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bilities. Third, the possibility of macroscopic states of
the system is clearly indicated, although all detailed in-
formation about an ordered state is implicit in the
undetermined function f(P). It is conceivable that in-
formation about other types of macroscopic order (e.g. ,
in momentum-space) would also be available from de-
tailed knowledge of ts(r). The next step is, of course,
to calculate the energy of an electron gas at high density
with one or more appropriate trial functions for E(P)
in order to test the accuracy of the method against a
known result. This will be done in a succeeding paper.
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The average electrostatic potential distribution about a given electron is calculated for a system of
point-charge electrons embedded in a neutralizing continuum of positive charge. The calculation is classical,
involving a Poisson equation of the Debye-Huckel type, except that the electron density is treated by
means of Fermi-Dirac statistics as in the Thomas-Fermi theory of the atom. The calculated energy due to
electrostatic interactions agrees with the quantum-mechanical exchange plus correlation energy over the
observed range of metal valence-electron densities, 2 ~r, ~6, but is too small at larger and smaller densities.
(r, is the electron-sphere radius in units of the Bohr radius. ) The equilibrium density (2'=p= 0) occurs at
r,=4.3, at which point the compressibility is 69 per megabar. The electronic speci6c heat is linear in T at
low temperatures and varies from 0.9 to 0.74 of the Sommerfeld value over the observed metal density range.

I. INTRODUCTION

A DEBYE—HUCKEL, Thomas-Fermi (DHTF)
theory of plasmas and liquid metals has recently

been developed by Flock and Kirkwood. ' The theory
is similar to the Debye-Huckel theory- of electrolyte
solutions, ' except that the charged particles are nuclei
and electrons rather than positive and negative ions,
and the behavior of the electrons is described in terms
of Fermi-Dirac rather than Boltzmann statistics. The
method of treating the electrons is similar to that of
the Thomas-Fermi theory of the atom, ' but the DHTF
theory automatically introduces a certain degree of
correlation among the electrons due to their mutual
electrostatic repulsion. It would be interesting to know
how the correlation energy given by this theory would

compare with that calculated quantum mechanically.
However, the only quantum-mechanical calculation

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' R. J. Plock, thesis, Vale University, 1956; R. D. Cowan and
J. G. Kirkwood, J. Chem. Phys. 29, 264 (1958).

2 P. Debye and E. Huckel, Physik Z. 24, 185 (1923); see also
R. Fowler and E. A. Guggenheim, Statistical Thermodynamics
(Cambridge Vniversity Press, Cambridge, 1956), Secs. 904—913.

g L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);
E. Fermi, Z. Physik 48, 73 (1928).

with which a comparison can readily be made is for the
case of free electrons moving in a uniform sea of
positive charge; consequently, the DHTF theory is
modi6ed correspondingly in the discussion which

follows.

2. THEORY

In the DHTF theory the thermodynamic functions
are evaluated by considering the Debye charging
process. For this purpose it is necessary to examine a
hypothetical system in which each particle carries an

arbitrary fraction X of its true physical charge. Consider,

then, a system consisting of electrons of (average)

density ep each with a charge —Xt., embedded in a
uniform neutralizing sea of positive charge of density

)pp= Keep.

Let P&, (r) be the average electrostatic potential at a
distance r from any specific electron (due to ttl/ charges,

including the electron in question). Then. the potential

energy of a second electron a distance r from the first

is —)I.ega(r), and the density of electrons at r is given
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in the Thomas-Fermi approximation by

4s P'dP

=4s (2mkT/k') ~I; (ri),

2
'S

k'~p 1+exp/(p'/2@i Ae—p ll)—/kT5

(2)

particle possesses the same fraction ) of its Anal charge.
The work done in charging each electron is

Xe
A, = —e lim fg(r)+ —dX,

J r~0
0

rl = () ep+IJ,)/kT,

and values of the integrals

(3)

(4)

have been tabulated by McDougall and Stoner' for
m =-', and —,'. In the special case 1=0, Eq. (2) reduces to

e p
= 4rr (2rrik T/k') lI; (IJ,/k T), (5)

which serves to determine p, in terms of the average
electron density.

The potential P and electron-density e about a
specific electron are, using (1), related by means of the
Poisson equation

where p, is the ideal chemical potential of the (un-
charged) electron,

where P&, (r) is the potential about the electron at the
temperature and average volume per electron of inter-
est, and the potential —X% has been, subtracted from
Pz so as to remove the electron self-energy. Any given
element of positive charge is surrounded by a uniform
positive-charge distribution; therefore the electron
distribution about this element is also uniform on the
average, and the average potential at the location of
this element is nil. Thus the work done in charging the
positive elements is zero and (11) gives the entire
contribution to A,.

Once A has been found from Eqs. (9) to (11), the
pressure, entropy, and energy can be obtained from the
thermodynamic relations

P = —(BA/Bs) r, S= —(BA/BT). , E=A+ TS. (12)

3. NUMERICAL METHODS

Numerical solutions of the Poisson equation were
obtained in the following way. We introduce the units
of length and energy

with the boundary conditions

lim nP&, (r) = —)j.e,
7 -+0

and

(7)

k' ) 9s'y '* 0.468479X10 '

4rr'm)'e (128k

0),
——32nzX4e4h '= 22.0532X4 ev,

CIQq

(13)

lim fg(r) =0,

or from (2), (3), and (5)

(which are the same as the usual Thomas-Fermi units
except that e has been replaced by Xe and Z has been
set equal to unity), the dimensionless variables

lim N(r) =ep.
r ~oo

(8) x=r/r), and a=kT/8~, (14)

4e= (6/s')'

and a potential function @(x) defined by

(uncharged) electron gas is' ri(x) =8 '(4e) 'y(x)/x

A;=—8;—TS;=p —3E; where

=I skTII(I /kT)/I:(I /kT) (9)—

(15)

A =A~+A„ (10)

where A, is the electrical work done in charging up the
system at constant volume and temperature. This
work can be readily calculated for the Debye charging
process, in which at any given stage in the process each

' J. McDougall and E. C. Stoner, Trans. Roy. Soc. (London)
A287, 67 (1938).

~ See, for example, M. K. Brachman, Phys. Rev. 84, 1263
(1951);or A. H. Wilson, Thermodynamics and Statistical Mechalics
(Cambridge University Press, Cambridge, 1957), Sec. 6.3.

where E; is the average kinetic energy per electron and
is calculated by adding a factor p'/2m to the integrand
in (2). The free energy of the charged system is

lim(y/x) = (y/x)„—= (4e)'Hrl„.

(17)

(18)

In the special case 0~T—4 in which we shall be
especially interested, we see from (15) that ~ri~ is very
large for all x. From the asymptotic expressions' for I;

Then using (2), (3), and (5) it can be seen that the
Poisson equation (6) reduces to

d'@/dx'= s(4e) sx8—I[I;(rl) I*,-(rl„)j, (16)—

where ri„=IJ/kT The bou—ndary .conditions (7), (8),
and (5) become
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solution of (5) and the value of E calculated from (24),
Ii(ri) being evaluated by means of asymptotic series
expansions for large ~rl

~

and cubic table interpolation
for small

~ ri.' For a given value of X, 8 was calculated
from (14), and then the solution of (16) found for
small a from (21), using a guessed value of b. Integration
was advanced to large x by means of a difference
method, and the numerical solution then compared
with the analytical solution (23) by evaluating B to
match the numerical value of P and then comparing
the slopes of the two solutions. The value of b was then
repeatedly modified until the two slopes agreed. Using
IB)4 type 704 digital calculators, integration for one
value of b required about one second, with about fifteen
cycles being sufhcient to iterate to a value of b constant
to seven or eight significant figures.

The value of b was thus determined for twelve values
of X and then 3, calculated with the aid of Simpson's
Rule by writing (11) in the form

it follows that in the limit of zero temperature

I, (ri) ,'rr'e&—~0, r) (0, (19a)

8lI;(ri) -', (8') l=-,'(4c) '(p/x)', ri) 0, (19b)

so that the differential equation (16) becomes

~"=—*(~/ ).—: (20a)

4"=*[(&/*)'—(0/ )-'3 4»0 (2ob)

Except for the fmal term on the right (and the different
boundary conditions), Eqs. (20b) and (16) are of
course identical with the familiar Thomas-Fermi
equations for zero and nonzero temperatures, respec-
tively. ' [Actually, the zero-temperature results quoted
below were calculated by using Eq. (16) with kT=2.2
X10-"ev; i.e., 8=10 "/X'.]

Regardless of the value of 8, it follows from (15) and
(17) that for small a, rl(x) is a large negative number
and that I, (rl)((I; (rl„). Thus for small g the differential
equation (16) integrates to

y(a) = 1+br —', (4e)'8'—;(-ri„)xs,

1

(21) A = (8 /2as) (128/9' )1 ~ X [b—(y/x) $yd(X ), (25)
0

where
y (x)—(y/a) „a—Be-x*,

E'= 6e8'(aI;/ari) v„.

(23)

(24)

The procedure used for integrating the general
equation (16) was, then, the following: For given values
of the temperature T and average electron density eo,
the value of ri„=IJ/kT was obtained by an iterative

where b is a constant whose value must be chosen so as
to satisfy the boundary condition (18).

For very large x, ti=ri„ from (18), and (16) can be
written approximately

y"--,s (4e)sx8-'(aI /ati), „(rl—ri„)
= 6e8'*(aI*,/arl) „[rb (y/a) „X—j. (22)

In view of the boundary condition (18), the integral of
this expression is

P(r) (—BXe/r)e "g", (26)

where k&, =E/ri. In the high-temperature; low-density
limit, then from (19a) (aI;/ati)~„=I;(ri„), and from
(5) and (24), it may readily be seen that

where the relations (3), (13), (15), and (21) have been
used, and a,= k'/nze' is the first Bohr radius for hydro-
gen.

4. RESULTS

A. Zero-Temperature Electron Distribution
and Potential

Before discussing the numerical results it is of some
interest to examine the asymptotic form of the potential
P(r), which from (3), (15), and (23) can be written in

the form

1.0
kg= (4s-Ve'n, o/kT)', (27)

Q2

+ O. l

0.05

which is of course identical with the standard Debye-
Huckel result. '

1.0

0.8
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QOI
0 Q2 0.4 Q6 0.8 I'.0 l2 I.4 l.6 IS RD

r/r0

FIG. 1. The average potential distribution about a specific
e]ectron for various average electron densities at zero temperature
(X=1).

' Feynman, Metropolis, and Teller, Phys. Rev. 75, 1561 (1949),
Eqs. (1) and (15).
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FIG. 2. The electron-density radial distribution function for
various average electron densities at zero temperature () =1).
The dashed curve is the quantum-mechanical (exchange) result.
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TABLE I. Numerical results (for X= 1 where pertinent).
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0.0025
0.025
0,0625
0.125
0.25
0.5
1
2

8
16
32

(e/~).

2.60870X 105
2.60870X 10'
4.17391X102
1.04348X 10'
2.60870X 10'
6.52174X 10
1.63043X 10'
4,07609X10 '
1.01902X10 '
2.54755X 10~
6.36889X10 '
1.59222X10 '

2.60897X 10'
2.61740X10'
4.22826 X'10~
1.08100X102
2.86097X 10'
8.14365X 100
2.61170X10'
9.65348X10 '
4.03446X 10 '
1.83133X10 '
8.71525X10 '
4.25208X 10-2

Bt Eq. (26)$

1.0155
1.0455
1.1318
1.3658
2.0189
4.1505

14.1110
95.6882

—0.4942—0.6596—0.8424—1.0194—1.1698—1.2843—1.3645—1.4173

—0.7123—0.9159—1.1082—1.2598—1.3622—1.4244—1.4598—1.4792

reEe =reAe reEy LEq (33)3
(ry) (ry)

p0
(megabars)

5.22X 104
1.58X 103
4.49X 10'
1.05X10'
5.80X10-

—1.71X10 '
-1.77X 10-4
—1.36X10 '

0.005
0.012
0.031
0.069
().127
0.212

20
10
5
2
0.5
0.1

atEq. (42)j kT max
(ry) 1 (ev)

a Approximate maximum temperature at which the temperature dependence of Ae is given within five percent by Eq. (42).

In the opposite limit of zero temperature, then from the form
(19b) E=E7+Eexch+Ecorr

(c)1:/r)rl)o =-ol'(r) )/r) = (okT/Eo)1-:(r) )

where Eo is the kinetic energy po'/2m of an electron at
the top of the Fermi distribution. Thus, in this case,
the screening constant may be written'

ki = (12m-)t'me'too/po') '
= (16/3m') i),r, '*ko=0.8145Xr,lko, (28)

B. Zero-Temperature Energy

The zero-temperature energy of a free-electron gas
has been investigated quantum-mechanically by Wig-
ner, ' by Bohm and Pines, ' and by Gell-Mann and
Brueckner. "The energy per electron can be written in

D. Pines, Solid-State Physics edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1955), Vol. 1, pp.
377, 386 ff., and 394.' K. Wigner, Phys. Rev. 46, 1002 (1934).

9 D. Pines, Solid-State Physics edited by F. Seitz and D. Turn-
bull (Academic Press, Inc., New York, 1955), Vol. 1, pp. 367—406.' M. Gell-Mann and K. A. Srueckner, Phys. Rev. 106, 364
(1957).

where r, =ro/ao is the electron-sphere radius in units of
ao, i.e., eo '=-', pro', and ko is the maximum wave
number of an electron, ko=po/h=(9s-/4)&/r, ao. The
coefficient 0.8145 (for X=1) is much greater than the
quantum-mechanical value 2 '= 0.3536 derived by
Pines. ' However, this does not necessarily imply that
the Thomas-Fermi model overestimates the effective-
ness of the screening and overestimates the electron
correlation energy, for it must be remembered that
(26) is only an asymptotic expression and that 3 is
not necessarily unity. Indeed, the numerical results

given in Table I and Fig. 1 show that B)1 and that
the screening is considerably less effective than would

be expected from (28) alone.
The solid curves in Fig. 2 show the electron-density

radial distribution functions corresponding to the
potential curves of Fig. 1.

2.210 0.916
+Ecorrq (29)

r.2 rs

where the coefficients give energies in Rydbergs, the
first term is the Fermi energy (the kinetic energy of
the free electron gas without electrostatic interactions),
the second is the exchange energy (i.e., the potential
energy in the Hartree-Fock approximation), and the
third is the correlation energy (the balance of the
energy calculated by any more accurate method).

At zero temperature, the Helmholtz free energy and
the internal energy are equal, and so the DHTF
expression (10) may be written in this case

E=E,+E (3o)

The energy of the ideal gas, E,, is just its kinetic energy
and is identical with the first term of (29). The charging
energy, E„has been calculated on an essentially
classical basis and cannot be broken up into an exchange
and a correlation energy, and so must be compared
with the sum E, ,i,+E„„in. Eq. (29).

These various energies (multiplied by r,) are shown
in Fig. 3, where E„„has been taken to be given by
Gell-Mann and Brueckner's expression

E„„=0.0622 lnr, —0.096 ry, (31a)

for r, (1, and by the corrected Wigner approximation
formula'

E„„=—0.88/(r, +7.8) ry (31b)

for r,~1. The difference between E, and E.„,i,+E„„
is surprisingly small over the range 2&r, &6 corre-,
sponding to observed metal-valence-electron densities,
and in fact lies at most points within the twenty
percent uncertainty which Wigner estimated for the
expression (31b)."At smaller values of r„ the agreement

"The difference between the two curves at large r, arises from
the fact that DHTF is strictly a Quid theory, whereas the physical
system is expected to undergo a phase change from an electron
gas to an electron lattice at some large value of r, . The formula
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Fic. 3. Dependence on electron density of the various electronic
energies at zero temperature. The energy of the ideal gas is Ez',
the additional energy due to electrostatic interactions is E,~,l,+E„„in the quantum-mechanical calculation and E, in the
DHTF theory. In the DHTF case, the potential energy is E~,
and the total kinetic energy is Ez+E,—E~; the circles and
triangles denote results obtained when an exchange term is
included in the Fermi-Dirac energy distribution function.

becomes increasingly poorer, as one might well expect:
For small r, the asymptotic expression (26) is valid to
small values of r(B—1), Fig. 1, and so ~E,

~
is much

greater than.
~
E„„~;but the electron correlation in the

DHTF theory is purely electrostatic in origin, and
includes nothing analogous to the Pauli-principle
correlation which gives rise to the exchange energy in
the quantum-mechanical theories.

The situation can be examined in somewhat greater
detail with the aid of Fig. 2, where the solid curves
represent electrostatic correlation in the absence of
exchange effects, and the dashed curve"

n(r) 9 f sinx —x cosxq '
f 9s.q

' r

) E4) .,
(which is independent of r, ) gives the exchange corre-
lation in the absence of electrostatic eGects. It is
evident that the electrostatic correlation is more
effective than the statistical for r, greater than about
unity. From this follows the fact illustrated in Fig. 3
that the DHTF energy is greater (in magnitude) than
the exchange energy for r, &1.3.

Though the DHTF theory as described above
provides no statistical contribution to the correlation,
there are two obvious modifications of the theory
through which one might try to simulate the effects of
such a contribution on the energy.

First, it may be noted that Pauli-principle correlation

(31b) has therefore been chosen so that E, ,l,+E„„extrapolates
to the value —1.8/r, for a bcc lattice. It would perhaps be fairer
(at least out to the value of r, at which the phase change occurs)
to compare the DHTF results with Wigner's original formula which
extrapolates to the gas value —1.5/r„ if this is done, the two
curves agree within two percent for r, &3.5.

is W. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);46, 509
(1934). Or F. Seitz, Modern Theory of Solids (McGraw-Hill
Book Company, Inc. , New York, '1940), pp. 240 ff. The exchange
curve has the value e(0)/NO=1/2, because the Pauli principle
affects only half the electrons (those with spin parallel to that
of the electron at the origin). All curves of Fig. 2 correspond to
a "hole" of exactly one electron.

C. Zero-Temperature Pressure

At zero temperature, the electron pressure is given

by (12) and (30) as p= 8(E;+E,)/Bs, wh—ich from
(29) may be written

f) ln( —E.)
ps = -', E,——',E,

8 lnr,

1.473 c) ln( —r,E,)+,'E, 1—-
8 lnr,r.2

ry. (34)

The necessary derivatives were evaluated from Fig. 3,
and the results are shown both the in Fig. 4 for DHTF
energy E, and the quantum mechanical energy E,
+E,.„. For comparison, the contribution to the
pressure of the Fermi energy only is also shown.

For both the quantum mechanical and DHTF
calculations, the equilibrium electron density corre-
sponds to r, equals about 4.2; this is roughly in the
middle of the observed range 2 ~ r, ~6 of metal-valence-

'3 This is an overestimate of the effect inasmuch as the Pauli
principle applies only to electrons of the same spin, but is an
underestimate at small r, in that the electrostatic correlation
even at X= 1 is much less than the Pauli correlation.' The symbol E„is also used, because it can be seen that this
expression is just the potential energy of the system; see Sec. 4C."R.D. Cowan and J. Ashkin, Phys. Rev. 105, 144 (1957).

is independent of the electron charge. This sort of
behavior can be incorporated easily into the DHTF
theory by using for all A. the electron distribution which
is calculated for X= 1 ";i.e., by replacing (25) with"

E '=E = —(e'/ ~o)( g/9w')'L& —(0/x)-hi=i (3 )

Values of E,' calculated from this expression at zero
temperature are plotted as the dashed curve in Fig. 3.
It may be seen that the magnitude of E,' is indeed
greater than that of E,. However, the moderate im-
provement at small e, is accompanied by poorer agree-
ment at larger r„and since the modification is quite
artificial at best, it does not seem worth while to
consider it further.

A second approach is to include an exchange term in
the distribution function (2) in the same manner as is
done in the Thomas-Fermi-Dirac theory of the atom. "
At zero temperature, this leads to equations identical
with (20) except that Le+(P/x)'*]' appears everywhere
in place of (P/x) l. Although this modification produces
rather large changes in b and in (P/x)„, the changes in
b (P/x)—„prove to be rather small. Since Eqs. (9),
(10), (25), and (33) remain unchanged, the results
(shown by means of circles and triangles in Fig. 3) do
not differ greatly from those obtained without the
exchange term, except that the e makes it impossible
to calculate for an electron density less than 7.35)&10"
electrons/cc (r,)6.03). Therefore, this second modifi-
cation is also unsatisfactory, and all further results given
below are for the original form of the theory.
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electron densities. As is well known, the free-electron
pressure in this range is quite large (p, =39100 atmos
at r, =4.2) so that the electrostatic effect is quite
sizeable.

At first glance it might appear from (34) that the
virial theorem for Coulombic forces,

CO

5 4-
CO
K
Lsl
CI1 3
ID

IE
2

P& 3~kinetic~ 3~potential~ (35)

is satisfied by neither the quantum mechanical nor the
DHTF results since neither r,E„„nor r,E, is inde-
pendent of r, . However, it must be remembered that
E&——E; is the kinetic energy of the Necharged system,
and that E„„and E, include not only electrostatic
potential energy but also a change in the kinetic energy
brought about by the charging process.

In fact, in the DHTF case the potential energy is
just the quantity E„defined by (33) and plotted as
the dashed line in Fig. 3. The contribution of E, to
the kinetic energy is thus E,—E„, and the virial
theorem (35) may be written

pv = -', (E,+E,—E„)+-',E„
= sE'+ sE.+s(E.—E~). (36)

The last term in this expression is by no means negligible
(as can be seen from Fig. 3), and its value agrees with
that of the corresponding term of (34) to within 3 or
4% over the entire range 0.25~r, ~32. Since the
graphical differentiation involved is subject to at least
that large an error, the virial theorem may be con-
sidered as having been verified numerically.

The virial theorem can in fact be established analyti-
cally (at zero temperature) in the following way":
Suppose that the values of (P/x)„and of b, Eq. (25),
are known for all values of X for some particular
volume, v&, per electron. Let any other volume, e„be
expressed in terms of e& by means of a linear-scale-
factor c'.

-I i »sIl i I, I «) I

OA 0.2 0.5 I 2 5 0 20 50 l00
rs

FIG. 4. The zero-temperature pressure of an ideal electron gas,
and the pressure including interactions calculated both quantum-
mechanically and from the DHTF theory.

written

pc
=I c ') C9'L-b —(y/x)„j.x,.id(C9.'),

0

where E is the constant in. (25). The contribution of
E,(v,)—=E,(c'vi) to the pressure is therefore

BEg(c 'vi) c BE8(c vi)* pg e c c
c) (c'vi) 6 Bc

= s E.(v.)—a&Lb —(0/x)-3 'i
= sE.(v.) a&I b —(4/x)-]—i"

Since the final term here is just ——,'E„(v,) from (33)
and since the contribution of E,(v,) to pv, was shown
in (34) to be -', E,, the proof of (36) is complete.

The compressibility of the DHTF system at T=p= 0
(obtained by graphical differentiation of Fig. 4 at
r, =4.3) is

Pc= C Vy.
6 (37) x=——v '(Bv/Bp)r =69 (megabar) '

Then from (5), (13), (14), and (19) it follows that at
zero temperature and at volume ~,

I =c 'v '~ (flic)**I.(t) ) ~XP(g/x) &

Thus (g/x)„ is a function only of CX, so that

As might be anticipated, this value is considerably
larger than experimental compressibilities of the alkali
elements (8.7 for Li to 49.3 for Cs), and much larger
than those for most other elements )of the order of
1 (megabar) 'j."

S 00 XpVc S 00 CX&V]o (38) D. Low-Temyerature Specifi Heat

Since the solution of (20) depends only on the value of

(g/x)„, it follows that a relation similar to (38) holds
for b. Consequently, at zero temperature (25) can be

"This proof is similar in some respects to that for the Thomas-
Fermi atom: V. Pock, Physik Z. Sowjetunion 1, 747 (1932); H.
Jensen, Z. Physik 111,373 (1939).The proof can be extended to
nonzero temperatures in a manner similar to that used for the
gnrqgdi6ed DHTF theory; Cowqn qnd Kjrkwood, reference f,

From Eqs. (5) and (9) it can be shown with the aid
of the asymptotic expressions for I (ii),is that to the
second order in T

A;= sap p ', rr'(kT)'/fi p,
— —- (39)

"J.J. Gilvarry, J. Chem. Phys. 23, 1925 (1955); J. Waser
and L. Pauling, J. Chem. Phys. 18, 747 {1950)."See reference 4, or J. E. Mayer and M. G. Mayer, Statistical
3f'echalics (John Wiley and Sons, Inc. , New York, p. 1940), 385,



1466 R. D. COWAN AN D J. G. KIRK WOOD

L2-

1.0

02—

OHTF——OM (GELL"NIANN)

0 s, . I

0,1 02 0.5 2 5 l0

been used to values of r, larger than those for which
it is valid. )

At r, =4.3, the equilibrium density for zero temper-
ature, the specific heat is 0.80 of the Sommerfeld value
for all temperatures from zero up to about kT= —,'ev
(T—6000'K). The DHTF theory thus predicts zero-
temperature electronic energies in fairly good agreement
with the quantum mechanical results (Fig. 3) without
the unsatisfactory behavior of the low-temperature
speci6c heat which is introduced by the exchange term
in the Hartree-Fock approximation (C„~T/lnT). '

FIG. 5. Ratio of the low-temperature specific heat of the electron
gas with interactions to the Sommerfeld value C;.

where
k' ]3epq 1 )9~y & me'

gmE ~ i E4) 2asrs
(40)

= 1.3406r 'kT (41)

the coef6cient being for kT in Rydbergs. At low

temperatures, the calculated values of A, can be
written in a form analogous to (39):

A, =A/+a(r, kT)', (42)

the values of 3,' and a being given in Table I. The
low-temperature specific heat of the electrons is thus
given by

C„/(C,),=1 2ur 'k—T/(C„),= 1—1.4919a. (43)

This ratio is compared in Fig. 5 with the zero-temper-
ature expression

C„/(C„),= [1+0.083r, (—lnr, —0.203)] ' (44)

obtained quantum-mechanically by Gell-Mann. is (This
last expression holds only for small r„and has probably

is M. Gell-Mann, Phys. Rev. 106, 369 (1957).

From (39) and (12) one obtains the familiar Sommerfeld
value for the specific heat

BE ~' kT )4~'y 1'hsr, skT
(C.);=

BkT 2 pp 0 9 ) me'

S. CONCLUSIONS

The DHTF theory described above appears to give
quite reasonable values of the total energy, pressure,
and specific heat of an electron gas at all densities.
The reason why this can be true even though exchange
eRects (statistical correlations) are not included ex-
plicitly is that for r, (1, the Fermi energy is much
more important than the energy due to correlation
eRects (either statistical or electrostatic), whereas for
r, & 1, electrostatic effects automatically introduce
sufficient correlation that the Pauli principle is essenti-
ally satisfied.

It must be admitted that the theory as presented
above can claim no more than the intuitive justification
which underlies the ordinary Thomas-Fermi theory of
the atom. However, the calculated electron-density
function n(r) necessarily tends to the correct values
zero and mo as r tends to zero and in6nity, respectively, "
and also has the correct form in the limit r, equals
infinity. This, of course, does not imply that the
detailed form of e(r) must be right for finite r„but it
is unlikely that it is too far off as long as r, is greater
than one or two.
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'0 This contrasts with the Thomas-Fermi theory of the atom,
where the electron density has the wrong behavior in the limit of
both small and large r.


