
PHYSICAL REVIEW VQLUM E 111, NUM B ER 6 SEPTEM HER 15, 1958

Majorana Foiixiula

ALVIN MECKLER
Division of Physical Sciences, National Secnrity Agency, Fort Meade, Maryland

(Received March 14, 1958)

The Majorana formula for the transition probability of a general spin is here rederived and brought into
a more compact form. The method is based on the use of the projection operators which characterize the
spin vector as definitely quantized along a specified unit vector. If the Hamiltonian contains only terms
linear in the spin, it is possible to de6ne a moving instantaneous axis along which the moving spin vector
maintains its quantization. The Majorana problem is reduced to the calculation of the joint probability of
quantization along two different axes.

The usual expression of the Majorana formula contains a factor which is the transition probability of a
spin-~ vector. It is shown here how this factor is related to the angle through which the general spin is turned.

HERE is a formula, originally derived by Ma-
jorana, which gives the probability of a spin

transition from a state of magnetic quantum number nz

to one of magnetic quantum number m'. ' The spin is in
a uniform magnetic field, whose direction is taken as
the axis of quantization, and a perpendicular rf field is
applied to cause transitions. The existing derivations of
the formula are based on the consideration that an
angular momentum of value s can be handled as the
resultant of 2s angular momenta of value —,'. The spin--,'
case is easily solved; the general case is solved by
synthesis to yield the formula for the transition prob-
ability for state m to ns'.

I', = (s—m)!(s+m)!(s—m')! (s+m')! (sin-,'cr)4'

(—1)"(cot-'cr) "+"'+"

" (s—m —r)!(s—m' —r)!(m+m'+r)!r!

The transition probability for a moment with the same
gyromagnetic ratio and spin ~ is

I';, ;=sin'(-', n).

This note overs another derivation of the Majorana
formula. The derivation does not compound the general
case out of the spin-2 case but directly follows the
dynamics of the spin vector. The formula, as derived by
this method, is much more concise than Eq. (1) and
reveals an interesting physical interpretation of the
angle 0,.

METHOD

First, the following problem is posed: given a spin
definitely quantized along a unit vector a with com-
ponent m, what is the probability that it is quantized
along a unit vector b with component m'P The answer is'

g)—1

Q p (m)p (m')=5„,
n=o

S

P p. (m)p. (m)=b. (6)

The first few polynomials are

Ps=(p) ',

pr = 2 (3) 'Lp (p' —1)7-lm,

P.=-'(3)-:LP(p'-1) (P'-4)7-:E»m' —P+ 17

Ps= (7)'LP(P' —1) (P' —4) (P'—9)7-:porn' —3p'+&7m.

Also,

P-()=(p-1)!(2 +1)-:L(p+ )!(P——1)!7-:.
Equation (3) was derived by the use of projection

operators. If p (a S) is the projection operator for the
m state along a, and p (b S) is the projection operator
for the m' state along b, then the evaluation of

Tracep (a S)p ~ (b. S)

yields Eq. (3).The trace expression is a direct transcrip-
tion of the posed question.

Now, given the motion of a spin under the inhuence
of any Hamiltonian, the probability of observing the
state nz along a is given by

Tracep„(a S)p,

where p= 2s+1, and E„(a b) is the ordinary Legendre
polynomial of a b, normalized so that E„(1)= 1.p„(m)
is a certain polynomial in m, originally investigated by
Tchebichef, further described in the appendix. The im-
portant properties to be noted here are the following:

p„(m) =0, I&p

Q p„(m)p„(m')P (a b),
n=o

'The history of the formula and
N. F. Ramsey, Molecular Beams
Oxford, 1956).' A. Meckler (unpublished).

where p is the projection operator for the particular
state of motion. For a general Hamiltonian, it may not
be possible to characterize the states by spin component

a derivation are given in quantization, but in the case to be considered here, it is
(Oxford University Press, ' G. Szego, Orthogonal Polynomials (American Mathematical

Society, New York, 1939), p. 32.
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possible to de6ne an instantaneous axis, a moving axis
of quantization relative to which the moving spin vector
maintains its alignment. Once the equation of motion
of the instantaneous axis is known, Eq. (3) can be used
to give the probability of m along a at any time. Here,
b will be the moving instantaneous axis. If the initial
condition is that b at time t=0 is along a, then Eq. (3)
must contain the Majorana formula.

These equations can be made to look like a matrical
Schrodinger equation by the introduction of the column
vector

1 z
Z+,
-Z.

which obeys the equation

DERIVATION

The Hamiltonian is

x= —dopa. S—Xh S,

where h„ is a unit vector:

H'&=i W'/Bt,

where the matrix I is

0 Z/42 —X/v2
.

H= X/K2 (a)—cop) 0
.—X/V2 0 —((o—~p).

(15)

tt„= (2) *(a+e '"'+a„e'"') H is Hermitian and so the normalization of 4' is pre-
served in time. A particular solution of Eq. (15) is

a„+ and a„are complex vectors perpendicular to u„
such that

with
+-pe r,wt—

GP Gtl

&rPVGI, CV=ZC+ = +

&eP, V~P ~V= ZQ~

66gl V~@, +V ZGg ~

Here, the summation convention is used, and e,„, is
the antisymmetrical unit pseudotensor. 4 It is antisym-
metric in all its indices and ei23= 1.

The instantaneous axis, b„, is de6ned by the condition

(d/dt)(b S)=0,
or

The possible values of W are the eigenvalues of H,
which are

W=O, P'+((v —pop)sg'*, —P, +(~—~p)sg'.

Henceforth, let u= P.'+ (po
—top)s$'. The general solution

of Eq. (15) is

—A (a&—pop)+28 cosut

v2a
+ L(po —top) cosut iu sinu—t$

v2 (»)

6,5,= —b.s,.
The quantum rule is'

S.=i (K,S.)

(10) AX 428
+ t (~—top) cosut+iu sinut$

3 and 8 are to be determined by normalization and the
initial condition. At t=0,

Application of the spin commutation rule allows the
solution of Eq. (10) as

br= ego r(bop to+arXk ).p

It is desirable to know b in terms of a, a+, and a . Set

A (po —pop)+ 28

+ (M —top)8
+(0)= W2 (20)

b.=Z(t) .a++Z(t)e'"'a +Z (t)e '"'a+- —

where normalization and reality demand that

Z'+2Z+Z —= 1, Z+= (Z )*.

The equations for the Z's are-

Z = —(iX/K2) (Z+—Z—),
2+=i (s)p ur)Z+ (iX/v—2)Z, —
Z—= —i(top —or)Z

—+ (A/v2)Z

(12)

(13)

ax v2
+—(po —cop)8

The initial condition to be taken here is that

Z(0) = 1, Z+(0) =Z (0)=0.

The equations for A and 8 are, therefore,

A(~ psp)+28= 1, — —
A)./K2+ L&2 (to —cop)/X)8 =0,

so that
4 J. L. Synge and A. Schild, Tensor Catorslls (University of

Toronto Press, Toronto, 1952).
~ A is set equal to unity.

A = —(to —
p)r/o,u

B=X'/(2u'). (21)
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E„=F„/F„g.

Set m= —s+q. Then

(2N+1)(p —~—1) ' (Vi (V p&—
p„(q) =~t

(py~)!or

b„ is now completely determined as a function of and
time. The transition probability of Ripping from state
m along a at t= 0 to state m' along a at t is, by Eq. (3):

y-1
P,„=P p (m)p. (m')P (a b),

where

P„,„.= p p„(m)p„(m')P„(Z),
n=o

Z = 1——(1—cosset).I (22)

where

q.l((Vl)
&22] 22!(q

—22)!

For the case of a spin-~ vector,

P, ;=p (-',)po( —-,')+p, (-', )p, (——,')P, (Z)

2 2
————z
=-,'(1—Z).

In the Ramsey-Majorana notation, Pi =,= sins (22n). The
connection must be

Z= cosa. (23)

The 6nal, concise form of the Majorana formula can
now be written as

y—1

P „.= g P„(m)P„(m')P„(coscs). . (24)
n=0

With this derivation, a physical and classical interpre-
tation can be given to the angle n. It is the angle of in-
clination of the instantaneous axis to the direction of
the uniform magnetic 6eld.

APPENDIX

A recursion relation for the Tchebichef polynomials is

Pn(m) =™FsPs1—It nPs 2,

where
4(4222 —1)

p 2

N2 (p2 222)

~f( )=f( +1)—f(*).

Subsequent to the preparation of this manuscript,
Professor G. F. Roster expressed the suspicion that the
Tchebichef polynomials, p„(s;m), are somehow equiva-
lent to certain Clebsch-Gordan coeKcients. Because of
his insistence, it was proved, in fact, that

P„(s;m) = (—1)' C(s,s, 2;2m, —m),

where the C definition is taken from Rose. '
Added note.—The author has been made aware of a

paper by Salwen7 in which still another derivation and
expression of the Majorana formula is given. The main
concern of that paper is the case of unequally spaced
magnetic levels, the anomalous Zeeman case, and an
approximate solution to the time-dependent Schrodinger
equation is presented. The normal Zeeman case is
solved exactly, but the expression of the Majorana
formula [Eq. (41) of Salwen], though more neat and
convenient than the original one, is not the same as
that of this paper. The rotating frame of Salwen is not
that associated with an instantaneous axis.

' M. E. Rose, 3fultiPole Fields (John Wiley and Sons, Inc. , New
York, 1955), p. 13.

7 H. Salwen, Phys. Rev. 99, 1274 (1955).


