge-invariant Hamiltonian
which yields the equations of motion of the model ac-
curately, but also to carry out all calculations in a
gauge-invariant fashion. We propose to do this, follow-

ing Bogoliubov's' approach and omitting all less essen-
tial features of the BCS model, such as temperature
effects and Coulomb interactions of the electrons which,
after all, can only impair the tendency of the electron-
phonon interaction to make the electron gas behave
as a superconductor.

The Hamiltonian of the model is

H =Ho+H, +H~+H~~,

where Ho=energy of the free electron and phonon
gas, H, = electron-phonon interaction (g= coupling
strength), and H&+H&z ——magnetic energy (terms
linear and quadratic in the vector potential A,
respectively).

All interactions will be regarded as perturbations,
except that some of the effects of H, are to be treated
rigorously by means of Bogoliubov's method. This is
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essential, since we know from Schafroth's work' that
the ordinary perturbation approach is insufficient to
derive the Meissner eBect. It will even be helpful and
clarifying to compare the two methods, in other words,
to compare the magnetic properties of the Bogoliubov
ground state of the system with those of the "ordinary"
ground state (i.e., Fermi gas perturbed by H,).

The gauge-invariant treatment will be achieved as
follows. For g=0, the term linear in A of the Hamil-
tonian can be eliminated by a unitary transformation:

H'= exp( —K~)H exp(K~),
where

$&o,K~j=—H~,

(2)

and the new terms quadratic in A, together with HQg,
give for the ground state just the ordinary diamagnetic
energy of the electron gas, ——,'yB'V (with Landau's
g value). If gNO, however, the transformation of
Hg, ~is. ,

exp( —K~)H, exp(K~) =H,+H,~+H, ~~+ . , (3)

Hog= (Ho, Kg j, (4)

j'= exp( —K~)j exp(K~) =jo+j~'.

Here, j~' vanishes for a longitudinal A, and reduces to
the diamagnetic current (VX7cB) for the unperturbed
(g=0) ground state.

Terms of the order g'A in (j) are the lowest which can
possibly describe a Meissner eGect. Their calculation
is facilitated by two further unitary transformations
(note that all operators K are anti-Hermitian). To

' M. R. Schairoth, Helv. Phys. Acta 24, 645 (1951).

leads to new terms linear and of higher orders in A.
It is easily seen that, as a consequence of charge con-
servation, a longitudinal A gives no contribution to
(3) if H, depends on the electron coordinates through
the density operator /*it only. This will be assumed.
Hence, the transformed (total) Hamiltonian is "mani-
festly gauge invariant", and so is any calculation
based on it. In particular, the quantity to be investi-
gated, in view of the London equation, is the expecta-
tion value of the current density j= —V 'hH/8A =jo+j&.
After the transformation (2), the current operator is
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eliminate Hg~ in (3), let

H"= exp( —Eg~)H' exp(Eg~),

LH„E„)=—H„, (6)

For the vector potential, only one Fourier component
will be considered which we write

A exp(sq r)+c.c.

H"= H p+ Ho+Hog~+ terms ~ A',

Hgg~=LHg Eg~).

Again, H«& is eliminated by

(It=1). Then, in the current density, only the corre-
(7) sponding Fourier component is relevant:

j exp(iq r)+H.c.,
where

H"'= exp( —Egg~)H" exp(Egg~),

LHp, Egg~) = Hgg~—,

H"'=Hp+Hg+terms~g'A and ~A'. (9)

Thus, in the approximation we need, B"' is the field-
free Hamiltonian Li.e., (1) with A=O), making im-
mediate application of Bogoliubov's method possible
(Sec. 3). The current density operator becomes in this
representation:

=jp+3x +3gx+3gga+

3g& L3p~Eg&)~ 3gg& L3p~Egg&).

As to j„~,it will be su%cient to compute its expectation
value for the unperturbed Bogoliubov ground state,
whereas in j,~ the admixtures of order g will contribute.
It will be shown that, compared with ordinary perturba-
tion theory, new terms appear (in the case of j„~
boosted by small energy denominators) which have the
nature of supercurrents satisfying the London equation.

Thus, we confirm Bardeen's contention that his
model shows a Meissner eGect, although, in quantitative
detail, our results are necessarily different. t

2. FREE-PARTICLE REPRESENTATION

Following Bogoliubov, we adopt the well-known
Bloch-Frohlich Hamiltonian. Using the symbol u&, for
the electron absorption operator (momentum k, spin
state s) and bo correspondingly for phonon absorption:

H p=Z~P'(It)rtp. *rts*+Zo ~(p)fig*&g,

Hg g(2V) &Q„si, 8(k———k' —p)—

x )~(p))t(b.+~.*)~..*~'„(»)
where E(k) =k'/2m; 8(q) =0 for q/0, 5(0)= 1.

t Note added in proof. For the terms linear i—n A, it makes no
difference if the succession of unitary transformations (2), (6),
(8), , is replaced by the single transformation

H= exp( —L)H exp(L),
where

I-=I ~+I g~+&gg~+. .
satisfying

((Hp+IIg), Lg = Hz. —
This choice of the transformation is, however, the appropriate one
for the calculation of the terms quadratic in A of the Hamiltonian.
Indeed, to this order,

H= (Ho+Ho)+ ,'[H~&L]+Hx~+ ~-
Then, using (16) and (19) together with (10), one obtains:

H= (Hp+H, ) gV((A j~'+jg~+jgg~+—. ~ ~ )+h.c.}.
This secures the proper relationship between the energy and the
induced current.

3 =3p+3» (13)

H~= —V(A jp*+A* jp). (16)

The operator E~ in the transformation (2) is now
readily constructed, using (11) and (16) with (14).
writing

L~'(k) —E(k') = (k—k') (k+k')/2m

for the energy denominators, we have

Eg eP„„,8 (k—k'———q)

(A. (k+k') )
X

i ia„,*as,—H.c. (17)
Eq (k+k')

In the transformed current operator (5), we meet with
the commutator

e' t'A (k+k') q
(j.,E.)= V- p„..~(l —I '—q) ~

2m l. q. (k+k'))

X (k+k') (as,*a, ,—u„*us.)+
the dots indicating terms proportional to A* which can
be omitted for the same reason as those in j~ (15).
More conveniently, one writes

e'
t A (k+-,'q) )

Up, E~)=—V '2"I, I(k+sq)
m ( q (k+-', q))

f A (k—-'q))
f
(k——;q) ai„*a,+ .. (18)

(q (k—-'q)&

Note that j~', as defined in (5), to first order in A, is
given by

3x =3a+$3p,Ea). (19)

For a longitudinal vector potential, sis., A=nq, the two
terms in (19) cancel precisely (including the terms),

jp ——(e/2m) V ' Pss, B(k—k'+q) (k+k')as, *as „(14)
j~———(e'/m) V 'NA+, N =ps, as,*as,. (15)

In j~ we have suppressed terms proportional to A~uj„*
as ., with k—k'= —2q, which cannot contribute to the
expectation value (j) in our approximation. (The usual
factor 1/c in j~ has been absorbed into A.) We also
ignore the (paramagnetic) spin-field interaction. In this
notation,
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j~' ——0. For a transverse A, we shall choose

q=(o, o, q), A=(A, 0, 0), j=(j,o, o);
e'

f
1

jP' ——A—U ' —1V+—Qk, k,'
m g

(20)

IXI, Iak ak I+ . (21)
( k,+qq k, —qq

(
dk, (kk' —k ')'I

0 —kk k k.+qq k,—-', q &

=-,'qr (kp' ——,'q')' ln
kF+-', q + (5/3) kp'q —1kk pq'

I
kp--,'q

4qr ( 1 q'
k~'qI 1——— + I

t» Iql&&k~.
3 ( 4kk'

(22)

(Taking principal values in the k, integrals is justified,
here and later. )

Next, we compute Hq~, defined in (3) and (4), using
(12) and (17):

Hq~=eg(2V) ip„kk, b(k —k' —y —q)I (00p)li

t'A (k'+-,'q) A (k——,'q) y

&q (k'+lq) q (k—lq) &

X (b„+b „*)ak,*ak,+H.c. (23)

For a longitudinal A, H,~ vanishes identically, as
expected, and the same is true for the operators E,~,
H«~, E«~, defined in (6), (7), (8). Without loss ot
generality, we can from now on restrict ourselves to the
transverse gauge (20).

Dividing each term in (23) by the appropriate energy
denominator, we find

E,z=eAg(2V) 'p k, b(k —k' —p —q)L (p)j'

X(x„kk b„+U„kk,b „*)ak.*ak" H c, (24)— .

1 t' k.' k, p 1

q &k,'+ -,'q k, —-', q& 0~(P)+E(k') —E(k)

1t k' k, y 1

q &k, '+-', q k. ', q& —0~(P)+E(k') —E(k)—-

(25)

' For a slightly different derivation, see G. Wentzel, Phys. Rev.
108, i593 (1957), Secs 4.

For the unperturbed (g=o) ground state, this must
reduce to Landau's diamagnetic current. This is verified
easily by using7

1 1

Ek,+-,'q k,——,'q&

+qkk aks ak sais ai s j+ ' (26)

Finally, inserting (14), (24), and (26) into (10), we
obtain

jqz = (e'/m)Ag(2V) '*V '

xp.kk .&(k—k' —p —q) I:~(p)j'*

X(X,kk b„+V„kkb „*)

X (ksak qs ak's k—s aks ak'pqs)+ ' ' '
s (27)

g2

gggg= Ag'V '
2m

b (I—I'+y) b (k—k' —p —q)
XZ ykk'sll's' ~(p)

&(1')+&(k')—~(k) —&(k)
/X(Vpkk' (basal qs' al's' ss ak ' —al'+qs') aks ak's

+Uykk'ais' ai's'(sssak qs ak's ks aks —ak'+qs)

~ ykk' (~rulc —qs ak'a h'z ~ks ~k'+qsJ&ls' +l's'

Xqskk'aks ak's(ssal qs' ai's' ss ai—s' aV~qs')7

+ . . (28)

Let

3. BOGOLIUBOV'S TRANSFORMATION

o'so= No~I, —;
—

v& ~—I,——;,

&ax= NI ~—e, —govt &I, &,
(29)

(uk, vk real, uk'+iik'=1). The nk, , nk, * obey the same
(Fermion) commutation relations as the ak„ak,*, and
we can go over to a representation where the "occupa-
tion numbers" nk;*nk, (eigenvalues 0 and 1) are diagonal.
For instance (assuming u k ——uk, v k sk):——

p,ak,*ak,——»k'b(k —k')+ukuk (~kook 0+~ ki*~ k i)
vkvk' &Ie'1 o'kl &—k'0 ~—ko

+uksk'(ok0 i1k'1 +&—k'0 o—k1 )
+skuk (~klok'0+& —k'1Q—ko) ~ (30)

The coefficients N&, v&, are determined by the condition

(k IH, —z,x
I 0)

+ P„(kIHql ~) (Z0' —Z„')- (uIHql0) =O, (31)

where
I 0) = unperturbed ground state I nk, I 0) =0);

With this result, we can now compute H«~ and E«g,
according to (7) and (8). E«z will be used only in
application to "no phonon" states. Therefore only the
terms involving products b„b„*are of interest, and, in
these, b„b„*can be replaced by 1:

b (1—1'+p) b(k —k' —p —q)
E«~=e~g'(2V) ' Zskk"ii"

&(~')+&(k') —&(~)—&(k)

X01(P)fUqkk ai s ai "aks ak~qs
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I k) = state containing one "pair" of total momentum
0 and no phonon

I I k) =noo*nii*I 0)); I n) = intermediate
states containing two "particles" and one phonon.
Bogoliubov's justification for imposing the condition
(31) is that, if the matrix element describing pair
creation from the unperturbed ground state did not
vanish, higher order perturb ations would become
dangerously large, owing to small energy denominators
Lthe "dangerous" region is the vicinity of the Fermi
surface: E(k) =Ep). Writing out Eq. (31), by inserting
(30) in IIo, E, and H„one obtains an integral equation
for uI„oi, which in the case of weak coupling (g small,
see below) can be readily solved in closed form, with
the result

e '= -,'L1+((c'+P)—-'*) o '=-', L1—P(c'+ P)-:) (32)

where
(=E(k) Ep, c=—ooe i«,

p =g'(dry/dE) =g'(mk —p/2~') .

(it/ is identical with the function called kz by BC$.')
co is a certain mean phonon energy, and the condition
for "weak coupling" is p«1, implying that c/oo is
extremely small. Bogoliubov goes on to show that single
"particle" excitations require an energy ~& c.Comparison
with the BCS theory indicates that this "energy gap"
c must be identified, in order of magnitude, with the
critical temperature T, (times the Boltzmann constant).
For actual superconductors, this leads to values of the
order ~ for the coupling parameter p, small enough to
expect valid results from the weak-coupling approxima-
tion (32), (33).

Returning to our specific problem, we first investigate
the term j«z (28) in the current density operator (10)
(g component). As remarked earlier, it is sufFicient in
our g'A approximation to compute its expectation value
for the Nriperturbed Bogoliubov ground state, vis. ,
(0I jggA IO). From (30) one Finds easily, assuming krak'
and 1W1'

I
this applies to all not trivially vanishing

terms in (28)):
(0 I

Es' e'ls' 'tive' +8 +ks ~i&'s
I 0)

= 2uo'oo 'b(1' —k) 8(1—k')

+2N„o„l„.v„.b(1+k) b(1'+k'). (34)

At this point, it is helpful to make a comparison with
"ordinary perturbation theory", which would result by
interpreting IO) in (34) as the ground state of the free
(g=0) Fermi gas. This is equivalent to letting c—+0 in

(34), namely, accordingly to (32):
vo'~lq k'= 1 for $(0,—or

—=0 for $)0, or IkI)kp, '

No &i" ~(1—+o )A o

In particular, the terms ~ b(1+k)B(1'+k') in (34),
which originate in an "exchange" among coherent inter-
mediate pair states (ni, o*no i*I0) and n i, o*n-xi*I 0), see
(30)), vanish in the limit c—+0, that is to say, they are

/. '(v —x)„
(uo) i{(Iv) i +,—(uv), .} .

E(l') + E(/'+ q) —2E (/)

(36)

(l—q, of course, refers to the vector difference, I—q,
etc.) We note

~(p) (I'—X)n, -i.-t

where
(m)i ——-', c(c'+P) l—=w),

(=E(l) Ep, g'=E(l')—Ep. —
(38)

According to Schafroth's criterion' we have to ex-
amine (36) in the limit q

—+0. Expanding in the curly
brackets, e.g. ,

(uv) i,—(N~) t= fq(/, ,'q)/—re)dwr—/d—$+O(q'), (39)

where q (l,——', q) cancels with the denominator in (I'—X)
I

the terms ~ l,l,' vanish for symmetry reasons, whereas
/, '~okp'), we can let q~0 in all remaining factors.
Since only the vicinity of the Fermi surface will con-
tribute L($—P')'& 'c«'o)~, the last factor in (37) can
be replaced by 1. Then,

lim, ,j' '"=—(e/nt)'Ag'( ', kp') (nzk /2')'I-,

I= jt d(jt d('(P' —() '$wt. dwg/d$ wrdwt, /d$') —(41).
With (38), the "small denominator" ($'—$) cancels out:

d(' c'(c'—$$') (c'+P) '(c'+$")

(whereas, in "ordinary perturbation theory", I—=0). In-

absent in the ordinary perturbation theory. %e claim
that just these "exchange terms", when inserted into
(0I j«z I0), owing to the small energy denominators in
(28), give rise to a supercurrent.

To prove this, we write

(35)

the two terms corresponding to the two terms in (34).
One sees easily that j '~ is practically the same whether
c is strictly zero or only small compared to co, the relative
change is of the order (c/oo)'=e "&, and terms of this
order will be neglected. On the other hand,

j'"'"= (eo/rrt)Ago V o p b(1—1'+p)oo(p)

/*( I X)p, —i+o, —i'
(m), {(No), ,—(uo) i}

2E (l') —E(l)—E(l—q)
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troducing Bogoliubov's parameter p (see (33)j, we
obtain finally

»mq=o j'"'"=—(e'/tit)& pkp'/6~'= ', p—gA—, (42)

where j& Lcompare (15)] is the London, or BCS, value
for the supercurrent. As will be shown, this term is not
compensated by any other term in (10). Our theory,
therefore, predicts a penetration depth for the magnetic
fields in a superconductor which is larger by a factor
(2/p)'* than that predicted by the BCS theory.

The expansion (39) is valid only if

qadi«e (up ——kF/m).

For larger g values, ~iz.,

c(&pep((e,

we have estimated j'"~ Pit is then convenient to change
variables such that (uv)t(us)i. appears as a common
factor) and found tha, t the value (42) is reduced by a
factor c(s&q) '. This 1/q dependence will determine
the deviation from the London equation which amounts
to an integral, or nonlocal, relationship between j(r)
and A(r), as first proposed by Pippard. s (Discussion of
this problem is left to a later paper. )

It remains to examine the terms j,z and jz in (10).
In j,z, (27), the admixtures of order g in the Bogoliubov
ground state must be taken into account; in other words,
an expression of the form (0~ (j,~,E,$ ~0) must be ca.lcu-
lated, where

~
0) refers again to the unperturbed ground

state. Similar to (35), this can be split in "ordinary"
and "exchange" terms. But, now, E, carries an energy
denominator (a&(p)+ . j which takes the place of
($'—$) in (41), among other changes. One finds that
the exchange terms resulting from fj,&,E,) are by a
factor of the order (e "'/p)' smaller than (42), and
therefore of no interest. The "ordinary" term is practi-
cally the same as for c=0, and in this approximation
just cancels the term j"s in (35), as was to be expected
from Schafroth's perturbation result, quoted earlier. '
(The value of j"a, for q

—&0, is 2pjz.)
Finally, we go back to Eq. (21) for jz', where

P, a&,ea&, is given by (30), with k= k', and admixtures
up to order g' must be included. For q

—&0, however, this
term can be shown to vanish to arbitrary order in g.
It is only necessary to use the trivial fact that the
ground-state expectation value (P, ai,*ai,) is isotropic,
say f(ks). According to (21) and (15), a spherical shell
in k-space, hk, contributes to jz' an amount propor-
tional to

f(k') d'k —1+—k.
q (k,+-,'q k.—-,'q j

A. B. Pippard, Proc. Roy. Soc. (I.ondon) A216, 547 (1953).

But this vanishes as q
—+0; indeed, this follows from

Eq. (22) by differentiation with respect to kp.
Hence, j'"'" (42) is the only supercurrent of any size,

as long as the weak coupling approximation is valid.
Extension of the perturbation theory to higher orders
in g will lead to terms p'jz, and so on, but none of
these can cancel the leading term (42).

At this point, we want to emphasize once more that a
lomgitldiwal vector potential cannot contribute to any
of the j terms discussed. For instance, in Eq. (37), the
numerators 1, and /, ' would be replaced by l,+-,'q and
l, '——,'q, respectively, making the whole expression
"manifestly" zero. $

4. CONCLUDING REMARKS

The foregoing mathematical study reveals which
features of the BCS-Bogoliubov model are essential for
the appearance of a Meissner e6ect. Of pre-eminent
importance is the dissolution of the sharp Fermi surface
into a zone of width ~c/vp in k space where neither ut.
nor ss is very small Lwt —,', see (38)$ such that a,ccord-
ing to (29), in the ground state, electrons (or holes)
having momenta +k and —k are strongly correlated.
That such pair correlations must play a crucial role
in the phenomena of superconductivity has been antici-
pated by several authors. (We quote the extensive
discussion by Schafroth, Butler, and Blatt; see also
their list of references. ) Of course, the specific nature
of these correlations, as expressed, e.g., in the functions
Nl„v~ (32), is also of importance. It depends on such
details that the value of the factor I in (40) is 1, and
not, say, e

The theory, as presented here, calls for generalization
in various directions. Xo such attempt has been made so
far. Needless to say, the oversimplification inherent in
the BCS model will always leave some doubt whether a
quantitative comparison with experimental data is
meaningful. But irrespective of success or failure in
numerical details, it is gratifying that, at last, a reason-
able model and an adequate mathematical treatment
have been found which seem to provide a qualitative
understanding of the Meissner effect.

f D'hote addedin proof.—It should also be noted that the momenta
1 or k, e.g., as arguments of the functions uq, vq, have a gauge-
invariant meaning in our Anal representation. This has enabled us
to dehne the ground state in a gauge-invariant manner. The situa-
tion is very different if one introduces the Bogoljubov trans-
formation (29) already in the original Hamiltonian L(1) with (11),
(12), and (16)g. Then, it is the vector k—eA=mv which has the
gauge-invariant meaning; a change of gauge alters the meaning of
k, and of NI„vg, . In this approach, the main problem would be the
gauge-invariant definition of the ground state. Simply choosing a
particular gauge, 1ike &.A=O LG. Rickayzen, Phys. Rev. (to be
published)g, does not solve the problem and, indeed, leads to a
result at variance with ours.' Schafroth, Butler, and Blatt, Helv. Phys. Acta BO, 93 (1957).


