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New Approach to General Relativity
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A generally covariant scalar field theory of gravitation is presented. The principle of equivalence as well
as the principle of general covariance are preserved. A functional solution of Einstein's field equations is
obtained for the general time-independent case. The theory predicts correctly the results of the three crucial
tests of general relativity. Implications concerning the self-energy of point particles is presented. A new
theory of cosmology is given and its application to the time-scale problem and to the derivation of the Mach
principle are discussed. A new principle called the principle of observation is introduced.

I. INTRODUCTION
' 'N this article an attempt is made to discuss the theory
- ~ of gravitation as a generally covariant scalar field
theory. The approach divers both from the Lorentz-
invariant scalar field theories of gravitation and from
the conventional theory of Einstein. In Sec. II the
theory is presented in a way which appears to us
physically most plausible and where strict rigor is not
emphasized. In Sec. VII an alternative and intrinsically
covariant formulation is given. In Secs. III, IV, and V
the field equations are solved for an arbitrary static
set of singularities and applications to standard prob-
lems of astronomy and cosmology are made. It is seen
that the results agree well with the observational data
so far available. In Sec. VIII the theory is compared
with other theories of gravitation, especially with
Einstein's theory to which the present approach bears
a close relationship. To avoid misconception we would
like to stress from the beginning that the two basic
assumptions of Einstein s theory, namely, the principle
of general covariance and the principle of equivalence,
are both preserved. Furthermore the Geld equations of
Einstein are still valid. The differences lie, essentially,
in what constitutes the gravitational field and the
stress-energy tensor. In this theory the stress-energy
tensor is taken to be that of the scalar field generated
by the matter singularities, whereas in Einstein's
theory it is taken to be zero away from matter. How-
ever, it is felt, as was 6rst argued in a diferent context
by Schrodinger, ' that the mere formulation of a co-
variant theory and its solution in general coordinate
systems would not make a well-defined physical theory
unless it is supplemented with an underlying philosophy
as to what are the expressions for the measured physical
quantities in those coordinate systems. Considerable
conceptual simplification is achieved in this direction
by the introduction of a new principle called the
principle of observation, which establishes the relation-
ships of general coordinate frames to locally special
relativistic frames where physical interpretation is
clear cut. This principle has been the guiding idea in
the present investigations and directly suggested the

' E. Schrodinger, Space-Time Structure (Cambridge University
Press, London, England, 1950), Chap. 10, especially pp. 84-85.

rigorous solutions of 6eld equations as discussed in this
paper. As will be seen, it is a statement about the
relations between measurements of locally special
relativistic observers situated in arbitrary time-
independent gravitational fields. It is in the spirit of
the general idea of relativity and can be considered as a
natural extension of special relativity. In Sec. VI the
principle of observation is presented as motivated from
the general static solutions of the field equations,
although it was originally formulated by a direct
examination of space-time relationships of multiple
observers in a gravitational field. Unfortunately, the
principle, as stated, holds only for time-independent
situations and hence we will refrain from discussing
time-dependent solutions in this paper.

8 ~Zd4x=0, (2)

to be B„BI"@=0. This is at a source-free region of space.
To include the sources we take

B„d~y= —4n. g M &8(x—x~) (3)

where 3f,& are the strengths of the mass singularities
at the points x', and 8(x—x') is the Dirac 8 function.
The subscript g indicates that M', is the gravitating
mass. For the sake of convenience g is here taken to

2 Units are chosen such that c=G=1.

II. COVARIANT SCALAR FIELD THEORY
OF GRAVITATION

It is well known that by a particular choice of
reference frame the metric of space-time geometry can
be reduced local1y to the Lorentz form. Therefore, if
we imagine a locally distributed set of observers in the
above sense, the Lorentz-invariant field theories must
be valid. We want to consider a scalar field p with
vanishing rest mass for such a set of observers. We take
as the Lagrangian of the Geld, the expression'

2= (1/8x) 8„$8"@,

where gii= g22 g33 —1, g——44=1——, and 8„&=8&/Bx" are
adopted. Equations of motion for the field are then
obtained from the principle of stationary action,



HUSH YI N Y I L MA Z

be the negative of the usual Newtonian potential;

The stress-energy tensor is obtained as

For this we must make the following change:

It is symmetric and satisfies the relations

T= T„"=—22,

T„T,"=8„"ZP.

Energy density is easily seen to be positive deGnite;

a= T«&0.

Ke deGne a new tensor, R„",by

(5)

(6)

(7)

(1/8~)R„"=B„g
~(~.4)

It has the property

R=R„~=16~= —S~T.

Thus the expression (4) can be written as

SxT "=R "——'8 "R

or equivalently

(1/8~) R "=T„" ,'S„T. ——

(10)

By virtue of (3) the stress-energy tensor satisfies the
conservation laws, namely,

8„(8~T,~) = 8„(R,~—-,'5„~R)=0. (12)

We also note that as a consequence of vanishing rest
mass for the Geld @,we have, ' for a time-dependent case,

Z=R= T=O (gravitational waves). (13)

ds =gpgdS~dx". (16)

'This is because in the classical limit the action integral is
J'Zd'x —+ J'mCh. Since the Beld has no rest mass we have,
for each harmonic mode, m= 2=0.

Therefore the energy density is given by

Et= T~= (1/4~) (V'y)'.

In a time-independent case, instead of (13), we have

P; T,;=0; R=2(V'@)' (stationary fields). (15)

It is thus possible to characterize the gravitational
waves by (13) and the static gravitational fields by (15).

Now, Eqs. (1) to (13) are tensor equations Land are
also tensor density equations since (—g) &= (—det g„,) &

=1) in the locally special relativistic set of frames.
Therefore, they retain their form and validity when
expressed in a general coordinate system given by the
line element

if we wish to use a scalar Z= (1/8')8„&B&p, a tensor
T„",and an invariant volume element (—g)&d4x. With
this understanding, the tensor equations (10) are valid
in general coordinate frames. Thus, in the general frame
given by (16), we have the equations

R gvR (17)

Likewise the conservation equations (12) are valid in
(16) in th«orm of a covariant divergence as a conse-
quence of the generally covariant form of the wave
equation (3).

Since the stress-energy tensor is expressed in a similar
form to (17) in Einstein's theory of general relativity,
we now wonder what would happen if we interpreted
the tensor R„"as the Ricci tensor corresponding to the
metric (16). Then, of course, the line elements (16)
could be determined by solving (17) and one would be
able to examine if these solutions make any physical
sense. In the remainder of this article, we shall endeavor
to show that this is indeed the case. Before we start
discussing the solutions of the field equations and their
applications we may try to clarify whether the above
identification is plausible. The Grst thing which comes
to mind is this: why does one have curvature quan-
tities given by (11) while working with a locally special
relativistic frame of reference to begin with? Although
the answer to this can be given more satisfactorily after
one discusses the principle of observation, we make here
the following remark as pointed out by Schrodinger'.
Gravitational field is depicted essentially not by the
numerical values of g„, but by their first derivatives.
Therefore, a locally special relativistic frame, that is,
the reduction to g~i= g22= g33= —1 and g44= 1, does not
necessarily mean the complete elimination of geo-
metrical curvatures. Reduction to this form is, however,
sufficient for local physical interpretations of the
stress-energy tensor. A second and perhaps more
immediate question is this: The stress-energy tensor
(10) and its transform (17) contain only the first
derivatives of p. On the other hand, we are looking for
a solution for the metric tensor g„, which functionally
depends on @ as g„.(@). Then the right-hand side of
(17), with the interpretation of R„"as the Ricci tensor,
would involve second derivatives of p(x) as well as its
first derivatives. But this only means that we should
look for solutions for which the second-order terms in
R„"can be combined to form an expression of the form
(3). Then this expression can be dropped everywhere
except at the singularities where the Geld equations are
not expected to hold anyway. A more convincing
argument to this can be given on the basis of the
Lagrangian method. The above identiGcation of R„"
as the Ricci tensor would imply 2= (1/16')R, where
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2n2 (2

2nP
2&+
0

2nP . 2ny
2p' 82p-v

2Pv 2v'-8
0 0

0

(17')

Where n=BQ/BX, P=B41)/By, y=BQ/BZ, P=n2+P2+y2
In view of (19) this is exactly of the form (17) every-
where except at the singularities. Of course, as in all

other Geld theories the field equations are not satisfied
at the singularities. It should be emphasized that the
functional line element (18) with the scalar field equa-
tion (19) Li.e., PP= (B'/Boor+B'/Bys+B'/Bz')d)=0 away
from matter) makes the Einstein equations an algebraic
identity except at the singularities.

If there is only one mass singularity, we have a simple
and spherically symmetric case with

2 involves only the first derivatives of d, whereas Z,
the curvature invariant, contains second derivatives
as well. But it is well known that two I.agrange func-
tions differing by a divergence describe the same
physical system. Therefore if the second-order terms in
R can be arranged as the general form of the wave
equation (3), the divergence of a gradient, then they
can be dropped. This actually is what happens in the
present theory.

III. TIME-INDEPENDENT SOLUTION THE
THREE EXPERIMENTAL TESTS

A functional solution, g„„(d), of the field equations

(17) for a static set of singularities is proven to be'

ds'= e 24'dt' e'&(dos—'+dy'+dz') (18)

where @ satisfies the covariant equation

@".„=e '&P4I)= —42re 'o Q M 'B(x—x') (19)

which is the corresponding static case of the wave
equation (3) in the space (18). Indeed, when we calcu-
late the stress-energy tensor corresponding to the line

element (18) in the standard way, ' we find

T„"= —(1/82r) e—24'

goo

&=(1/4 ) (GM 'lr') exp( —GMo/c'~)d~=Moc' (21)
Jo

The exponential factor comes from the fact that, as in
the usual general relativity, the energy is expressed as
e= ep)4/g44, where es is the measure of energy in a special
relativistic system. ' We shall see in Sec. VI LEqs. (37)
and (38)$ that this is actually a consequence of the
observation principle.

Now due to the relation, E=M;c', between energy
and inertia we see that

Mg=M;. (22)

This is the expression of the equality of the grani]aHeg
mass, hf„of a point singularity to its inertia/ mass,
M;, namely, the principle of equivalence. This equiva-
lence justifies also our using the geodesic equations of
motion in finding the trajectories of material objects
and of heavenly bodies:

i dr~ dh"

central 6eld problem. One can show by direct compari-
son that this line element agrees with the isotropic
form of the Schwarzchild line element up to and in-
cluding the order M2/r2 in g44

——1 23II—/r+2M2/r2+
and up to and including order M/r in g;;=1+2M/r
+ . Since it is well known that the so-called "three
crucial tests of general relativity" are at the present
status of the experimental accuracy insensitive to the
next higher orders, we conclude that the theory here
described accounts for these three crucial phenomena
just as well as the conventional general relativity of
Einstein.

IV. SELF-ENERGY PROBLEM

An interesting consequence of the above line element
is that the self-energy of a point singularity does not
diverge, but it is equal to Macs (units are c= G= 1, but
below we use them explicitly). The total energy of the
field can be calculated from (14) and the solution
associated to (20) and givess

y(r) =Mo/r. (20)
d$ pp dS dS

=0. (23)

The line element (18) with this d)(r) corresponds to a
4 This can be shown by direct calculation or use can be made of

the formulas of Dingle; R. C. Tolman, Relet&'sty, Thermodynamics
aid Cosmology (Oxford University Press, New York, 1949), pp.
254-257. In the latter case, note the difference in sign of T» in
Tolman and in our theory. The difference is due to the funda-
mental difference in interpretation of T„„ in Einstein's theory
and ours. We have made the choice of sign so that the Geld energy
is positive definite. The solution (18) is unique for the static case
when the condition that the principle of equivalence be valid is
also demanded. This was established by consideration of the
complete explicit solutions of the case of a single Gxed source
within the present approach by S. Schneider (to be published
elsewhere). In connection with the above-mentioned sign con-
vention it appears that if the scalar Geld is indeed the agent of
the gravitational Geld as proposed in this theory, then in the
presence of external (e.g., electromagnetic) influences, one might
have to write

+44 sett + {(Ttr )seel sr (T)4 )ether) ~

5 The effect of time dependence reveals itself in the quantized
theory as standing waves and also as the emission and re-absorp-
tion of virtual photons. This brings a contribution to self-energy,
which may be termed kinetic energy. (18) is the sum of the kinetic
and static parts of self-energy. See also Eqs. (37) and (38) for the
meaning of the exponential factor. This factor is discussed by
A. Einstein (in first order) in connection with the gravitation of
energy LAnn. Physik 35, 898 (1911);translated in The P~iec~ple
oJRelatt'vtiy (Dove'r Publications, New York, 1923), p. 102). Most
textbooks omit it and give instead the formula for the gravita-
tional red shift, which in view of the relation E=hv is the same
thing. Another way of looking at it, within the present theory of
stationary observers in the static Geld, is the spatially invariant
expression

E=fT44( gt )) dY d4x drxt

Note that T44 has a factor e 4@, while (—git)}&, the Jacobian of the
space part, is e'@. This way we get again the same expression as in
(21).
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The interaction energy is automatically included in this
sum. We shall see in Sec. VI that with the help of the
observation principle the M, 's can be calculated Lsee

formula (37')7 in terms of their noninteracting values.

V. NEW LINE ELEMENT FOR COSMOLOGY

Next we want to discuss a line element which cor-

responds to a distribution of mass singularities such

that a local observer 6nds, on the average, the same

mass density, 0, everywhere in the universe. v Thus for
a large sphere of radius r, we have

2y(r) = (2G/c')P, (M, '/ )
r—r; ))

= (Soro G/3e') r'= o.'r' (24)

ds'= exp( —n'r') c'dt' —exp(n'r') (dos'+dy'+ds'). (25)

This line element is identical up to and including order

0,'r' in g44 and up to and including order n'r' in g;, to
the isotropic time-independent form )de Sitter form

(31)7 of the Bondi-Gold and Hoyle universe. As in
their theory, although the density 0. is assumed to be
constant, (25) does not represent a static universe. It
represents a steady-state universe. The geodesic
equations of motion (23) show that a particle originally

at rest in the vicinity of an observer will have a radial

velocity, ~, later at r. A simple calculation shows that

up to fourth order in er we have

e'= ( SoroG3/)r'. (26)

' L. Infeld and A. Schild, Revs. Modern Phys. 21, 408 (1949).
See also M. F. Shirokov and V. B.Boradovskii, J. Exptl. Theoret.
Phys. (U.S.S.R.) 51, 1027 (1956); translation: Soviet Phys.
JETP 31, 904 (1957). These authors show that the post-New-
tonian equations of planetary motion are contained in second
order in the solutions of the equations (17). This remark also
applies to the present theory as our solutions are identical in
second order rvith Einstein's theory.

The motivations and plausibility of constant mass density is
related to the "perfect cosmological principle" of Bondi and Gold.
See H. Bondi, Cosmology (Cambridge University Press, London,
England, 1952). This book contains also a complete discussion of
the problem of inertia and Mach's principle in Chap. IV.

In this way the ponderomotive equations (23) appear
as an independent assumption from the field equations
as originally postulated by Einstein. In order to see if
the theory contains the ponderomotive equations, one
usually carries out a successive approximation process
developed by Einstein, Infeld, and Hoffmann and by
Fock. and Petrova. This is not done as yet in the present
case. However, it is seen that a remark made by Infeld
and Schild' applies and relying on their analysis we

may conclude that (23) is a consequence of Eqs. (17).
Before we close this section it may be interesting to

note that the result (21) is valid for any number of
singularities. The total field energy is always given by
Z&= g Moc'. This can be proved easily by writing the
field energy in the metric (18) and using Gauss's

theorem. In this way we get

P
gr ——(1/4or) (Vy)'e &dxdyds=Q Moc'. (21')

This is a velocity-distance relation. It will cause a
Doppler shift in the spectral lines of light received from
distant stars,

Q,/X = (Ssro G/3c') —:r, (27)

which is accompanied by a positive second-order term
(n'r'/2) due to the pure gravitational effect. The
formula (27) relates the average density of matter in
the universe to Hubble's constant of recession of
nebulae. Since the latter is better known from obser-
vation, it predicts an average mass density of about
5X10 "g/cm', which is the same as Hoyle's result.

The continual recession of the nebulae and the
assumption of constant density can be reconciled only
if the matter is continually created. The rate of creation
of matter per unit volume per unit time is 3no. (the
same as in the Bondi-Gold theory).

It is interesting to note that according to the present
theory, the universe will appear to be finite to an ob-
server situated at any point in the universe. For, due
to the invariance of line element (25) the length measure
of a local observer, d/, will appear to 0 as dl'=e ~dl.

(The proof is similar to the shortening of meter sticks
laid in a gravitational field in the usual theory of
relativity. ) Thus, according to (25), the effective
operational radius of the universe is

(&l '
R= ' exp( —n'r'/2)dr=

(
—

~
go,

o &2i
(2S)

where &o= (1/n) is the Hubble radius. Similarly, for
the eBective cosmic time we have

T= (sr/2) 'Tp, (29)

where Tp= (Ro/c). In the earlier cosmological theories
Eo and To were considered to be the radius and the age
of the universe, respectively. In our theory, E and T
define the extensions of that portion of the whole of
existence which can have any appreciable physical
inhuence upon us, namely, our operationally defined
universe. As in the Bondi-Gold theory, here there is no
beginning and there is no end to the universe. It is a
perpetually existing self-creating and expanding uni-
verse. The occurrence of a nebula with a certain age
anywhere in the universe is a purely statistical attribute.
The average age of a nebula is 3T= 7.5& j.0' years, but
any particular nebula may be arbitrarily old. For
example, our galaxy may well be 4 to 6 billion years
old or older, as already indicated by various independent
data.

Finally, it is perhaps interesting to emphasize that
the requirement of a time-independent solution with a
universally constant density seems to lead, auto-
matically, to continual creation, although the meaning
of creation is now, largely, a matter of interpretation.
For, if the steady-state solution (25) is to represent our
universe in an operational sense, then, operationally,
the total matter in the universe is constant. In this
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sense, the total matter in the universe is conserved. On
the other hand, due to recessions of nebulae, matter is
leaving continually our operationally defined universe
in all directions. Then, to keep the solution time-
independent, we must keep the density constant. This
leads to the idea of continual creation as discussed by
Bondi-Gold and Hoyle.

We now turn to a derivation of Mach's principle.
Take a test particle of gravitational mass m, . The
potential energy of this particle in the presence of all
other masses in the universe is m, (4mGo/3)B' where
8' is the operational radius square for the universe.
For this potential energy, we obtain

E„=m~ ~

' (pro G/3) exp ( u'r'—/2) 2rdr =m, c' (30).

Since from special relativity any kind of energy pos-
sesses inertial mass, we have E„=vs;c'. Hence the
result just obtained means that the inertia of a body
and therefore the local inertial frame is determined by
the existence of all the other bodies in the universe.
This latter statement is known as Mach's principle. '
In this connection we call attention to a curious feature
of the present theory: Eq. (30) regards the test body as
a particle, while the derivation given by (21) is purely
a field-theory calculation.

We may note that by a method of substitution'
known in the usual general relativity theory, the line
element (25) can be transformed up to and including
order n'r' in g44 and up to and including order e'r' in

g~~ into the de Sitter line element,

ds' = (1 a'r') c'dt' r'do' —r' sin'8d q—'—
—(1 n'r') 'dr'. (31)—

In order to investigate the behavior of mass particles
as a whole, we may choose, if we wish, a new set of
coordinates, in which the particles appear constantly
on the coordinate surfaces. Such a transformation of
(31) is well known to lead to

ds'= c'dt' e'~'(dx'+dy—'+de'). (32)

This is indeed the standard Bondi-Gold form of the
line element representing an expanding but steady-
state universe. With Hoyle's theory, which is arranged
to give (32) exactly by adding an additional hypothesis

(a creation term) to the general relativistic field

equations in order to satisfy the Bondi-Gold principle,
we differ only at third order in n'r' (e.g. , the cos-
mological red' shift is a first-order effect). Thus, for
most practical purposes and for most parts of the
universe thus far explored, our theory gives essentially
the same results as the Bondi-Gold and Hoyle theory.
The time scale difhculty whi-ch arises in the first order
is eliminated in the same manner as in the Bondi-Gold
theory. An important difference, however, exists

Reference 4, p. 240.

between the two theories in the case of the soft-photon
(radio-frequency) content of the universe. To make
this clear, we will call attention to the fact that (i) the
operational four-dimensional volume of our universe
is (v/2)' times larger than the Bondi-Gold universe,
and (ii) the factor exp( —n'r') is a softer cutoff than the
factor (1—n'r') in (31). Due to these, the radiation
received from the most distant parts of the universe
(shifted to radio-frequency region) is considerably
greater than what will be expected according to the
Bondi-Gold theory. This fact is in qualitative agree-
ment with the observation. Radio-astronomers have
found that the universe has i0 to i00 times more
radiation in the soft-photon region than is predicted
by the existing theories of the universe and of radiation.

From a conceptual point of view the original Bondi-
Gold theory was incomplete because it did not have
field equations. Hoyle modified the Einstein field
equations by adding a new term so that the Bondi-Gold
line element becomes a solution of these modified field
equations. Unfortunately the new term destroys the
general covariance of the whole theory (e.g. , it implies
fundamentally preferred coordinate systems). Our
theory on the other hand gives the satisfactory Bondi-
Gold theory as an approximation (and more) without
any additional hypothesis and further without de-
stroying the general covariance of the field equations.
This, of course, is a highly desirable feature.

VI. PRINCIPLE OF OBSERVATION

In this section we will examine the solution (18) and
from it motivate a new principle which will be called
the principle of observation. ' We start with the remark
that the validity of the line element (18) as a solution
of Einstein's field equations (17) is unaltered if we
change p by an additive constant (p —+p+E, in a
sense a gauge invariance). We could, of course, say
that the constant is not physically meaningful and fix
it once and for all, say by putting it equal to zero.
However, there is another possibility, namely that the
constant is not trivial, but rather that it is indicative
of the position of the particular stationary observer in
the gravitational field. But how do we prescribe a
definite constant for a definite stationary observer? To
do this, we introduce a new principle which we call the
principle of observation. The principle states: Hey
observer will observe light local to himself to propagate with
the same velocity irt all directions regardless of his position
ie the gravitatiortal geld Thus, for a statio. nary observer
at g' the constant should be chosen to be —g(x') so
that

ds =e-&te&&)—el&'))dtm e2[e&~)—e&~')) (dz&+dy2+ds2) (33)

'The principle was 6rst discussed at Washington Meeting of
the American Physical Society, April, 1955, under the name of
the "Principle of Superposition. "Also, a lecture was given at the
Theoretical Physics Colloquium, National Research Council,
Cttawa, Canada, 1955, on its application to gravitation, cos-
mology, and 6eld theory.
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(dr'q (e@ 0 q (dr)

&0;» &dt)
(34)

between the covariant components of the displacement
vector, dx„, where g=g(x, x') =p(x) p(x') —This is. a
transformation between two observers 0 and 0' situated
at the points x and x', respectively, and &t is the potential
di6'erence between the two observers.

Equation (34) is to be understood as follows: the
observer 0 at x measures, say, a local displacement d'h.

The observer 0' situated at x' sees the components of
the same displacement as diferent depending upon the
potential difference between the two observers.

If the two observers are at the same point, then
Q(x,x') =P(x)—P(x') =0, and the line element (33)
reduces locally to the Lorentz form. If we denote the
2X2 transformation matrix in (34) by (8 l 2) we see
that the transformation is transitive, that is

and local to himself (x=x') one sees

dz2 d)2 dz2 dy2 dz2

independent of where x' is. For an observer at a large
distance from a 6nite body P(x') —+ 0.

Whether or not the principle is true will be deter-
mined by future observations. There has never been
an experiment to test the validity of the principle, and
indeed it is seen that it would be quite dificult to
perform such an experiment. It should be emphasized
that the validity of the scalar 6eld theory of gravity
presented in this paper is independent of the validity
of the principle. The principle of observation is an
additional physical statement arising from a possible
interpretation of a degree of freedom due to the ambi-
guity of p to within an additive constant.

Now in view of (33) consider the direct transfor-
mation,

The first of these corresponds to time dilation in the
gravitational Geld (red shift). The second is the familiar
expression of the gravitational potential energy diGer-
ence for a mass m.

Let us now consider (21) in the same sense. We write
it as

E= (1/4~)J (GM '/r4)e ~&" "'dv. (39)

e=u,&'&&&"'&. (4o)

The formula given by (21) holds for an observer at
infinity (observation from fixed stars). Thus, in view
of these and (28) and (29) we see that for physical
quantities of these kinds we have, in general, the
expression

Po
—

)
~ed&&) 4w)dP~— (41)

The relations given by (34), (35), (36), and (41) and
their generalization to other quantities is in general
what we want to refer to as the prieci pte of obserootion
We notice that similar relations are also valid for the
Lorentz transformations. Therefore, the principle of
observation, in this form, can be regarded as a natural
generalization of the special theory of relativity.

It is interesting to note also that the observation
principle provides a means to calculate jf&'s in formula
(21'). For example, if we denote the noninteracting
value of 3f~ as M'&, we have for an observer at infinity

Clearly this formula means that at each point the
local observer measures the special relativistic result
(1/4m)(GM, '/r')do, but when it is referred to the
observer 0' we transform it with the transformation
function given by the exponential. This way we get
the interesting result

(ala) =(@is)(six) (35)
M'=M" exp( —g GM"/c'l r), r; l ). —(37')

We shall now examine what physical meanings we can
attach to formulas like (21), (28), and (29). We know
that energy and time have the same transformation
properties. Ther'efore, if an observer situated at x'
observes the energy of a body at x in the gravitational
held, we shall have

@I—g~—~(., )
) (37)

where p(x,x') =p(x) —p(x'). Using E=mc2, we have in
erst order the expected result,

(M Mi (GM GMq
&t/t= (G/c') l

——l; &E=ml — l. (38)
4 r r' ) ( r r' )

We also note that these matrices, when understood in
the sense of (34), are unimodular:

(36)

More general cases can be calculated similarly.
The principle of observation can be formulated in an

abstract and postulational manner and leads to many
interesting consequences. But here we do not want to
go into it any further. We only mention that the theory
presented in this paper was developed on the basis of
this principle and the line elements corresponding to
(20) and (24) were discussed earlier (1955) in connection
with the central-field-problem cosmology and field
theory. But it was only recently that the author has
realized that the general line element (18) which was
obtained from the principle of observation is a rigorous
solution of the field equations (17). It is now clear, by
reversing the argument, that the principle of obser-
vation implies to a certain extent aPetd theory derivable
from a Lagrangian of the form (1).Once the Lagrangian
is fixed, the stress-energy distribution in (17) is uniquely
determined. This distribution is lef t arbitrary in
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Einstein s theory, in which one can assign the stress-
energy tensor in any way one wishes but one does not
know whether such choices are actually realized in
nature.

The principle of observation brings along with the
possibility of distant observation the concept of the
relativity of geometry "F.or as we have seen by actual
examples, the geometrical attributes as well as the
material content of the world depend upon the position
of the observer.

Gs =
gp, y&$"2$". (42)

When this continuum contains no stress energies and
momenta let it be understood that it is Qat. On the
other hand, if it contains stress energies and momenta,
following the Einsteinian ideas we assume that it will
be curved. Now let a scalar field @(x) be defined in this
continuum. Physically, to the field p there corresponds
a certain stress-energy-momen'turn distribution which
in turn contributes to the curvature of the space-time
geometry defined by (42). In particular if there is
nothing else contained in the geometry, its curvature
will be completely determined by the field p. Mathe-
matically, this means that the metric tensor g„, will
functionally depend on p as g„„(@).In order to formu-
late the theory in a covariant manner, it is convenient
to use the Lagrangian procedure. Let the Lagrangian
density, 2, of the field p(x) be

(43)

where @„=B„@=Op/Bx& The e.quations of motion of
the Geld p(x) are then obtained from the principle of
stationary action,

s "z(y,y„)(—g)vv=0, (44)

VII. A MANIFESTLY COVARIAHT FORMULATION
OF THE THEORY

In this section we present a generally covariant
formulation of the theory. Let us consider a four-
dimensional space-time continuum given by the line
element

(—g)&dQ is the four-dimensional invariant volume
element. Following the usual rules of variational
calculus in general coordinate systems, we obtain the
equation of motion of the Geld as

82 (82'
ay &a@„),„

(45)

where the semicolon means covariant derivative.
The stress-energy tensor is obtained from the

Lagrangian density as

82T„"=$„—8„"g.
8 y

(46)

The covariant divergence of this tensor vanishes as a
consequence of the equation (45):

8 ( 8$)
&";.=(—g) '

I (—g)'g""
Bx" ' Bx")

(48)

from which, to within a divergence, 2 can be chosen
to be

z=(1/87r)B„@8&@. (49)

(b) The stress-energy tensor, 7„",must be identical to
some geometrical tensor of second rank which has zero
covariant divergence. This condition leads to the
identification of T„" as the Einsteinian tensor,
6„"=E„"—-,'8„"E,to within a constant factor depending
on the choice of the units. Thus, requiring positive
definiteness for the energy, 1~, of the Geld and choosing
the units suitably, we have

82 (BZ)
(~."); =+.

.8$ (8$„J., „
Of course, these equations are valid for any scalar, 2,
and therefore the actual dependence of 2 on p and @„
must depend on other considerations. Two plausible
requirements are: (a) The equation of motion (45) of
the Geld& must be identical to the d'Alembert equation
in the geometry defined by (42),

where g and @„are the quantities to be varied, and 8xT„"=E„"——,'8„"E.. (5o)

MLocaliy, i.e., whenx=x', we get @(x,x') =O, so that themetric
tensor reduces to gII =g22= g33 = —1; g44= 1.But the observer can
observe the phenomena at x when he himself is situated at x'.
Or conversely the motion of an object at x can be referred to a
distant reference frame just as well as a local reference frame
when p(x, x') is properly introduceri. This throws new light upon
the much-discussed coordinate issue in general relativity. For
example, the present theory tells us that the usual general rela-
tivity does not contain the position of the observer, and therefore
(AE„/r') -+0; r'=", i.e., it implies observation from Gxed stars.
This answers Wigner's question on the coordinate problem of
general relativity; E. P. signer, Revs. Modern Phys. 29, 255
(1957). For instance, an observer who moves with the planet
Mercury would never be able to find out the perihelion motion
of that planet unless he refers the motion to other objects, say,
to fixed stars.

Now substituting (49) into (46) and then contracting
both sides of (50), we get

2=16+2=28„$84$, (51)

where R is the curvature invariant.
The next question is this. E depends on the second-

order derivatives of. g„,(g) and consequently on the
second-order derivatives of @(x), whereas the right-
hand side of (51) contains only the first derivatives.
This problem is resolved if we remember that two
integrands of the action integral, Zg —g, difFering by
at most an ordinary divergence describes the same
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physical system. Therefore the addition to Z of, say

r) ( el/ )
0";.=(-g) '

I
(-g)'g""

Bx" 0 ax")
'

= —4 (—g)-tg M, '5(x—x), (52)

where M, & are the strengths of the mass singularities
at the points x&', and 8(x—x') is the 8 function. The
subscript g is to indicate that M'o is the gravitating
mass.

VIII. DISCUSSION

In this section we would like to,discuss the differences
and interrelationships of the present approach to other
theories of gravitation with special emphasis on
Einstein's theory. As we have seen, the two basic
principles of Einstein's theory, namely the principle
of general covariance and the principle of equivalence,
are both preserved. Also, the geometrical identification
of the stress-energy tensor T„„as

(53)

is not altered. But the interpretation of T„"is completely
di6'erent. In Einstein's theory, it is the stress-energy
tensor of matter T„„=pv„v„alone. The gravitational
field is not included in it. In the present approach it is
the stress-energy tensor of the gravitational Geld

2"„,= (1/8rr) (2rts„rtr, g„g.rtr') that —is employed. The
effect of the sources of the field P(x) are taken into
account in Eq. (51). These two interpretations are
completely diGerent from each other. Yet they lead to
solutions which are so close to each other that they
predict the same numerical results with regard to the
so-cal1ed three experimental tests of general relativity.
DiGerences become significant only at extremely close
distances to a point singularity and also for extremely
large systems such as the cosmos itself.

The next and perhaps the most important difference
is the interpretation of what constitutes the gravi-
tational 6eld. In Einstein's theory, the gravitational
field is represented by the components of the metric
tensor, g„„.In the present theory, the gravitational field

is p(x). The metric tensor is functionally dependent on

changes nothing and supplies the second-order de-
rivatives sought.

In any case, this term is zero, due to (48), everywhere
except at the singularities of the Geld. In no field theory
are the Geld equations expected to hold at the singu-
larities. As it is well known from classical Geld theories,
this does not prevent us from including the eGect of the
singularities as the sources of the field. When sources
are included, Eq. (48) takes the form

, ~ (, ~41
e"'=(-g) '

i
(-g)'g""

c)xv

this 6eld as g„„(@).As a result the meaning of the Ein-
stein equations are diferent in the two theories. In
Einstein's theory they are the field equations for g„„(x).
In the present theory the Einstein equations are alge-
braic identities (away from the singularities) expressing
the equivalence between the geometric (right side of
Eq. (53)j and the field theoretic (left side of Eq. (53)j
descriptions of gravitation. The actual field equation is
the wave equation

p" o= —4sr( —g) ' p M i5(x—xs).

In Einstein's theory, the law of gravitation in a
matter-free part of space is E.„,=O. In our theory, the
corresponding law in empty space is expressed as

R„.= 2Q„p. ; p",„=0.

Consequently, in our theory, the equations E.„„=O
leads to &=constant, hence, imply g„,(p) =constant,
and therefore a completely Rat space-time where
gravitational eBects vanish.

Our theory is a scalar theory in the usual sense of
the word, but it is a generally corn, riant theory in con-
trast to scalar theories which are only Lorentz-covari-
ant. * It is well known that the Lorentz-invariant scalar
theories of gravitation lead to only half of the observed
deflection of light and to a wrong prediction for the
perihelion of Mercury. " The general covariance and
the principle of equivalence seem to be essential in
these small sects.

As we have emphasized, our theory preserves both
the principle of general covariance and the principle
of equivalence, although, in a sense, the principle of
equivalence is not an independent postulate (we have
seen in Sec. IV that the principle of equivalence may
be considered as a derived consequence of the present
theory). Thus, our theory difFers radically from the
theories which assume the principle of general covari-
ance but reject the principle of equivalence. One such
scalar theory was recently proposed by Dicke." His
ideas are somewhat similar to ours, especially in his

assumption of local Lorentz invariance and his use of
isotropic line elements. But, unfortunately, this theory
contains many cd hoc assumptions and leads to a

*Ãote added il Proof It has recently.—been called to the au-
thor's attention by S. Schneider that the Einstein 6eld equations
with the T» of a spherically symmetric static scalar Geld was
considered by O. Bergmann and R. Leipnik, Phys. Rev. 107, 1157
(1957). Although conjecture was made there of the possible need
for a covariant scalar Geld to account for the Mach principle no
de6nite identification of the Geld p and no concrete consequences
of it were presented. In particular since they did not use an iso-
tropic coordinate system and they did not obtain explicit solutions
for k&0 (k is the coupling constant between 7'„"(p) and geometry)
it appears that they did not realize &=M/r 3d/(x'+y'=+e')& is
indeed meaningful even in the curved space

ds'= e~edt' e'e(dx'+dy +dz')—
"See O. Bergmann, Am. J. Phys. 24, 38 (1956), as an example

of such theories."R.H. Dicke, Revs. Modern Phys. 29, 363 (1957).
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wrong numerical value (aa of the observed value) for
the perihelion motion of the planet Mercury. "

Also there are some similarities between our theory
and the ideas of Fock."He feels that Einstein's theory
is too general and some restrictions must be imposed
on the solutions of the field equations. He imposes the
coordinate conditions

and shows that under these conditions space-time
accepts a Lorentz group of transformations. He calls
the coordinates which satisfy these conditions "har-
monic coordinates. " However, this condition is not
restrictive enough to lead to unique physical situations,
nor is it necessary for the derivation of equations of
motion as originally claimed by Fock. This latter point
is discussed by Infeld. "But it is extremely interesting
that our static solution (18) satis6es the conditions of
Fock and therefore our coordinates are harmonic. In
spite of this interesting relation our theory differs
fundamentally from Fock's ideas because Fock adheres
to the conventional interpretation of the stress-energy
tensor as "matter tensor. " Nevertheless, we feel that
Fock's interpretation of general covariance and of
Lorentz invariance seems to be closely realized by the
present approach.

An essential difference of our theory from all other
theories of gravitation is the existence of the principle
of observation. By virtue of this principle the position
of an observer is incorporated into the structure of the
theory. This is done in such a manner that the special
relativistic interpretations of physical quantities are
valid locally. Kith the help of this principle one treats
the interrelationships of observers in a gravitational
field by a method similar to Lorentz transformations.
The principle provides transitive and unimodular
transformations. These properties are shared also by
the Lorentz transformations. In this sense the principle
is consistent with the original idea of relativity as
expressed by the Lorentz transformations and therefore
it can be considered as a natural extension of the Lorentz
transformations. It is perhaps interesting to emphasize
again in this connection that according to the principle
of observation the velocity of light as measured locally
is a universal constant.

Another important difference between our theory
and all other theories of gravitation is that we give
functional solutions as g„„(g), where g is any function
satisfying the Laplace's equation I7'@=0 except at the
singularities. This way the static problem is solved
generally. In earlier approaches, for every new distri-
bution of matter one had a new problem to solve in the
form of g„,(x). Since the equations are coupled non-

'~ R. H. Dicke (private cominunication).
"V.Pock, Revs. Modern Phys. 29, 325 (1957).
'5 L. Infeld, Revs. Modern Phys. 29, 398 (,1957).

linear partial differential equations, to attempt to
solve them for every new situation was an "impossible"
task.

Also, we note that the linear combination ~r+b&2
of two solutions pr and P2 corresponds to another solu-
tion of the field equations. Thus the theory is, in this
sense, linear. The nonlinearity of the original Einstein s
theory caused insurmountable diQiculties both in
applications and the quantization of the theory. One
sees already from the above-mentioned linearity how
easily the present theory can be applied to various
physical problems and how easily the quantization of
P(x) may proceed by taking over the standard Lorentz-
invariant Geld quantization methods into general co-
ordinate systems.

Finally, we may discuss here the question of what are
the basic assumptions and the derived consequences of
the theory. As we have presented it in this paper, the
two basic assumptions of the theory are (1) the prin-
ciple of general covariance and (2) the choice of the
Lagrangian as a scalar field Lagrangian. Thus in a sense
the theory of gravitation presented here is a synthesis
of the curved space concept of Einstein and the New-
tonian scalar gravitational field. The principle of equiva-
lence appears as a derived result of the line element (18).
There are not many differences in the process of identi-
Gcation of T„" as a divergenceless geometric tensor in
our theory and in Einstein's theory. Therefore, the only
other conceptual change is the introduction of the prin-
ciple of observation. In a sense this principle, too, may
be considered as already contained in the theory. For,
as we have seen in Sec. VI, it can be introduced as a
property of the solutions of the equations (17). In
another sense, however, it is a new and independent
additional statement since it incorporates the position
of the observers and implies further relativity require-
ments on physics and geometry. It is perhaps best to
consider it at present as a correspondence principle
which helps to understand observational relations
between various observers in terms of a local set of
Lorentz frames.

The principle of observation can in principle be
tested experimentally by measuring the local velocity
of light in a strong gravitational field. If the principle
is right, the local measurement must always give the
same value, c, with or without the gravitational field.
If it is wrong, there will be a discrepancy amounting to
bc= —(2GM/cr). However, it should be stressed again
that even if the principle is wrong, this does not in-
validate the idea of a generally covariant scalar field
theory of gravity, as presented in this paper. The
principle of observation is an additional statement
beyond the scalar field concept.
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The decay modes E.a and E» of charged and neutral E particles are discussed with the aim of deriving,
in the Feynman-Gell-Mann-Marshak-Sudarshan theory, possible experimental tests of the hypothesis of
universal Fermi interaction, which is already apparently contradicted by the present data on the ratio of
&~e+v to m —

+tM, +v. Measurement of the E3 spectra would already provide a test of the hypothesis, and
measurements of the polarizations would give further con6rmation. Unique forms of the spectra of the
charged leptons are predicted on the basis of the universality hypothesis and of particular assumptions.

INTROBUCTIOlV

~ EYNMAN and Gell-Mann' and, independently,
Marshak and Sudarshan' have recently proposed

a theory of the weak interactions (to which we shall
briefly refer to as the FGMS theory) based upon the
assumption that the different spinor fields P are weakly
coupled only in the pro&ection -', (1+ps)f. This theory
seems to account successfully for most of the established
experimental evidence on weak interactions. The total
weak interaction is assumed to arise from the coupling
of a current Jq with itself; J), is the sum of bilinear
covariants g yb (1+ps)ll b$ over certain pairs of
fermions a, b that satisfy particular requirements Lfor
instance, (ct,b) must be a single charged pair). The cur-
rent Jb will in particular contain a part t lf „yb(1+ye)lt,)
+tlf„yb(1+Tb)$„$ thus implying that tt and e have
exactly the same weak interactions (conservation of
leptons requires tt and e to be both particles).

Apparently both LM and e have no strong couplings.
Under such conditions, from the hypothesis of minimal
electromagnetic interaction, p and e would also have
exactly the same electromagnetic couplings, and the
notion of relative parity between p and e would lose
any meaning. Measurements of the magnetic moment
of the muon' do not give evidence so far for a compli-
cated structure of the muon, as would be expected if
the muon possessed strong interactions. The only

' R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
-' E. C. G. Sudarshan and R. E. Marshak, Proceedings of Padua-

Venice Conference on Mesons and Eerily Discovered Particles,
September, 1957 LSuppl. Nuovo cimento (to be published) j.

3 CofFin, Garwin, Penman, Lederman, g,nd Sachs, Phys. Rcv.
109, 973 (1958).

di6'erence between the two particles would then be due
to the remarkably large difference of their masses.
Such a situation seems rather peculiar but, if de6nitely
established, may turn out to be very suggestive.

On the other hand, the only available experimental
evidence, that is directly related to the problem, is the
experimental upper limit for the ratio of rr-me+ v to
~-+tc+v. Anderson and Lattes find only a 1% proba-
bility that this ratio could be greater than 2.1&(10 '.4

The value predicted by the FGMS theory is 13.6X10 ',
as can be shown independently of perturbation theory
for the strong interactions. ' The discrepancy may
indicate either an intrinsic difference in the interactions
of p and e or a more complicated structure of the weak

universal interaction. '
We want here to examine the possibility of an

independent test of the hypothesis of identical inter-
action of p, and of e through a study of the decay
modes E &ts+v+rr and E—+e+v+rr enamel—y: E+—:tt"
or e+)+v+zr, Ers~ts+ (or e+)+v+zr or ~tt (or e )

4 H. L. Anderson and C. M. G. Lattes, Nuovo cimento 6, 1356
(1957).

z M. Ruderman and R. Finkelstein, Phys. Rev. 76, 1458 (1949).
z It was proposed LR. Gatto, Nuclear Phys. 5, 530 (1958)j

that departures from locality, as introduced by Lee and Yang
for y decay PT. D. Lee and C. N. Yang, Phys. Rev. 108, 1611
(1957)g could account for the z~e+v to z~n+v ratio. However
the nonlocality required in this case would no longer be com-
patible with a form of the weak interaction as a coupling of the
current Jg with itself, even if such coupling is propagated through
some 6nite space-time distance. (This model would instead be
sufFicient to explain in the FGMS theory the deviations of p
from 4s, provided one removes from the theory the hypothesis
of nonrenormalizability of the vector coupling. )


