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Measurements were made of the rate at which the superconducting phase collapses radially in a hollow
cylindrical tantalum specimen following the sudden application of a longitudinal magnetic field greater
than the critical field. The measured transition rates confirm the hypothesis that the propagation is con-
trolled by electromagnetic damping associated with eddy currents generated in the normal phase. The results,
moreover, may be interpreted on the basis of a theoretical treatment of the problem first published by
Pippard, provided that suitable modifications are incorporated to include the thermal effects which accom-
pany the transition.

II. THEORY

A. The Semi-Infinite Solid

Pippard has discussed this case in detail. The Geld

distribution in the normal phase is specified by the
equation

cPH kr 8H

8$ p Bt
=0

where H is the held, p is resistivity, t is time, and x is
distance. The equation must be solved subject to the
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I. INTRODUCTION

' 'T was proposed as early as 1936 that the propagation
i ~ rate associated with the transition between the
superconducting and normal phases of a metal is
limited by the electromagnetic damping which accom-
panies the spatial propagation of the magnetic Geld
within the normal material. ' ' A theory describing the
electromagnetic damping associated with the collapsing
superconducting phase in a semi-infinite medium was
developed by both Pippard' and I.ifshitz. 4 Faber'
extended this treatment to describe the propagation in
a cylindrical medium and made detailed measurements
on the radial contraction of the superconducting phase
in cylindrical tin specimens. His results confirm, in
most respects, the eddy current damping hypothesis
for fields only slightly greater than the critical value, H, .

Recent measurements with thin-walled hollow cylin-
ders have shown, however, that for fields several times
the critical value, the approximations made by Faber
are not applicable. The experimental results are, more-

over, in good agreement with the original predictions
of Pippard. For tantalum, it is necessary to extend
Pippard's work to include the eBects of latent and

eddy current heat which alter the transition rates in a
manner hrst suggested by Faber.

following boundary conditions:
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where X is a solution of

According to this result, the time required for the
normal phase to propagate a distance x' is given by
1=prx"/p)I, '. t thus decreases continuously with increas-
ing field, Hp.

Faber has pointed out that this process is not an
isothermal one but is accompanied by the absorption
of latent heat at the moving interphase boundary and
the dissipation of Joule heat by eddy currents within
the normal phase. It is desirable to extend Pippard's
results to include these thermal phenomena which will
aGect the transition by altering the boundary value of
the critical held.

If one denotes by I- the latent heat per cm' associated
with the phase transition, heat will be absorbed at the
rate Ii' per cm' sec at the moving boundary. The
thermal equations which specify the temperatures in
the normal and superconducting regions are, respec-
tively,

8 T~ BT~k„
8x'

Here, Hp and H, denote the applied and critical mag-
netic fields, respectively, and x' represents the position
of the interphase boundary which is parallel to the
applied field and the ys plane.

Pippard has shown that
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where k„and k, denote the diffusivities of the two
regions and T is temperature. These equations must be
solved subject to the following boundary conditions':

t=0, x'=0, T,=O,

For. X less than unity (which is the case for driving
fields less than five times the critical field), X/erfX —1.
Hence at x=O,

(Ho —H) 2
)

4' x ger
(12)

involves the generation of heat which is distributed
spatially within the volume of normal material. It is
possible, however, to obtain a rough estimate of the
sects of the eddy current heat in the following manner.

The total joule heat per unit volume per unit time
is j'p, where

1 BH (Hp —H,) 2 Xj=—— = — exp (—m x'/pt). (11)
47r Bx 4vrx' Qgr er9.

E„andE, denote the thermal conductivities of the two
regions. Solutions which satisfy the first four boundary
conditions are

and at x= x'

(Hp —H,) 2
j= exp( —X'). (13)

and

x

(2(k„t)~i

S
T,=Berfc(

&2(k,&)'*~

(6) An average value for the Joule heat, J, per unit area
of the moving boundary per unit time is thus

p (Ho —H,)'J—

(Ho —H,)'
i',x' ( p )'*X

2 (k„[)& (k„~) 2
in a form comparable to the latent heat per unit area
per unit time. If we now treat the Joule heat as if it
emanated from the moving boundary, x', we may
define an eQ'ective latent heat,

x (p g*X

2(k.&)-'* Ek.~) 2
we obtain

where erfcy = 1—erfy.
Substituting Eqs. (6) and (7) into the last two This may be rewritten as

boundary conditions and letting~

alld
A erfe„—8 erfce, =0, (Ho —H,)'

1.'=1.— (16)

AK exp( —e ') BK, exp( —e„')

(~k.~)'* (~k.~)-:

Solving Eqs. (10) and (11) for A and B leads to an
expression for the boundary temperature depression,

—Ipi(X/2) erfce, erfe„
T/

LK„exp(—e ')/Qk„]erfcc,

+)K, exp( —e,')/gk, j erfe„

(10)

The mathematical treatment of the eddy current
dissipation is considerably more complex since it

'The surface temperatures have been arbitrarily set equal to
zero to avoid repetitious writing of the constant term.

7 We maim use here of the relationship between x' and t previ-
ously obtained from electromagnetic considerations alone.

For small values of x', the error introduced by this
assumption should not be large.

A reiterative procedure may now be employed to
incorporate the thermal eGects into the electromagnetic
propagation equations.

(i) X is first calculated as a function of Ho, using the
equilibrium value for H, in Eq. (3).

(ii) The boundary temperature depression as a func-
tion of IIO is calculated using X and the appropriate
thermal quantities evaluated at the equilibrium temper-
ature in Eq. (10).

(iii) H, as a function of Ho is obtained from a plot
of H, versus T.

(iv) Finally, X as a function of Ho is recalculated
using the corrected value for H, in step iii. In most
instances this process need only be carried through once
since subsequent calculations do not significantly alter
the results.
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B. The Infinite Cylinder

The 6eld distribution equation to be solved for the
normal phase is

1B BH 4xBH
——r —— =0
rBr Br p 8t

(17)

t'
H=Ho+ P A„exp~ 't —

~

J—o(a„r)
4~

oo ( p+ P a„exp~ —a„'~ ~Fo(a.r). (18)
4or )

According to the boundary conditions, the field at
the interphase surface must equal the critical value
independent of time. It is thus necessary to choose a
function, r(t), which will reduce the above equation to
an expression independent of time. Unfortunately such
a function is not evident.

Faber has attempted to solve the problem by a
method of successive approximations. However, his
calculations are valid only for values of Hp close to H, .
At the present time it has not been possible to obtain a
general solution to the problem.

C. The Infinite Hollow Cylinder

It is instructive to consider the problem of the
hollow cylinder by comparing the solutions to the
magnetic propagation equations for the completely
normal semi-infinite solid and the infinite cylinder. In
the special case that r/rp is not too small, the solution
for the cylinder may be expanded asymptotically into
a form which, at the limit as r approaches rp, becomes
identical with the solution for the semi-in6nite solid. '
It is thus possible to use the equations for the semi-
infinite solid to describe the propagation in a thin-walled
hollow cylinder. The experimental measurements re-
ported in this paper were made with hollow tantalum
cylinders in which r/rp~ 0.85.

It is possible, with a hollow cylinder, to measure the
resistivity in the normal state in the interval during
which the entire cylinder has been driven normal and
the field has not yet reached its final equilibrium value.
During this period the field, H;, inside the cylinder, is

The error introduced by this procedure is roughly proportional
to the quantity Lt —(~/ro)oj

where r is radial distance, subject to the boundary
conditions:

H=Hp,

t)0, H=H„
t)0, BH/Br = AH—,r'/p.

Here rp is the outer radius of the cylinder and r' the
radius of the interphase boundary. A general solution
to this equation is given by

given implicitly by

BH 2orr, (BH;q

ar.=., p &a&)' (19)

where H is the field within the cylinder wall and r; is
the inner radius of the hollow cylinder. Consequently

00 p=—P —a 'LA„Jp(a„r,)
a=3 ~

—&.I'o(a & )j exp' —
~, (2o)

4or )

III. EXPERIMENTAL METHOD

Thin hollow tantalum tubes' with an outer diameter
of 0.0635 cm and a wall thickness of 0.0047 cm were
used as superconducting cylinders. All specimens were
initially heated intermittently in vacuum (&10 ' mm

Hg) at 2800'C until no further rise in system pressure
was evident during a ten-second heating cycle.

The resistivity and critical 6elds of each cylinder
were Tneasured under isothermal conditions using
standard direct current techniques. The resistivity was
also calculated from measurements of the 6eld buildup
in the specimen in the manner previously described.
The resistivities measured by the two methods were,
within the experimental error of several percent,
identical.

It was possible to control to some extent the low-
temperature resistivity of a specimen by controlling the
duration of the heat treating process. The ratio of
resistivity at helium temperature to that at room
temperature could be varied from a maximum of 0.I5
to a minimum of about 0.0045, the latter corresponding
to relatively pure tantalum. Since the sharpness of the
magnetically induced transition increased with in-
creasing specimen purity, most transition measure-
ments were made on low-resistivity specimens. For these

9 Obtained from Superior Tubing Company, Norristown,
Pennsylvania.

where n„are the roots of the equation obtained from
the requirement that A„and 8 be mathematically
nontrivial solutions of the simultaneous equations
specified by the boundary conditions, i.e., o.„arethe
roots of

2[Jo(a ro) I't(a r;) —Jt(a„r~)Fo(a„ro)]
+a„r;LJo(a„rp)Yp(a„r~)—Jp(a„r~)Vp(a„rp)]=0. (21)

For time intervals such that the quantity pat't/4') 1,
only the 6rst term in the series expansion for the
internal 6eld is important. Under this condition the
rate of change of field is proportional to exp( —patot/4or).
Since n& is determined by the cylinder dimensions, the
measured time rate of 6eld increase may be used to
calculate the cylinder resistivity.
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specimens the critical temperature was approximately
4.46'K, and dH. /dT at T. was 320 oersteds/'K.

The driving field was supplied by a niobium coil of
100 turns per centimeter into which the sample could
be coaxially inserted. A constant current pulse was
produced by discharging into the drive coil and a
terminating series resistor 1000 feet of coaxial cable
previously charged to an appropriate voltage.

The field inside the cylinder was detected with a
small coil whose outer diameter was 0.038 cm and which
consisted of 100 turns of number 47 AWG copper wire.
Both the drive coil and sense coil lines were coaxially
shielded and appropriate damping resistors were
incorporated to damp the ringing caused by shock
excitation of the output circuit.

Figure 1 is a photograph of the oscilloscope trace of
the output of the sense coil following the application
of a constant current pulse to the drive coil. The slope
in the leading edge of the pulse associated with Aux

buildup in the sense coil is caused by variations in the
cylinder wall thickness. This variation was evident in

visual inspection of the cylinders. As would be expected,

6.0-
.lO 50-
O

~ 4.0-
EO

o $0-

~ 2.0-
I-

I.O

TANTALUM
T=420 K Pippard
p = 0 480@.ohm- cm ~ (modi fied)
H, = 68 oersteds

J

Op IOP 200 300
FieId - oersteds

400 500

FIG. 2. Inverse of the penetration time for several series of
measurements, plotted as a function of the driving Geld for a
relatively impure tantalum sample, compared with theoretical
calculations.

the ratio of the times measured from 1=0 to the
summit and base of the leading edge are constant for a
given cylinder. Since the time required for the field to
penetrate the cylinder wall varies with the square of
the wall thickness, exceptionally uniform walls are
necessary to obtain sharp wave forms. Measurements
of the penetration time were made by extrapolating the
leading edge of the pulse to the base line and measuring
the time from 1=0 to the intercept. The penetration
time so obtained corresponds essentially to the mini-
mum wall thickness.

:cw.

~:-,'-:i:,-0::-, i !, ,:..! ',, I . I: !Il

p,C''

Fze. 1. Sense coil output voltage following the application of a
constant current pulse to the drive coil. Sweep speed is 0.2
microsecond per cm; drive Gelds from top to bottom of 210, 268,
and 357 oersteds.

IV. RESULTS

Measurements of the penetration time for two
tantalum cylinders in a bath at 4.2'K are plotted in
Figs. 2 and 3. For convenience the reciprocal of the
penetration time has been plotted as a function of the
driving field. The plotted curves indicate the results
which are predicted according to the equations given
by Pippard and Faber, and the results which are
predicted by modifying Pippard's treatment to include
thermal corrections. In obtaining the desired thermal
corrections, values for the thermal conductivities were
taken from the work of Hulm, "values for the specific
heat from the data of Worley ef ul."The latent heat
was calculated from direct measurements of the temper-
ature, the critical field, and of the variation of the
critical field with temperature.

Figure 4 contains experimental points for the pene-
tration time obtained at a number of bath temperatures.
The curves correspond to the theoretical predictions
obtained by including thermal eGects. In all cases it is
apparent that the experimental results are in good
agreement with the theoretical predictions.

The results with tantalum are in marked contrast to
the results obtained by Faber with tin cylinders, in
which thermal effects were found to be negligible. In

'0 J. K. Holm, Proc. Roy. Soc. (London) A204, 98 (1950)."Worley, Zemans)ry, and Boorse, Phys. Rev. 91, 1567 (1953).
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tantalum the ratio of the electrical resistivity to the
thermal conductivity is several thousand times as large
as the corresponding ratio in even relatively impure
tin specimens. In tin, therefore, the thermal conduc-
tivity is sufficiently high and the rate of phase propa-
gation suKciently low that the specimen temperature
remains uniform during the transition. In tantalum
this is not the case.

As the transition rates are increased through the use
of larger driving fields, time delays which may be
associated with the time required to form a nucleus of
normal material within the specimen might be expected
to make themselves evident. Within the limits of error
associated with the present measurements no such
effects have been observed.

It should also be pointed out that Aux trapping was
not observed in any of the tantalum specimens used
for this work. Indeed, oscilloscope traces of the sense
coil voltage following the termination of the drive
pulse indicated that the Aux emerged from the specimen
at a rate corresponding to that expected for a com-

pletely normal cylinder. Faber has observed a similar
phenomenon in tin, and has discussed several possible
mechanisms which might prevent Aux trapping. He
suggests such mechanisms as the inability of the ends
of a superconducting sheath to coalesce due to the
surface free energy, and the ability of a closed sheath
to migrate to the specimen surface. There exists the
further possibility, in tantalum, that the eddy current
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FIG. 3. Inverse of the penetration time for several series of
measurements, plotted as a function of the driving Geld for a
moderately pure tantalum sample, compared with theoretical
calculations.
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heating following the phase transition" may heat the
specimen above its critical temperature. Flux leaving
the specimen would produce eddy currents sufhcient to
maintain the temperature long enough to prevent Aux

trapping.
The foregoing work supports Pippard's hypothesis

that the time rate of propagation of the normal phase
in a superconducting body is determined by the eddy
current damping which accompanies the spatial propa-
gation of the normal phase. For materials like tantalum,
in which the ratio of normal resistivity to thermal
conductivity is high, the transition is not an isothermal
process and thermodynamic considerations must be
incorporated to describe adequately the observed
effects. The time required for the normal phase to
propagate a given distance decreases monotonically
with the driving 6eld, and does not approach a limiting
value as might be inferred from the smaller 6eld
calculations used by Faber.
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"For the experiments described here, the time required to
drive the specimen into the normal state is small compared to the
time required for the magnetic Geld to reach equilibrium through-
out the normal specimen. Eddy current heat is generated whenever
the magnetic Geld is not in equilibrium, while latent heat is
liberated or absorbed only during the period when a phase change
is taking place.
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Fio. 4. Inverse of the penetration time versus driving field for
several difterent bath temperatures. The solid lines represent
the results calculated according to the method outlined in the text.




