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The Fokker-Planck equations are used to examine the structure of a shock wave in fully ionized hydrogen.
This is done by assuming a bimodal Maxwellian distribution for the protons in the interior of the shock and
noting that the electrons are in thermal equilibrium with themselves but not necessarily with the protons.
The method is essentially an extension of that used by Mott-Smith in his analysis of the Holtzmann equa-
tion for a shock wave in a gas of neutral atoms.

1. INTRODUCTION field lines. It may also be possible to extend this type of
treatment to the more complicated case in which a
magnetic field is present in the plasma.

The advantage of the Mott-Smith method is that,
since its starting point is the distribution function for
particles in the medium, it gives a description of shocks
of high Mach number. In this region the continuum
equations of ordinary hydrodynamics or of plasma dy-
namics which are based on the assumption of small
deviations from equilibrium distributions no longer
apply.

A COXSIDERABI.E amount of work has been
done over the past few years by various authors' '

making use of the Fokker-Planck equation for the study
of plasmas. This equation provides an extension of the
Boltzmann equation and determines the way in which
the distribution function of the ions and electrons in
the plasma changes. The long-range Coulomb inter-
action between these particles gives rise to a diffusion
contribution on the scattering side of the Boltzmann
equation. ' These diffusion terms account for that part
of the change in the distribution function due to the
large number of distant encounters between particles.

The purpose of this paper is to make an analysis of
the structure of a shock wave in a plasma using the
Fokker-Planck equation. This is done by extending the
method used by Mott-Smith' to analyze the structure
of shock waves in ordinary gases. We consider the simple
case of fully ionized hydrogen in the absence of a mag-
netic field, i.e., the shock is established by collisions
between the particles. The results thus have applica-
bility to shocks produced in the laboratory or to cases
in astrophysics of shocks propagated along magnetic

2. DISTRIBUTION FUNCTIONS

The Fokker-Planck equations4 for the proton and
electron distribution functions F and f become, when
simplified for two-body Coulomb interactions,
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The slowly varying quantity I' is

Fn. i. The density, temperature, and stream velocity in
various regions of the shock,

obtain. We adopt a procedure similar to that of Mott-
Smith, ' which is to choose a distribution function of a
particularly simple form depending on our physical
picture of the conditions in the interior of the shock
and in its neighborhood. In order to construct such a
picture somewhat in advance, we need to consider the
various relaxation times of the system.

Consider a frame in which the shock is at rest (Fig.
1). Then in front of and behind the shock (at x(0 and
x)0) we have plasma Rowing along the positive x axis.
At sufficiently large distances from the shock on either
side, we have equilibrium distributions corresponding to
the appropriate stream velocities and temperatures in
these two regions. The proton and electron distributions
will be both in equilibrium with themselves and with
each other. Across the shock itself, however, we have a
nonequilibrium region in which the collision terms of
Eqs. (2.1) and (2.2) can be thought of as describing the
way in which particles migrate from the one equilibrium
state to the other in traversing the shock.

Using the suSx n for conditions ahead of the shock
and P for behind the shock, we take for the proton dis-
tribution function,

4~e' 3 (kT ~
'

r= ln
3P .4(~e)' E e' ) (2 7) M i -*' - 3l

F=lV. (x)
I I exp — (c—iU„)'
&2mkT ) 2kT

and p is obtained by replacing M with m in (2.7). The
notation used is the same as that used by Rosenbluth,
MacDonald, and Judd. '

The terms on the right-hand side of Eqs. (2.1) and
(2.2) account for the change in the distribution function
due to the large number of distant collisions a particle
(proton or electron) suGers with other particles in the
medium. These collisions occur with particles inside a
distance equal to the Debye radius about the "test
particle. "Outside the Debye radius the Coulomb field
of a particle drops off exponentially due to local polari-
zation of the medium. Thus charge Quctuations affecting
the test particle involve a large number of particles
outside this radius and therefore long characteristic
periods. The medium outside the Debye radius can
therefore be considered as a continuous charge dis-
tribution producing a Reld E at the test particle which
is included on the left side of Eqs. (2.1) and (2.2). In a
violent shock wave, we might expect to displace the
electrons from the protons in the plasma in such a way
as to give rise to a charge distribution across the shock.
In fact this displacement is extremely small as will be
seen later.

The comparatively rare close encounters between
particles should in general be accounted for in (2.1)
and (2.2) by adding the single scattering terms which
occur in the ordinary Boltzmann equation. However,
these make a less important contribution to the collision
side of the equation and it is usual to neglect them.

The general solution of these equations for the case
of an infinite plane shock wave is of course dificult to

M q
-*' M

+X,(x)
I I exp — (c—iUe)'
&2~kT, & 2kT,

=F +Fe (2.8)

where E and Xp are densities, T and Tp temperatures,
and U„and Up stream velocities along the x direction
i. The quantities N and Hap are functions of x together
with Tp(x) for reasons discussed below. Thus the proton
distribution inside the shock is represented by two inter-
acting Maxwellian distributions. In this zero-order
picture, the collision terms of the Fokker-Planck equa-
tion describe the way in which protons jump back and
forth between the n and P distributions in crossing the
shock.

Now consider the coupling between the electron gas
and the proton gas in the plasma. This derives in our
case from electron-proton collisions. As we shall see,
over a large range of Mach numbers the proton shock
thickness / is too small to allow the electrons to reach
thermal equilibrium with the protons in this region,
and in fact the proton shock can be considered ap-
proximately to involve both a momentum and an
energy transfer from one proton stream to another
which takes place as if the electrons were absent. Only
somewhat farther behind the shock does the tempera-
ture T of the electron stream rise to that of the protons.
This in turn cools the P proton stream behind the shock
over a region of characteristic length l,&$. This cooling
takes place in such a way that the sum of the electron
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and proton pressures behind the shock remains con-
stant; i.e., there are no further pressure gradients to
change the stream velocity Up in this region. It should
be pointed out that for weak shocks, i.e. E 1, the pro-
ton shock thickness l becomes very large and the elec-
trons are thus able to reach thermal equilibrium with
the protons inside the shock, in which case there is no
further cooling of the P stream and Tp(x) = Tp(Gc ).

Next consider the effect the protons have on the
electrons. Due to the higher electron thermal velocity,
the electrons reach equilibrium with themselves faster
than the protons do with themselves, ' and considerably
faster than the electrons with the protons. These three
times are in the ratio 1:(M/nz) &: (Mjm). Thus we take
for the electron distribution one of self-equilibrium, in
which the interaction with the protons gives rise to the
slow passage of the electron gas through a series of
equilibrium states, i.e.,

t' 2S ) ' tS
f(x) =n(x)

~ ~
exp — (c—iU,)', (2.9)

E2mkT(x) ) 2kT

where e, T, and U, are all functions of x. It should be
pointed out however that in making this assumption we
are excluding eGects of thermal conduction in the electron
gas which are of course important for describing the
variation of the electron temperature through the shock.
Thus in the approximation of this paper we shall not
obtain the rise in electron temperature extending ahead
of the proton shock as was obtained in the work of
Jukes using the Navier-Stokes equations. ' Inclusion of
this eGect in the "strong shock" approach is an obvious
next step.

Using the distribution functions (2.8) and (2.9), we
take moments of the Fokker-Planck equation and apply
the appropriate boundary conditions shown in Fig. 1.
Quantities which depend on x have values at @=&ac
which are written with a bar, e.g., 1V (—~)=N,
N (+~)=0, etc.

Basically there are three important lengths to con-
sider in this problem, the proton shock thickness l, the
length l, in which the electrons reach thermal equilib-
rium with the protons, and the characteristic length l,
over which any stream velocity differences between the
protons and electrons are removed. These three lengths
are plotted as a function of Mach number in Fig. 2.

We expect that l„«l, or l which is the case since,
although electron-proton collisions do not involve
appreciable energy transfers, they do involve large-
angle scattering of the electrons which destroys their
stream velocity relative to that of the protons.

3. MOMENTS OF THE FOKKER-PLANCK
EQUATION

In the usual way, the first three moments obtained
by multiplying (2.1) by 1, MN, 2~Me' and (2.2) by 1,
mn, and -', mc' and integrating over c yield the following

7 J. D. Jukes, J. Fluid Mech. 3, 275 (1957).,
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equations for the Qow of mass momentum and energy
in the proton and electron streams, respectively:
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The conservation of total momentum and energy are
then expressed by

The mass Row of the electrons and protons in the x
direction is conserved independently. Thus using 8g

+y~ dc f(c) i dci F(ci)—lc—cil. (3.13)
B.BE/Bx=4m-e(cV +1Vp n—), (3.8)

Similarly, from (2.2) one obtains for the electrons,

B (kTi

I+I I
=o

I I+I I=o (3&)
(B& i B..

(Bf), EBf), (Bt), ~Bt ), (ni+M) I'
Idc ef(c) ' dci F(ci) I

c—cil&M)JJBv

together with the condition that there are no currents
Rowing along the x axis at %~ we find for the con-
servation equations,

It should be noted that in all of these equations we
have taken the distributions to be time independent;
i.e., neglected an explicit consideration of how rapidly
the shock is dissipating energy and thus altering shape.

(3.9)1V U +NpUp nU„——
N (kT +MU ')+Np(kTp+MUp')

5kT. y 5kTpq
MN. U.

I U.'+ I+MNpUpI Up'+
M)

5kTi
+mnU,

I
U,'+ I =Q. (3.11) f=2I' dc F (c) dci Fp(ci)

J

4. PROTON DISTRIBUTION FUNCTION

In this section we consider Eq. (3.12) for the varia-

+ (kT+ U Q) (~/8 ) p (3 10)
tion of the densities N~ (x) and Np (x) through the shock
wave.

Using (2.8) with (3.12), we find

(kT & B1V (kTp) B1Vp UpNpk BTp
+Upi I +

Bx E M ) Bx M Bx

These equations enable us to obtain relations between
the n and P quantities at x= &~ under our conditions
of equilibrium T(~)=Tp(~) etc. , at these points, i.e.,
the Rankine-Hugoniot relations. They also apply for
all x, i.e., in the interior of the shock. However in order
to discuss the shock region where the various quantities
depend on x we require further moment equations in
which the collision terms appear explicitly. We shall use
the transport equations for v' of the protons and elec-
trons [c= (u, v, ip) j.

Multiplying (2.1) by v' and integrating the collision
terms (2.3)—(2.6) over c by parts using F(c=&~)
=f(c=&~)=0, we find

(kT ) BN (kTp) BNp UpNpk BTp
+Upi I +

L M ) Bx & M ) Bx M Bx

(M+nz)
=2I Ir
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dc vF(c)
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B
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J
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Bv

r 82+r, "dc f(c) dc, F(c,)—I
c—cll (3~ 12)

J 882

for the proton v' equation.

where

(2kT.q
'

tdcdci exp[—(c'+ ci2)j4M)
I
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X
I I
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(4.3)

3(i —vi)'
X

I
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The n-n and P-P terms vanish, which is to be expected
for a Maxwellian distribution interacting with itself.
Further, the terms deriving from electron-proton scat-
tering are calculated explicitly later in connection with
the electron v' transport equation (they determine the
cooling length 1„), and are small compared with the
proton terms above where they have been neglected.
This electron-proton interaction is responsible for the
comparatively slow variation of Tp(x) through the
shock (for l(l, ) compared with the variation we find
for N (x) and 1Vp(x). Thus Tp will be held constant as
far as the proton shock is concerned, so that (4.1)
becomes

(kT ) B1V (kTp't B1Vp

+Upi(M) Bx (M) Bx

2rN. N, ( M q-:
(4.2)

&2kT.)
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This integral can be evaluated by using the Fourier (4.11) is
integrals

1
~c—c~~ =——exp[ik (c—c~)j,

k'

37 =
(1+e ~")

(4.12)

1 tdk
Ic—c&l '=

~
exp[ik (c—c,)$,

2~2J P2

(4 4)

where

Sp=
(1+e—*~')

(4.13)

and noting that

where

(2kT.I '*( 3 O'I~ )
( M ) 4 2cjU')

tI= dcdc~ exp[ —(c'+cP)j

(2kT. q
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This gives the result
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—: p2kTpq l

X I I
c—
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(4 7)

vr'Upk(Tp T)—(2kT q
—:

21'NM@ & M )
(4.14)

5. RELATIONS BETWEEN THE e AND

g VARIABLES

Using the conservation equations (3.9) to (3.11) at
x= —~, x 1, and x=+~, we have for l(l„

with 4' given by (4.8). The shock region is then repre-
sented by a simple exponential penetration of the n
stream into the P stream as is to be expected.

Ke might now ask, since we neglected the dependence
of Tp on x, what the appropriate value for Tp should
be in the above formula. This will depend on the cooling
length l. for the P protons which is calculated in Sec. 7.
For /, &/, we take the value of Tp at x~/ which is the
same as that obtained by applying the conservation
laws of Sec. 3 across the shock as if the electron degrees
of freedom did not enter. H, on the other hand, /, —/, we
use Tp=Tp(~) obtained by using the conservation
laws as if we had complete electron-proton equilibrium.
This latter case covers only a small range of Mach
numbers.

2m'Q~
+ La' —l(1+f')j t -p(—")d, (4g)

g 0

where

N U =NpUp,

N (kT +MU ')+N kT =Np(kTp'+MUp')

(5.1)

a= (M/2kT )'(U —Up),

&= (Tp/T-)'*
(4.9)

Ke next make use of the conservation of mass equa-
tion (3.9) for the protons; i.e.,

N U +NpUp NU, ——

+NpkT =Np(kTp+MUp')+NpkTp, (5.2)

SkT.q ) SkTp')
M] U-'+ I+SkT =M( Up'+ I+SkT.M)

tr SkTp)
U'p2+ ~+SkTp (5 3)

E M )

(4.10)

so that (4.2) becomes

8Ã 1

2IN. t M l ~

(4.11)
gr~Up E2kT ) k(T Tp)—

If one chooses the origin x=0 at the point where N (x)
drops to half its value X at —~, the solution of

where Tp' is the proton temperature immediately be-
hind the shock at x~/. In the above equations we have
used the result of Sec. 8 that the electron stream ve-
locity U, approaches the mean stream velocity of the
protons rapidly in a characteristic length /, ((/ or /,
owing to the angular scattering of electrons by protons.
Thus we deduce from the conservation equation (3.9)
that since U, (x) U=(N„U +NpUp)N ', therm N
+Np N; i.e., the displac——ement of the electrons from
the protons is small, and in fact we would expect the
resulting E'/Sm in Fq. (3.10) to be small. Thus we have
neglected it to the order in which we require to re-
late the proton P variables to the n variables over this
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range. Equations (5.1) to (5.3) then give

10kT +MU '

AU
4Mg U'

(5 4)

(X» inA) 3m' (3) & M'E(3+E')
V4 ) 128 &5) e%

(1 3 1
X — — —

I, (6.1)
20E4 1OE')

10kT +MU ' (5.5)
where %(a,b) is given by (4.8) with

M(3U. 5kT: 7kT. q
kTp ———

/

—— +
8& 4 M2U. 2 M )'

kTp' ———
(

— — +4( 4 M'U. ' M )

(5.6)

(5.7)

3(5y-*' ( 1 y

4 E3) ( E')
(6 2)

(TA (5~ * (1 +
4 T ) E2) E4 20E4 10E')

It is now useful to express these quantities in terms
of the Mach number E for the stream ahead of the
shock; i.e.,

3 (kT.y
-*'

4(mX )-** 4 e' ) (6.3)

E= (U /V), (5.8) For the weaker shock /, /, we ha—ve approximately

(1 3 1
x —— —,(6.4)

(4 20E4 10E')V= (10kT /3M):. (5.9)

where V is the velocity of sound in the plasma. This (g lngy 3~2 (3) —', M2E(3+E2)
can be obtained in the usual way by linearizing the
conservation equations (3.9) to (3.11) after including & V' ) 256 ~ 5) e'4
the time-dependent contributions from (2.1) and (2.2),
and is

Thus Eqs. (5.4) to (5.7) can also be written as

(3yE')
E 4E') (5 10)

where now

(Tp~
* E+5 (1 3 7

+
(T ) 2 E4 20E' 10E'&

(6.5)

Np=
(3+E')

MU. ' (3 9 21
kTp ———+

8 E 4 20E4 10E')
(5.12)

so that

4 ~ 0.309m 4/a

4 —+ 2+2m vr'a'/15 as E—& 1,

as E—+~,

29.1E4U4

Now consider how this behaves at high and low
values of E. From (4.8), we have

kTp'= (5.13)
MU. ' (3 9 9

4 E 4 20E410E')' and

l~ as EC~ ~)
5~2 X.r

(6.6)

We see that at X=1, Up= U, Np ——X, etc. , in which
case we have no shock. It should also be noted that if
we have a proton cooling region in which Tp(x) ap-
proaches Tp, then the pressure (EpkT+EpkTp) of the
electrons and protons in this region is constant and we
have no pressure gradients to give rise to a change in
Up. There is no further interchange between the stream
kinetic energy and the thermal energy of the plasma in
this region. This interchange occurs entirely in the
proton shock ~x) &L

0. DISCUSSION OF PROTON SHOCK
THICKNESS l

If we express the thickness l given by Eq. (4.14) in
terms of the Mach number E, we have for l,)l

3g~ (3y —: V'

10+2 (5) E I'(E 1)—as E~ 1. (6.7)

Hence, at the onset of the shock at E 1, the thickness
is very large and at 6rst decreases with increasing E as
in the case for ordinary gases. However, as the Mach
number E increases, the shock thickness l begins to
increase again and finally varies as E4 for large X. This
is due to the fact that the mean free path for transfer
of a given energy from an n proton to a P proton becomes
very large due to the high relative velocities of these
two particles (both thermal and stream velocities). In
order to cross the energy gap from the n to the P stream,
a proton requires a mean free path proportional to
(U —Up)' in this region due to the Coulomb interaction.

The quantity /(e'5„ ink/m'V'), which is a function
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of E only, is plotted in Fig. 2, from which one easily Vpon making use of the conservation law (3.10); i.e.,
obtains l for a particular density and temperature of 2Tp T——p+T, this becomes
the plasma.

7'. ELECTRON DISTRIBUTION FUNCTION

We now require the electron distribution function
for the region behind the shock where F =0. For this,
we use the n' Eq. (3.13) which has the advantage that
E does not appear explicitly. Upon integrating by parts
and using

T~dT 4ym'Np' t'2k' '* pm y

(Tp T)—3g U erik' Em) EM)

BENT

p
X 1+ dx. (7.5)

SENT

this becomes

8 (kT)—44U,
/

—
f

ax Em&

BFp t'Mv4 )

qadi E kTp)

47f (nsv )
av I kT)

If we now note the fact that over the range E
((8M/5m)'*, the maximum value of (Tpm/TM)(1,

(7 1) then (7.5) is simply integrated to give

t' '7 p2+ T& ) t' Tp1—T

. &Tp *'T:]-E—V'p -:+V'.:)-—
, t'T—2T:] +Tp -I+»-'I +Tp—I)

2pm(1
dcdci fFpnv, tc—c4i

—'
k &T Tp) &

3 (v—vg)'
+y dcdci f(c)Fp(c&) i

c—cia '— —. (7.2)
al C Cl

The right-hand side of (7.2) tends to zero if the stream
velocities U, and Up together with the temperatures T
and Tp are equal. This is the equilibrium case. Further
if T= Tp and U, W Up, only the second term contributes;
and if T/Tp and U, = Up, only the first contributes.
Thus the first term is primarily responsible for re-
moving electron-proton temperature differences, and
the second for removing stream velocity differences.

We first calculate an expression for the variation of
the electron temperature T in the proton cooling region
under the assumption l,)/; i.e., with the boundary
conditions that at x~l the electron temperature is T
and proton temperature Tp'. That the derivation under
this assumption is self-consistent becomes obvious when
we see that indeed l, is greater than / for a large range
of E and the result applies over this range. Further,
since in Sec. 8 we show U. V, we use the distribution
functions,

M ~-" M
Fp=Np~ ( exp — (c—iUp)',

&2mkTp) 2kTp
(7 3)

( fg ) * BZ

f=gp( ) exp — (c—iUp)',
E 2m-kT) 2kT

in (7.2) which gives

BT 2ym'Np' t'2kT~ &|'1 1 q

,

i"dcdc4
Bx 3g U s'k'k m ) kT Tp&"

(3fT) '
&&exp( —(c'+cP)gc. c~ c—

~ ~
c4 . (7 4)

&mTp&

4ym'Np' (2k' ' (nz y
(7 6)

3g U k'Qs. E es ) I Mj
This expression describes the way in which the electron
temperature T rises behind the proton shock and also
therefore the drop in the proton temperature Tp
= 2Tj—T. The above expression would however be
considerably modified in an improved approximation
taking account of the thermal conductivity of the
electron gas as discussed in Sec. 2. As T approaches Tp
the logarithmic term dominates, and we have a simple
exponential law with a characteristic length

3N.U.(.) :k2Tp-: ~~q ~M~-

4ym'Np' &2k) (m)
(7.7)

Using the relations (5.10)—(5.12), we can now derive as
before an expression which is a function of Mach
number only, namely

)e'g. 1M' 3 )My l

(

—
I

(3+&')
m'U4 ) 8192+4r 4m )

213 9
X —— +

4 20E4 10IC'
(7.8)

This quantity is plotted in Fig. 2, from which we see
that l,)l except for very small values of K where the
shock becomes very thick and the electrons have time

to reach thermal equilibrium with the protons. In this

region the continuum equation based on the assumption
of small deviations from equilibrium distributions

probably give a more accurate result.
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8. VELOCITY-MATCHING LENGTH l,

In order to determine the characteristic length /„ in
which the electrons adjust their stream velocity U, to
that of the background protons through scattering, we
first consider the time-dependent equation for e' of
the electrons,

8 ( 3kT)
mX—

i U. y i=o.
atE m)

(8.5)

and thermal energies of the electrons. Thus the time
part corresponding to the energy conservation equation
(3.11) gives

The integral (8.4) is similar to (4.3) and can be obtained
by writing

8 keT 8 nU, kT p (Bf)
5z Bx 8$ " E 8$ (m q~

a=i
i U,((1,

E2kT)Consider an infinite medium of protons at rest and elec-
trons streaming in the x direction with velocity U, .
Then, since all quantities are independent of x, we
first calculate the time, r„ taken to slow the electrons
down by using the distribution functions,

(8.6)
)mT. q

'*

E~T)

3f pl ( Mc'q
F=2Vi —

i expi
427rkT„) ( 2kT )

U, =U, (0)e "" (8.7)
where

in the expression (4.8) for %. Together with (8.5), this
yields

(8.2)

( m
f=&i I exp (c—iU,)' .

2kT
(8.3)

5+~ ~2kTq ~

4&g&m)
(8.8)

Thus, returning to our shock wave, if the electron stream
velocity gets out of step with that of the protons, it
adjusts itself through angular scattering in a char-
acteristic length

With (8.1) these give

8 (kA'T)

8th m 5+m (2kT q:
iU. ,"

4~Ã. & m ) (8.9)
2kTI l (2kT„I *'
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c+iU.
Em) Em j

35(2kT/m)-:. —(2kT./m)-:»72

i
(2kT/m):c —(2kT /M)-:cg+iU,

i

'
fe'N inh& 3 (37r&

'* 1 (3f) l

(8.1o)
m'V' ) 4(5) 4~(m)We now use the result in advance that r, is small

compared with the time required for the electrons to
reach thermal equilibrium with the protons. This
means that over the time taken for the electrons to
adjust their stream velocity to that of the protons, we
have energy interchange only between the stream kinetic

which is also shown in Fig. 2. We see that for all E,
l„«l or l, which justifies our writing U, = U in the
conservation equations, and indicates that the displace-
ment of the electrons from the protons is negligible.

in the frame in which the shock is at rest.
Expressed as a function of Mach number, /„ is

(8.4) given by


