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Certain problems connected with the choice of trial variational
functions for the quantum many-body problem are discussed. It
is convenient to make use of the reduced-density-matrix formula-
tion developed by Lowdin and Mayer, since a system whose
Hamiltonian contains only 1- and 2-body interactions is char-
acterized by the two simplest reduced density matrices F&') and
I'(2). It is known that symmetry, Hermiticity, and normalizability
conditions are not sufBcient to ensure a physically realizable
choice of the functions I'&'& and F(2&. However an additional non-
trivial restriction is imposed by the fact that such functions must
be possible variational extrema. The implications of this condi-

tion are investigated in some detail and it turns out that all the
nonphysical choices of l ('& and I &') which have been exhibited by
various authors are eliminated. The condition is essentially non-
quantum inasmuch as an analogous argument should be possible
for a classical system. Moreover one of the consequences of this
condition is that the system (classical or quantum) may exhibit
macroscopic behavior, i.e., order-disorder transitions. The analysis
leads to apparently reasonable choices of trial forms for F('& and
l (~), although it is still not known whether any further restriction
must be imposed to complete the su%ciency argument.

1. INTRODUCTION

HE recent success in developing methods related
to perturbation theory for treatment of the

quantum many-body problem' has not as yet been
matched by parallel progress in developing the varia-
tional approach. The Hartree-rock procedure depended
upon an "independent-particle" picture which breaks
down drastically in most interacting systems, but no
further advances have been made until quite recently.

The most promising approach seems to be via the
so-called reduced density matrices, and I.owdin, '
Mayer, ' Slatt, ' and others have made use of this for-
mulation. The enormous simplification is due to the
fact that if the Hamiltonian contains only 1-, 2-, 3-,
~ -m-particle interactions the state of the system is
completely characterized by the m simplest reduced
density matrices F&'), F('), F& &. Evidently if only
2-particle interactions are present only F~" and F&')

need be considered. These functions will be defined
precisely later on. Since there is a Fo& and F&2' matrix
for each N-particle wave function P with identical
energies, it follows that minimizing the expectation
value of the Hamiltonian with respect to F(') and F")
should give the ground-state energy provided we are
certain the set of allowed F's is no larger than the
original set of allowed P's. In different language, one
seeks restrictive conditions which only admit functions
which can be put into a 1+-+ 1 correspondence with
the P's.

' Only a small sample of the extensive literature can be men-
tioned; further references can be found in the following: K. Huang
and C. N. Yang, Phys. Rev. 105, 767 (1957); Lee, Huang, and
Yang, Phys. Rev. 106, 1135 (1957); K. A. Srueckner and C. A.
Levinson, Phys. Rev. 97, 1344 {1955);K. A. Srueckner, Phys.
Rev. 100, 36 (1955); H. A. Bethe, Phys. Rev. 103, 1353 (1956);
J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957); K. A.
Brueckner and K. Sawada, Phys. Rev. 106, 1117, 1128, (1957);
M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957);
K. Sawada, Phys. Rev. 106, 372 (1957);J. Hubbard, Proc. Roy.
Soc. (London) A240, 539 (1957).

s P.-O. Lowdin, Phys. Rev. 97, 1474 (1955).' J. E. Mayer, Phys. Rev. 100, 1574 (1955).' J. M. Blatt, Nuovo cimento 4, 430 (1956).

The conditions on the f's themselves are simply:
symmetry (antisyrnmetry), Herrniticity, and square-
integrability. The fact that the states must be super-
posable is ensured by the fact that the Schrodinger
equation is linear, so that a linear combination of solu-
tions is also a solution. Since the eigenfunctions span
the space, it follows that any function which obeys all
the specified conditions is a solution of the Schrodinger
equation. One would like to verify that the Hilbert
space is complete, i.e., that any sequence of functions
in the space converges in the space. This property is
generally assumed, though it has only been proved for
special Hamiltonians.

Unfortunately the reduced density matrices must be
handled with greater care because of the awkward fact
that it is possible to find functions which have the
correct symmetry (antisymmetry), Herrniticity, and
normalizability properties but which definitely do not
correspond to possible physical situations. The am-
biguity occurs in both quantum and classical systems.
Several authors' ' have pointed out the difIiculty of
ensuring physical realizability of functions F&'& and
F&'&, while Kirkwood recognized the problem, in a
classical system, connected with choosing possible pair-
distribution functions ps(r) .

Lowdin' has showed that if the initial wave function
is a single Slater determinant the system is completely
characterized by the choice of F &'~. In different language
a slightly more general result has recently been ob-
tained by Watanabe and Kuhn, ' who showed that if
the Hamiltonian of a system contains only 1-particle
interactions the above-mentioned necessary conditions
are also suKcient. However, the main problem is still
unsolved: to find an additional necessary condition on
the choice of F&" and I""for ieteractieg systems, such
that all nonphysical choices are definitely eliminated.

' M. S. Watanabe, Z. Physik 113, 482 (1939).' R. H. Tredgold, Phys. Rev. 105, 1421 (1957).
7 H. Koppe, Z. Physik 148, 135 (1957).
Y. Mizuno and T. Izuyama, Progr. Theoret. Phys. Japan 18,

33 (1957).' H. W. Kuhn (to be published).
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This additional condition ought also to have the follow-
ing properties: (a) it must be "geometrical" in the
sense that the statement of the condition should be
independent of the form of the Hamiltonian, though of
course its detailed effect will not be—actually if all two-
particle interactions vanish the condition should become
redundant —and (b) it cannot be a purely quantum
condition. Moreover application of the new condition
ought to indicate the possibility (depending on the
form of H) of macroscopic states of the system" with
concomitant order-disorder transitions.

In the following the question of sufficiency will not
be discussed. However it will be shown that an addi-
tional necessary condition can be derived with the
required properties. The condition can be stated in a
peculiarly simple way, but a correct variational calcula-
tion in terms of F(" and V2) is still rather difficult.

The abbreviated notation 1', 2', . refers to variables
(including both space and spin coordinates) xi', x2',
and d{N}=dxidx2dx3. . The operator acts only on
unprimed coordinates, then the primes are removed
prior to integration. A set of reduced density matrices
can be defined" by integrating F'~) over some of the
variables, thus:

r"'(x '
) p ~

x )=E p*{I', N —I}

Xexp( —PH)&{1, N —1}d{N—1}, (6)

r "&(xi', x2'
i p i xi,xg)

1V(E 1)—
"P*{1',2', N —2}

2

(11, (1&H=P H,+
~

—)P H, ,+ I
—

)
P-a, ,„+.. . . (1)

i (2!J aj , L3!~ i,j,a

In most of the following we restrict ourselves to a model
in which no three-body or higher many-body terms con-
tribute to the Hamiltonian and in which 8; and H, ,
are invariant under translation and independent of spin.
It is also convenient to suppose that both E, V —& ~,
while 1V/V remains finite. In general these restrictions
are made merely for the sake of simplicity and can be
somewhat relaxed with suitable modifications of the
subsequent argument. Also, to avoid cumbersome nota-
tion and frequent digressions we shall fix attention on
the special case of a system obeying Fermi statistics
in the ground state. The changes involved in considera-
tion of other cases will not be discussed at any length.

The partition function can be written

Z=g, exp —PE,=Tr{expg—Paj},
where P = 1/kT, and the free-energy A is given by

3= —(1/P) lnZ. (3)

In quantum mechanics it is convenient to express (2)
in terms of the density matrix

r(~&(xi', x2', .
I pl xi, x2, )

=&*{1',2' }exp( —PH)iP{1,2 }, (4)
where

z= p .)t r&~&d{N}.~ ~ (5)
states ~

"The author is indebted to Dr. R. H. Tredgold for making this
observation.

2. DENSITY MATRIX FORMULATION

Consider a system of S particles in a volume V. In
general the motions of the particles will be described by
a Hamiltonian of the form

Ep 2= (H) = )/——Hir &'&dxi+ H, 2r ~'&dxidx2, (8)
P-»oo

where the expansion (1) has been used. Several prop-
erties of the I' s are immediate; for example, Hermiticity

r&" (xi'~ xi) =r*&"(xi~ xi'),

r ~'~ (x,',x,'
~
x,,x,) = r*&'& (xi,x,

~
x,',x,'),

and symmetry (antisymme try)

r &'& (xi', x2'
~ xi, x2) =ar &" (x2', xi'

~
xi, x2).

By definition Fo) is obtained from I'") as follows:

(10)

2
-

' I'|."~dx2.r&'&(x]'~ xi) =
E—1

The normalization (square-integrability) condition is
essentially that

) r &~&d{N}=—! I'i"dx =1, (12)

which implies that the diagonal element of r&'& (ob-
tained by removing the prime) is a constant:

rg;.,"'(xi~ xi) =r/V. (13)

Under the simple conditions specified at the outset
(Hi, Hi~, position- and spin-independent, E, V~ ~)
it is appropriate to introduce variables R= ~xi x$~,
r =

~
x2—xi

~

and notice that the Hamiltonian depends
only on these; all others are cyclic and can be integrated

Xexp( —Pa)/{1,2, N —2}d{N—2}, (7)

where all but one variable has been integrated in the
first instance, all but two in the second, and so forth.
In the ground-state (P-+ ~), (3) reduces to the usual
quantum-mechanical formula
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out. Thus we can dehne

I'"' (x '
~

x ) = (N/ V)p (R),

where pi(0) =1 by (13). Similarly

r„., ' (x„x,) = l(X/~)'Ps(r),

(14)

system,

and

kr V
p

3

Sm S—kp'= —.
3 V

(21)

(22)

where ps(r) is essentially the pair-distribution function
which also appears in classical statistical mechanics.
The function pi(R) has no particular physical signifi-
cance, but its 3-dimensional Fourier transform e(k) is
easily interpretable, vis. ,

We now rewrite (16) and (17),

3
re(r) =— gpr(&) singrdt,

(s'~ s
(23)

V r"
Rpi(R) =2— ke(k) sin2rrkRdk, (16)

F00

gpr ($)=—
$p rrs(r) sin/rdr.J, (24)

oo

krr(k) = 2— Rpi(R) sin2~kRdR.
P'0

0

It can be shown that (10) and (11) imply for a Fermi
(17) system that

0&n(k) =rr(r) &2, (25)

k ~Vq &-—(H) = e= 2'—
i
—

i
k'e(k)dk

rri (1V) "o

t'cV)
+2~I —

I(y) ~s

Evidently e is the energy per particle, and u(r) is
the pair-interaction. The right-hand term is the po-
tential energy and is (formally) the same in a classical
or quantum system, though of course p&(r) will depend
somehow on the statistics. As far as the ground state is
concerned, the same may be said for the left-hand
(kinetic energy) term, the difFerences depending on the
form of rr(k) (k —& 0 for a classical system).

3. DIMENSIONLESS VARIABLES

In order to express the energy in Rydberg units and
keep the various integrals dimensionless the following

change of variables is indicated:

(= r/rid, go= &/ra, (19)

7- =o-= 2~krgg, o-0 ——2xk p~gg, (20)

where r~ is the Bohr radius and kp is the Fermi mo-
mentum. (Naturally kp does not appear in the discus-
sion of a Bose-Einstein or Maxwell-Boltzmann system. )
Evidently / is the mean separation of particles in the

"The fact that the Hamiltonian is invariant under translation
makes the angular coordinates cyclic, so n(k) is spherically sym-
metric: Therefore k in (16) and (17) is the absolute magnitude of k.

Evidently" rs(k) is the coefFicient belonging to a
given plane-wave component in momentum space, or
the distribution function of the particles in k space.
The expression (8) now becomes, after considerable
manipulation, assuming Hr —A'/2mV', ——

2
t

" rs(0)
1= ass ' '—r(rsr)d +r

3~ Jo E
(26)

In the Fermi case the last term is of order 2/E and
may be ignored but the correction is important in the
other cases since the integral does not count n(0) which
may be of order E. For a system containing a finite
number of particles (26) is simply equivalent to the sum

k=0
(27)

Further conditions involve the pair-distribution func-
tion ps(r). The simplest (derivable from the basic rela-
tions (9)—(11))is

0&p, (r) =p, (~), (2g)

which means that a probability density must be non-
negative. It is now convenient to split pr(r) into a part
which depends only on the statistics and a part which
vanishes when N(r), the pair interaction, disappears.
For the ideal Fermi gas $u(r) =0) it can be shown that

pss(r) ps&(h) = 1—spre (5)

and it is natural to extend (29) as follows":

~ (~) = L1--:p '(~))L1—If(&)),

(29)

(30)
'2 The form (30) is quite general for the diagonal element of p2,

but a more extensive argument is needed to find an off-diagonal
form (which would be necessary if the interaction B» were a
noncommuting operator, e.g. , a Fermi pseudo-potential). Briefly,
the argument (due to Mayer') is as follows: the total pm is a product

which is similar to the usual statement of the Pauli
principle, sis , at .most two particles (with opposite
spins) can occupy a single momentum-state. For Bose
and classical systems the inequality is relaxed to
0&rs(r).

Similarly, (13) and (14) imply t using (24)) the
integral condition
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where to satisfy (28) we simply require

E(P) &1. (31)

Finally, the relation (11) leads to

1 =—$p' r'e'(r) dr
3' p

3 00

+ ~ [1 p (~)jE(~)P
$o'" o

where the argument of footnote (12) has been used,
together with Parzeval's theorem.
@,The energy per particle in Rydberg units becomes
[from (18)$

2/ps (" 3
r 's(r)dr+

i B(()
3~&p (os" o

X[1—~pP(E) j[1—E(()jPdf. (33)

of spin terms and spatial terms; since there are three symmetric
combinations of two spin functions and one antisymmetric com-
bination, the spatial part must have a triple weight for the anti-
symmetric function and a single weight for the symmetric func-
tion, thus:

ps(space) = &p2a+4pu,

where to satisfy (9) and (10), ps, and pso may be written

p&ca= Nl xi' —xil)f(~ xs' —xs ~) af(l xi' —xs )f(l xs' —xx l)3
X[1—g((xg' —xs' ))L1—

g(~ xg —xp~) j
Inserting the above in (12), taking the limit g ~ ~, and assum-
ing f and g are the same for both symmetric and antisymmetric
parts, one can make the identification f=p&. Evidently there is
no loss of generality in writing (1—g)'=1—E' where E &1. For
a Bose system the analogous argument must be carried out in its
entirety, but this will not be done here. In the case of Boltzmann
statistics, of course, p2, (r) =1 (see 29). The argument can also he
used to obtain a plausible form for po(r&s, rsp, rp~), if desired.

4. ADDITIONAL NECESSARY CONDITION ON
THE CHOICE OF I ('& AND 1 (&

It has been pointed out already that the choice of
possible functions I'(') and I'(" must be restricted to
those which can be put in 1 ~ 1 correspondence with
the set of all possible many-particle wave functions.
In the Soltzmann case one seeks a correspondence with
the S-particle density functions p~. We now note that
the variation of the expectation value of the Hamil-
tonian actually generates such an isomorphism. Clearly
all possible X-particle wave functions can be obtained
in principle by successive variations; degeneracies are
easily removed by using orthogonality conditions.
Similarly all possible I'o& and F' & functions are obtain-
able by variations (once we know the complete set of
necessary conditions on the variation).

It is obvious that one of the necessary conditions on
the choice of 1' "& and F l'& is that they be Possible varia-
tional extrema. However it is not so obvious that any
functions satisfying the conditions (25), (26), (28), and
(32) are thereby excluded, i.e., that the set of possible
variational extrema is smaller than the set de6ned by

the conditions stated. This question is worth investi-
gating in some detail.

We begin by asserting that the four restrictions
above, ie toto, de6ne bounded subsets of all possible
functions e(r) and E(P). Moreover, the bounded sub-
sets are codex. ro (Both properties are generalizations
to infinite-dimensional function-space of simple geo-
metrical concepts which are easily visualized in the
case of a circle on a plane; convexity means anypoint
on a straight line connecting two points in the circle is
itself in the circle; the boundary is simply the set of
points which do not lie on straight lines connecting any
but boundary points). To verify the assertion one must
exhibit the restrictive conditions in a form such that
functions inside and outside the bounded sets are
explicitly distinguished from each other. From the in-
equality (25) [since e'(r) &2e(r) for all r$ combined
with (26) and (32) one obtains new inequalities

and

1 f'—$p' ~ r'n'(r)dr &1,
3' p

(35)

The form of n(r) for an ideal (noninteracting) Fermi
gas in the ground state is well known, namely

np(r) =2 for 0&r &o.p
=0 for o-p &~,

from which, by (24)

jr(&oo) f' 9~ i *

pio(() =3 =
~

——
I J-:((«),

&2Po p')

(36~

(37)

where j&(s) is the spherical Bessel function of order
unity. If any particles are excited above the Fermi level
o.p, rs(r) will spread out, and by an elementary property
of Fourier transforms pt(() will tend on the contrary
to bunch up near the origin. Thus, regardless of inter-
action (or temperature P),

cos op
hmlpr(k)I & Ir ro(t)I &
)~co ((~ )2

(38)

lim~E(g)
~

&
taboo ps+op ]np

(39)

'3 Since we are discussing physics and not pure mathematics,
no details will be given here. Complete discussions of these prop-
erties can be found in the mathematical literature, for example
Charnes, Cooper, and Henderson, Introduction to Linear Pro-
gramming (John Wiley and Sons, Inc. , New York, 1953), and
Linear Inequalities and Related Systems, symposium, edited by
H. W. Kuhn and A. W. Tucker (Princeton University Press,
Princeton, New Jersey, 1956). In most cases it is quite easy to
verify the subsequent steps in the argument.

A similar asymptotic convergence condition exists for
E($) [note that for large $, 1—srprs($) —+ 17, namely
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if E(P) oscillates sinusoidally with eventually de-
creasing maxima, or

lim~E(g)
~

&
$~00 P+" lng

(40)

'4 It is sufhcient to treat (39) and (40) as being cPproximately
correct. It is perhaps suggestive to think of the g-axis as being
broken up into discrete intervals, which are either all of one sign
or alternating in sign, and then examine the conditions for summa-
bility of discrete series. However this argument requires great
care. The approximate correctness of (39) and (40) can be demon-
strated by direct integration. Note that (35) also gives a weak
condition on convergence at (~ 0; however a stronger condition
will be derived later.

'5 For discussion and proof see Charnes, Cooper, and Henderson,
reference 13.

if E($) is a non-oscillating function. "The numbers bs,

6» must be non-negative; however the limiting case
80~ 0, 8~~ 0 requires special consideration. It is true
that (39) and (40) do not necessarily take account of
every possibility. For example, oscillating functions can
be constructed in which positive (or negative) contribu-
tions are dominant. However all such functions can be
decomposed into linear combinations of "pure" func-
tions of the type described.

From the physical point of view (39) and (40) are
rather suggestive. An oscillating function E($) would be
indicative of long-range order in the system, and vice
versa for the non-oscillating function, while the inter-
mediate case of short-range order might correspond to a
linear superposition. However, this line of speculation
will not be followed up here, since it is still' somewhat
premature.

It is evident that the convergence conditions (38),
(39), and (40) do at least display explicit boundaries for
the sets which we shall label A~ and A~ of possible func-
tions pr(() and E($) respectively. That is to say, func-
tions which do not converge at least as well as the limit-
ing cases specified (as $ ~ ~) are forbidden. it is easy
to verify that the sets are convex; any linear combina-
tion of functions satisfying an asymptotic condition
will itself satisfy the condition. On the other hand at
least one of the sets A~ and A2 might conceivably still
be too large, since in certain circumstances it is con-
ceivable that the condition (32) might fail to be satisfied
by azzy pair of functions pr(P) and E(P) (regardless of
behavior for $ —+ 0) which attained the limiting asymp-
totic behavior allowed by (38), and (39) or (40).
However there are very good. reasons for believing that
this situation does not arise when there is no long-range
order.

The fact that not all members of the sets A.j and A~

are possible variational extrema is now established by
the following theorem": if a linear fuzzcfiozzal is dePzzed

over a set of functions (e.g. , vectors) nrhich are restricted
to a codex set, thezz the functi ozzat only attains its extreme

values ol the boundary of the set This mean. s only
functions pi($) which lie on the boundary of Ai and
functions E(() wh!ch lie on the boundary of As are

possible extrema. ' The sets themselves are defined by
(38) and (39) or (40) if it is possible to choose bounding
functions from both sets simultaneously, while still
satisfying (32). If this is not possible some other, more
stringent, convergence condition would be needed; this
could happen in a system which permitted contributions
to n(r) from arbitrarily large r, whence pr(g) would be
required to converge faster than any power of P (vis. ,
as an exponential or Gaussian). However, we consider
the disordered state henceforth, to avoid any possible
ambiguity.

It must be emphasized that in speaking of a function
with minimum convergence only the asymPtotic be-
havior is involved. The sets A~ and A~ include all func-
tions with the proper asymptotic behavior; however,
this is too lenient, since conditions in the region of small
$ must also be satisfied. By using (24) and comparing
with (26), we have

pi(0) =1 (41)

Similarly, by examining (33), it is clear that if the inter-
action u($) is repulsive and stronger than 1/P at the
origin, then

E(0)=1 (42)

is necessary to ensure that the quantity being varied
remains finite. Even for a weaker repulsion' the fact
that the energy be minimum (instead of maximum)
requires E(0) to be positive, and combined with (31)
this means that

0 &E(0)(1. (43)

"Care must be exercised to avoid too free an application to
function spaces intuitive ideas from ordinary geometry. In par-
ricular, it may be worthwhile to point out that it is quite possible
to choose functions from the "interior" of A~ which give rise to
energies below the true energy (for examples, see references 6—8).
This subclass of functions E($) have the common property of
vanishing identically as (~ 0, and also possess no extreme point.
It is not difFicult to construct a sequence of functions from this
subclass leading to unboundedly negative (or positive} energies,
regardless of interaction. The significant point is the lack of an
extreme point, not the absolute magnitude of the "energies"
obtained.

'7 The fact that electrons, in the S state, for example, have a
finite probability of instantaneously occupying the same point in
space /implying E(0) (1) is confirmed by E. A. Hylleraas
[Z. Physik 48, 469 (1928); 54, 347 (1929), and elsewhereg and
also in a special case by R. H. Tredgold and J. S. Evans
(unpublished}.

5. TRIAL FUNCTION FOR n(r) —CONNECTION
WITH LAGRANGE FORMALISM

It is the usual practice in a variational calculation to
pick a trial function with a number of variable param-
eters, only using physical reasoning to minimize the
number of parameters needed by clever choice of trial
forms. However, it is desirable to proceed as far as
possible by strictly analytical methods. It will be seen
that an integral equation for zz(r) can be derived sub-
ject only to the assumption that E(P) does not depend
on zz(r) explicitly. This will certainly be true to at least
one order of approximation.
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The only difFiculty in principle in carrying out a
variation of the energy with respect to n(r) is in taking
account of the inequality (25) (analogous to the "non-
holonomic" constraints of classical mechanics). The
simple conditions (26) and (32) are introduced via
Lagrange multipliers p& and p2. The method employed
is to remove the constraint by making an appropriate
functional transformation which automatically satisfies
the inequality; vis. , let

n(r) =2 exp[—qr'(r)], (44)

where &p(r) is only required to be real. Any function
satisfying (25) can be written in the form (44) (al-
though there is no claim that (44) is unique). Varying
n(r) in the usual way gives

8n(r) = —2y(r){2 exp[—po (r)7)6y(r)
2n(r)—q (r) t'lq (r)

(45)

Since y(r) is free to vary, we can take Bq (r))0 for all

r, but it is seen that 5n(r) vanishes identically when
either n(r) =0 or p(r) =0 [n(r) = 2). Thus 6n(r) must
be zero whenever n(r) attains either of its constraining
limits; this is quite a general property of such con-
straints. Evidently the variation of the energy vanishes
whenever 8n(r) =0, whence n(r) = 2, n(r) =0 are ex-
trema of the variation, although neither can hold true
for all r It is eas.y to see that the behavior of n(r) in the

intervening region is determined by the integral equation

1
n;(r) =—r —yp—2

Pl-

3 00

p»(~)
$o'r o

Xsingr{ u(P) [1—E(P)j—yiE(g) )dP, (46)

whence
=2 for 0&T &T2

n(r)=n, (r) for ro&r&rp,
=0 for

(47)

where y~ and y2 are Lagrange multipliers to be deter-
mined by satisfying (26) and (32), and r& and rp are
defined by requiring n, (r) to satisfy (25), that is

n;(rp) =2, n, (rp) =0. (48)

If E($) is known n(r) is determined uniquely, although
the computations are formidable.

Fortunately one can introduce several simplifications
immediately. A good deal of calculation is saved by
using the (quantum mechanical) virial theorem, " in
the form

4$o' " 1 t" Bu
pv= r4n(r)dr

9' p $p'" p BP

x[1—ppl'(E)3[1 —E(k)hedk (49)

Upon varying both sides, the pressure p never appears.
If p& and p2 are eliminated by using the pair of Eqs.
(48), one obtains

Tp J

3
I

" sin$r sin(ro
n, ()=— 6 (5)

$o'" o T

3 00

(~) r+ ——
,

~ ~. (r)
$o'" o TpT2

singro sinprp
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Further simplification ensues in the interesting case E($). Provided rp)ro, this calculation gives
when u($) = 1/j, whence by (49) we can write rp=2o. p
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It is clear from examining either (50) or (51) directly
that (48) is satisfied. The condition (26) can be used to
determine T2 in terms of Tp still, without specifying

which is also intuitively reasonable. However an exact
calculation is not feasible at this stage. If E(P) hap-
pened to take a particularly simple form it might be
possible to obtain one or two iterations of n, (r) [be-
ginning either with pip(p) corresponding to the ideal
gas, or with some other convenient first approximation j,
but in general numerical methods would be required.

6. TRIAL FUNCTION FOR X{gl

Super6cial examination of the relations involving
E ($) shows immediately that a straightforward applica-

"While (49) is useful it is not a condition affecting the form of
n (v.); actually it introduces no new information.
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tion of Lagrange's method cannot be expected to suc-
ceed. The difficulty is that E(P) always appears linearly,
and from the general theory of variational problems it
appears that in this case more than one, usually in-
finitely many variational extrema must exist."Never-
theless these may belong to a well-defined subclass of
the original set of functions (i.e., a "boundary, " see
Sec. 4). The abstract connection between the Lagrange
method for problems of this type and the so-called
"simplex" method for finding extrema of systems sub-
ject to linear inequalities is discussed by Goldman and
Tucker. " It will be shown in the following how the
Lagrange method can be used even in the linear case to
extract useful information and confirm the conclusion
already reached.

The trick is to find a set of integral conditions
approximating (35) which also imply (39) or (40).
Evidently (35) does not distinguish between oscillating
and non-oscillating functions E(P); this can be remedied
by raising E($) to some power greater than unity. It
can be shown that the following conditions lead to
(39) or (40), respectively:

(53)

(54)

where p takes all positive integral values and f(g) is any
sinusoidal function with the periodicity of E(P) (by
definition) though it need not be continuous or even
finite at points where E($)=0. The behavior of the
integrals at )=0 is explicitly ignored by taking g) 0
[see (43)], a step which is justified if we only look for
the asymptotic form of E($). Note that when p=1,
Eqs. (53) and (54) are identical and no distinction is
made between the convergence conditions (39) and
(40). Hence we deliberately choose p)1. A Lagrange
variation can now be carried out formally, introducing
multipliers yi, y2 corresponding to (32) and (53) or
(54). Let E"(P) denote lim~ „E($),from which we have

or (54) cannot be satisfied except by y2
——0, whence a

single multiplier is left, to be determined by (32). To
find a true extremum one must eliminate the parameter
p which entered more or less by the back door in the
first place. Evidently the limiting case when

lim E„"&E"($) &
Pf(k)»(

(58)

lim E~"&E"($) &
p ~oQ P 1n(

(59)

The limiting processes must be taken in a rather subtle
way, but functions can be exhibited which satisfy (58)
for arbitrarily large p. That is, there exist functions con-
verging faster than 1/$' such that the integral (35) does
not diverge, but which converge slower than 1/P'+' for
any 8)0; in fact (as expected) there are still infinitely
many such functions, for example

(60)

where q&1.
It is, of course, necessary to choose E(() for all P,

not just in the limit t ~ ~.There are convincing quasi-
physical arguments to the effect that E(P) should be
analytic. "One would normally assume this in any case.
However, it must be pointed out that in most cases
even an analytic function is not uniquely determined
by its asymptotic form. "Therefore it seems likely that
one must, at this stage, revert to the usual procedure
and pick a trial function having the correct asymptotic
form and containing several variable parameters. Un-
fortunately very substantial analytic difficulties still
must be overcome in order to calculate the energy.
VVork in this direction is in progress.

(57)

defines the function E"($) which is p independent. This
occurs for p~ ~, which in turn defines the slowest
converging function which satisfies either (39) or (40)
when 80, bi —+ 0.

Hence our trial functions must be bounded by

{I($)[1—
q pP ($)]—y2) i i& i&

E."(~)=~ (56)

respectively. The oscillation or non-oscillation is ex-

plicitly shown by the presence of f($).2i For all p, (53)

"See, for example Caratheodory, Variatsungsrechnung (B. 6
Teubner, Leipzig, 1935).

"A. J. Goldman and A. W. Tucker, in Linear Inequalities and
Related Systems, reference 13.

~~ In this connection it must be noted that f(g) will be different
for different possible lattice structures.

V. CONCLUSION

The restriction we have imposed, namely that r&'&

and F(2& can only be chosen from among possible varia-
tional extrema, turns out to be rather powerful. Inthe
first place the precise form of the Hamiltonian is not
involved. Secondly, a similar restriction must exist for
a classical system, and one infers that there would be a
comparable reduction in the number of allowed possi-

2' Except possibly at the origin (&=0).
"Exceptional cases do exist, however; see Phil. Trans. 213,

274-313 (1911) or E. T. Whittaker and G. N. Watson, Modern
Analysis (Cambridge University Press, London, 1935).
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bilities. Third, the possibility of macroscopic states of
the system is clearly indicated, although all detailed in-
formation about an ordered state is implicit in the
undetermined function f(P). It is conceivable that in-
formation about other types of macroscopic order (e.g. ,
in momentum-space) would also be available from de-
tailed knowledge of ts(r). The next step is, of course,
to calculate the energy of an electron gas at high density
with one or more appropriate trial functions for E(P)
in order to test the accuracy of the method against a
known result. This will be done in a succeeding paper.
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The average electrostatic potential distribution about a given electron is calculated for a system of
point-charge electrons embedded in a neutralizing continuum of positive charge. The calculation is classical,
involving a Poisson equation of the Debye-Huckel type, except that the electron density is treated by
means of Fermi-Dirac statistics as in the Thomas-Fermi theory of the atom. The calculated energy due to
electrostatic interactions agrees with the quantum-mechanical exchange plus correlation energy over the
observed range of metal valence-electron densities, 2 ~r, ~6, but is too small at larger and smaller densities.
(r, is the electron-sphere radius in units of the Bohr radius. ) The equilibrium density (2'=p= 0) occurs at
r,=4.3, at which point the compressibility is 69 per megabar. The electronic speci6c heat is linear in T at
low temperatures and varies from 0.9 to 0.74 of the Sommerfeld value over the observed metal density range.

I. INTRODUCTION

A DEBYE—HUCKEL, Thomas-Fermi (DHTF)
theory of plasmas and liquid metals has recently

been developed by Flock and Kirkwood. ' The theory
is similar to the Debye-Huckel theory- of electrolyte
solutions, ' except that the charged particles are nuclei
and electrons rather than positive and negative ions,
and the behavior of the electrons is described in terms
of Fermi-Dirac rather than Boltzmann statistics. The
method of treating the electrons is similar to that of
the Thomas-Fermi theory of the atom, ' but the DHTF
theory automatically introduces a certain degree of
correlation among the electrons due to their mutual
electrostatic repulsion. It would be interesting to know
how the correlation energy given by this theory would

compare with that calculated quantum mechanically.
However, the only quantum-mechanical calculation

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' R. J. Plock, thesis, Vale University, 1956; R. D. Cowan and
J. G. Kirkwood, J. Chem. Phys. 29, 264 (1958).

2 P. Debye and E. Huckel, Physik Z. 24, 185 (1923); see also
R. Fowler and E. A. Guggenheim, Statistical Thermodynamics
(Cambridge Vniversity Press, Cambridge, 1956), Secs. 904—913.

g L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);
E. Fermi, Z. Physik 48, 73 (1928).

with which a comparison can readily be made is for the
case of free electrons moving in a uniform sea of
positive charge; consequently, the DHTF theory is
modi6ed correspondingly in the discussion which

follows.

2. THEORY

In the DHTF theory the thermodynamic functions
are evaluated by considering the Debye charging
process. For this purpose it is necessary to examine a
hypothetical system in which each particle carries an

arbitrary fraction X of its true physical charge. Consider,

then, a system consisting of electrons of (average)

density ep each with a charge —Xt., embedded in a
uniform neutralizing sea of positive charge of density

)pp= Keep.

Let P&, (r) be the average electrostatic potential at a
distance r from any specific electron (due to ttl/ charges,

including the electron in question). Then. the potential

energy of a second electron a distance r from the first

is —)I.ega(r), and the density of electrons at r is given


