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predicted. If the assumption of a slow energy variation
of X and I' is accepted, the knowledge of the partial
decay rates is sufficient to determine uniquely the
electron spectrum and the two possible muon spectra
(and corresponding the average polarizations), without
need of observing the pion emitted. The general
requirement r(K,s) &~ ~0.5r(K„s) which follows from
the theory, is apparently satisfied by the present data.

If the present discrepancy with the sr—+e+o to
sr—+tt+o ratio will still persist and eventually be con-
6rmed by further tests of the kind examined here,
then some of the following possibilities should be
considered in detail:

The hypothesis of a universal interaction, in the
sense of strict equality of coupling constants, is not true.

The hypothesis of universality is valid but the
universal interaction, still local, has a more complicated
form than the simple A&U mixture —for instance, a
small pseudoscalar term is present which almost
exactly cancels the contribution from 2 to electron
decay. .

The universal interaction is nonlocal, such that the

two leptons are emitted at different points Lbut always
with the projection -,'(1+ps)$. Such a nonlocality must
however extend up to very long wavelengths corre-
sponding to a mass of 100 Mev or even less.

The universal interaction is nonlocal and furthermore
the leptons are not required to interact only through
the projection —,

' (1+ps)—but such a requirement is only
valid in the local limit. Such a form of the interaction
has been proposed by Sirlin" and it oGers a more
redundant solution of the n.~e+o problem than the
simpler introduction of a small local pseudoscalar term.
Moreover, as pointed out by I'eynman and Gell-
Mann, " the requirement that the rate of tt—+e+p be
slow imposes stringent conditions.

If one wants to insist on the universal A& V form,
one can speculate about a possible breakdown of
present electrodynamics that may oGer a possibility
for an explanation. "

44 A. Sirlin, Phys. Rev. 111,337 (1958).
~' R. P. Feynman and M. Gell-Mann (private communication)."R. Gatto and M. Ruderman, Nuovo cimento 8, 775 (1958);
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An integral representation is given for the vertex function F(hs, ps, (h —p)4). This representation is
obtained on the basis of local commutativity and the spectral conditions. It exhibits the set of points k', p~,
for which F is analytic in (h —P)s except for the physical cut. The limitations found in the representation
are discussed on the basis of examples obtained from perturbation theory. These examples give some insight
into the question of further analytic continuation in k' and p'.

' 'N a previous article' we have obtained certain
~ - analyticity properties of the vertex function on the
basis of the general axioms of field theory. However,
the information contained in these axioms has not been
completely exhausted, and especially the unitarity
condition was not used at all. It is the purpose of the
present note to give a representation for the vertex
function which exhibits the analytic properties obtained
so far, and to discuss the limitations which one en-
counters on the basis of examples obtained from
perturbation theory.

Let us consider first the general vertex function

f
G(k,p) =, '

de~
d4y e'"'* '"'"G(x y) (1)

*This work has been performed while the author was at the
Institute for Advanced Study, Princeton, New Jersey.

'Bremermann, Oehme, and Taylor, Phys. Rev. 109, 2178
(1958).This paper will be referred to as BOT; it contains further
references.

where G(a,y) may be written in the form

G(~,y) =e(*)(e(y —~)(0 I LLa(3),A (~)j,c(0)j I o)
+e(y)&o IP (~),I:Ilb),c(o)2 IO)}. (2)

The quantities A, 8, C can be considered as current
operators which satisfy the spectral conditions (0 I

A
I
rt)

=0 unless p„'&a', (OIBIrt)=0 unless p '&bs, and
(OICIrt)=0 unless p„'&c'. Here p with p„s)0 is the
four-vector describing the total energy and momentum
of the state Ie). Using the methods described earlier
one can show that G(k,p) is a boundary value of an
analytic function F(stssss) with st ——k', ss ——p', ss
= (k —p)', s; =x,+iy;; this function F is regular in the
s3 plane except for a cut y3=0, xs&c', provided the
variables s~, s2 are restricted to a certain domain D in
the space of two complex variables. The domain D is
most easily obtained if the methods of SOT are supple-
mented by the general representation for the causal
commutator, which has been proven by Dyson. ' Using

s F. J. Dyson, Phys. Rev. 110, 1460 (1958).
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X (3)
L2zs+-,'(1+P—rP) o'—(st+ zs)+st (s,—ss) ]s

—P9, (s,z,~')

where A(s,sszs) =sP+ss'+ss' —2s,s,—2z,z,—2z,s,. The
lower limit of the ~ integration is given by

~s=m»{0, ~—-'~I (I+st)s —Pgi
—l I:( —)'—'1'} ( )

In general Eq. (3) must be supplemented by conver-
gence factors and additive polynominals (subtractions),
but these are unimportant for the purpose of this note.
In addition to the unitarity condition, the information
contained in the Jacobi identity for the double commu-
tator has not been exhausted in the derivation of Eq.
(3).:It is questionable whether the latter property of
the vertex function will enlarge the domain D, which is
given by the set of points (st,ss) for which

I 2&'+-', (I+@ sis)o' (—z,+s,)—+st(s,—ss) j'
—$9,(stsso') WO (5)

for all o'&cs 0&/&1, IrtI &1—$, s:&&o($,rt, o')

the examples in. Sec. 2 we will see that at least for
certain, physically important parts of the boundary of
D such an extension is not possible on the basis of the
axioms (i.e., causality and spectrum, excluding uni-
tarity) alone.

For reasons of brevity we consider here only the case
a= b, in which we may take st=0 in Eq. (5). The real
points zl=xl, z2 ——x2 are then contained in D provided
xl&a2, x2(a2 and

xt+xs &min {o'—2o a+2as}, (6)

which leads to

xt+xs(c for c&a
(c'—2ca+2a' for c&a. (6a)

In the equal-mass case we have a=c= 2m and Eq. (6)
leads to the condition xt+xs (4m'. For the pion-nucleon
vertex we obtain with a=M+p, , c=3ts the restriction
xt+xs& (3f+ts)'. For xt ——xs ——3P, this inequality gives
the well known unphysical condition p,) (v2 —1)3I.'
It is important to note that the most serious restriction
comes from intermediate states with total mass 0-=M
+ts and nucleon number zero.

We consider now the vertex function U(ztssss, mtmsms)
in lowest order perturbation theory. The parameters

these tools we obtain a representation for F(stzsss),
which may be written in the form

~" x(,E,n ')
~(stzszs) = do' d$ ' drt dK

~2-Z3

dndPdy 5(1—n —P—y)1 pl pl

0 ~ 0 0 ~~12 ~22 ~m32 ~zl os'yz2 Os z3

which has the same singularities as V. The integration
in Eq. (7) has been carried out by Kallen and Wight-
man. ' For our present purpose, it is sufficient to take
the special case zl=z2=z, ml=m2=m, for which we
obtain, with y (s) =Ls—(ms —m)s]Ls —(m,+m)'),

J'„(zsss,mmms) =
msszs+y(s)

2(s+ms' —nP)

{V(s)}'
ss —2 (s—ms'+m')

Xln Lmss+m' —s+ {y(s)}'*1+
2m3m {ss(zs—4m') }I

1Xln L2m' —ss+{ss(zs—4m')}** . (8)
2m2

For y=O, IysI)e)0, P„has no singularities as a
function of z3. This property is a general feature of
perturbation theory. From the example of Jost' we
know that it does not follow from the axioms without
unitarity, but at present one cannot exclude the
possibility that the unitarity condition changes this
situation. We see from Eq. (8) that P„has always the
"static" branch lines y=O, x&(ms+m)s and ys ——0,
xs&4m'. For y=0, x&ms'+m' we have analyticity in
the z3 plane except for the static cut y3=0, x3&4m'.
LIf the restriction xt ——xs is relaxed, one 6nds the
condition xt+xs&2(mss+ms). ) But if y=0, mss+ms
(x& (ms+m)' we can produce singularities for ys ——0,
xs) —ms-sy(x) in addition. to the static cut. ' lt is
instructive to consider some special cases: (a) equal-
mass case: taking nz3=m, we have only the static cut
ys ——0, xs&4m' provided x&2m' for xt+xs(4m' if
xt&xs). This is exactly the same condition as the one
obtained from Erj (6) in Sec. 1. For 2m'(x&4m', we
can have singularities for ys ——0, xs&x(4—xm '). We
conclude that in the case of completely symmetric
spectral conditions the limitation xt+xs (4ms is already

G. Kallen and A. Wightman (private communication). We
would like to thank Professor Wightman for many interesting
discussions concerning the vertex function.

4 R. Jost (to be published), and reference 1, footnote 18.
~These conditions have been obtained independently by Y.

Nambu (to be published) and by Karplus, Sommerfield, and
Wichmann (to be published).

ml, m2, and m3 are the masses of the three internal
lines opposite to the vertices associated with h, p, and
h —p, respectively. In order to have a Qnite expression,
it is convenient to use the combination

F„(stzszs,mtmsms)

3 8
U(stzsss msmsms)

'=1 Bm 2
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contained in a perturbation theory with the most
simple interaction. It may be of interest to note that
in the present case the Jost example, '

F;=L2(4nP —x)'*+ (4m' —sa) &—(8+iC)7 '

(8+C) &2m; 8, C&0,

becomes applicable for x&3m', and for x)3m~+ e, e)0,
it gives also singularities off the real x3 axis. (b) Pion-
nucleon vertex: for x=3P (on the mass shell) pertur-
bation theory with the Nslu/ interaction leads always
to the static cut ya ——0, xs& (3p)' only. ' But we may use
more general "interactions" which are compatib1e with
the spectral conditions, although they may make no
physical sense. The only question we ask is whether
or not we can expect that the axioms alone, taken as
mathematical conditions, already guarantee the validity
of the usual dispersion relation. Taking for instance
m=-,'p, m3=M ——,'p and @=M', we obtain singularities
for x,) (4p)'(2M+ p) (M —p) (2M —y) ' & (3p)', y3

——0 in
addition to the static cut. Only for x &3P—

~ ~+(2M—5p)
(M' these additional singularities would disappear.
We conclude that the causality and spectral conditions
do not suKce to guarantee the validity of the "normal"
dispersion relation for the pion-nucleon vertex (X

~
n

~
X).

The case m3 ——vs=-', (M+p) is also of some interest.
For x&-', (3II+p)', y=0 the function F„ is analytic in
s3 except for the cut ya ——0, x3& (M+p)', but if x=M'
we can have in addition singularities on the real axis
for x3&43'(2M+@)(M+@) ', y~ ——0. Here the lower
limit is between (3g)' and (M+p)'. The condition
x&-,'(M+p)' is identical to the one we have obtained
in SOT and Sec. 1 for the analyticity of P(s~z2s3) in
the cut s3 plane. In the present example, as well as in
the general case, the restriction is due to states with
total mass o=M+p. Note tha. t the example does not
introduce new points of singularity, because we have
already the cut x3& (3p)', y3=0. However, it shows
that for @=M', the causality and spectral conditions
alone cannot guarantee that states with o =M+y lead
only to singularities for x3& (M+p)'.

' Y. Nambu, Nuovo cimento 6, 1064 (1957).

A situation similar to either the 6rst or the second
example described above prevails for all states with

(M+@)—$(M p—)' 2—p'7'&a & (M+du)

+L(M—p)' —2p, '7&.

Note that for a=m+m~, o =2m the condition (6)
becomes x&+x2&2(ma'+nP), which is exactly what we
obtained from Eq. (7). ln the most general case we 6nd
from the representation (3) the condition

xi (~ &+&—)+x2 (~+& b) &~—'(oa .—b)+—2o ah

for all o &c. For a=m2+m3, b=m~+m3, and a=m~+m2,
this yields the restriction

wl(xl ~2 M8 )+ma(x2 —m~' —m8 ) &0,

which is the same as in perturbation theory.
There are many other cases for which we find a close

connection between the limitations obtained from Kq.
(5) and the singularities of corresponding examples
from perturbation theory. Ke mention here only the
deuteron-photon vertex, ~ for which we may take m3
=m= 3II. With x=Mn'= (2M e)') 2—M', one has
singularities for y3 0 xa) x3a 4M jP(1—MD'j4M')
=163'~ in addition to the static cut ys

——0, x3&4p'.
Here these additional singularities are physically
reasonable. The general representation (3) would give
the static cut alone only under the unphysical condition
M~ &%2M, which also leads to x~0= 43P for MD =&23II.

We hope that the connections discussed in the
present note may give some indication about the
assumptions which have to be added to the present
axioms in order to guarantee the validity of dispersion
relations in some physically interesting cases. They
suggest that more information about the properties of
certain intermediate states shouM be used.

It is a pleasure to thank Professor Robert Oppen-
heimer for his kind hospitality at the Institute for
Advanced Study.

' Y. Nambu, reference 5.


