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In the original model, R4 is the probability that the
nucleus evaporates three neutrons but still has an
excitation energy greater than the neutron binding
energy. To take fission into account, we must use the
probability that the nucleus evaporates three neutrons
but still has an excitation energy greater than the
6ssion activation energy. Hence,

R4= GnrG+sGnsI(Asr, 5),

where

d, sI——(E Bt—Bs—Bs——Eg,)iT,

and E&h is the activation energy for Gssion." The
probability for evaporation of exactly three neutrons is

P(E,3)=Rs—R4

=GnrGnsGnsLI(As, 3)—I(l),sI)5)$.
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The angular distribution for the production of pairs of pions by photons or pions incident on nucleons is
analyzed in terms of the various angular momentum states involved. A general expression is derived and
then the effect of various assumptions about which states should be important is examined. It is found that
an examination of the relative azimuth of the pions should give information about the nature of the process,
and in particular about the existence of a resonant state of the nucleon, and its angular momentum.

I. INTRODUCTION

ECENTLY there have been a number of experi-
mental investigations of the multiple production

of pions from nucleons, both by pions' and also by
photons. ' Apart from any purely experimental diK-
culties, the examination of a process involving a three-
body final state has the difhculty that the number of
diferent parameters which can be examined is very
large. There have been some attempts to calculate the
expected cross section for such processes' ' but it is
not all clear just which of the features of these predic-
tions are sensitive to the assumptions made or the
model used, and therefore it is hard to tell how to com-
pare the experimental results with the theories.

Before very much was known about the single meson-
nucleon interaction, it was found that many of the
striking features of the experiments could be explained
on quite general phenomenological grounds, ~ without
assuming any detailed model. One might therefore
hope that a similar analysis of the double production
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process, making use of the known single-meson informa-
tion wherever possible, might give a qualitative insight
into the nature of the process, and should at least
enable one to pick out those aspects of the theoretical
predictions which are sensitive to the model used.

In the present paper an analysis of this sort is
attempted. Most of the formulas apply equally well for
production by pions and by photons; the differences
coming in the number and values of the various arbi-
trary constants which are produced. The main object is
to make use of the known properties of angular mo-
mentum to investigate the angular distributions to be
expected. Ke shall not say very much about the energy
dependence of the cross section, nor about the isotopic
spin, but restrict ourselves to trying to interpret the
angular distributions.

II. GENERAL EXPRESSION FOR THE
CROSS SECTION

In order to discuss the angular distribution we pro-
ceed to dehne the S matrix for the process in question. '
We assume that when the particles concerned are

sufficiently far apart they behave like free particles,
and their wave functions may then be described by
suitably normalized ingoing or outgoing spherical
waves. The production process may be considered as
the transition from one set of ingoing waves to another
set of outgoing ones. The various possible states of the
separated particles may be divided into a series of

See, for example, J. M. Blatt and L. C. Biedenharn, Revs.
Modern Phys. 24, 258 (1952). The discussion of this section is
just an extension of the first part of their paper to cover three-
body 6nal states.
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where Ps is the wave function in channel P. Hence the
cross section will be

do =dr
~ Q A S pal p (

',
ap

(2)

where dv is the appropriate kinematical and phase
space factor which will depend on the choice of
normalization.

In investigating the angular distribution, we shall
only be concerned with the angular-momentum part
of the channel labels ct, p, and we shall omit any explicit
reference to other quantities such as energy, isotopic
spin, etc. For convenience of notation the angular
momenta 1, 1', 11, , etc. will be associated with the
quantum numbers l, /', l1, ~ ~, etc. for their magnitudes
and p, p', p&, , etc. for their s components. Similarly

l) J) 222) . ; s, s) 25„~ ~ ') J) I) )II) ~

) etc.
The initial state involves the angular momentum of

the incident beam, 1, and the initial spin of the nucleon,
s;. These combine to give total angular momentum

J=1+s,. (3)

To label the incident channels we take the quantum
numbers J, M (which are both conserved), l, and s,".

n—= (JMls, ).
The outgoing channels are states of two pions and a
nucleon, and are therefore described by two orbital
momenta 11 and 12, and the final spin of the nucleon,

"channels" labeled by the indices 0. for the ingoing
states and P for the outgoing ones. The indices n and
P specify the number and nature of the particles, the
momenta necessary to specify their motion and the
eigenvalues of a suitable set of angular momentum
operators. Suppose that we have an incident wave of
unit amplitude in one channel n, say; the resulting
outgoing wave will in general be a mixture of all chan-
nels p with amplitudes S s. This set of quantities S I2

is the 5 matrix for the process in question, and deter-
mines the cross section.

Suppose that we perform an experiment in which the
incident beam is a mixture of channels n with ampli-
tudes A . Then clearly the outgoing wave function
will be

+ou2=Z ~ SaP4P,
a, p

l

I
-2Ik

(b)

k

FIG. 1. Alternative choices of coordinate system for simultaneous
production (a), and production via a "compound particle" (b).

11+12=1,,

11+Sf=)1)
12+sr= J2.

(6)

We choose to specify j&, for reasons which we shall
discuss later. Thus,

p—= (IM/tl2ssj 1). (7)

Since s; and sj are always —,', we shall generally omit
explicit reference to them.

lt now remains to determine ll I2. We know the angular
dependence of an eigenstate of (1112ptp2); it is given by
the product of spherical harmonics:

7/ll)1(814 1)Vl2))2(824)2))

where (81&1), (82&2) are the directions associated with
the angular momenta 11 and 12. An eigenstate of p can
be expressed as a linear combination of such eigen-
states, using the appropriate Clebsch-Gordan co-
efIjcients. When this is done, and the results inserted
in (2), we obtain

sf, which combine to give:

J= lt+4+ss.
For the moment we do not specify precisely what we
mean by 11 and 12, we shall return to this point later.
Thus the outgoing channels are labeled in a similar
way to the incident ones by J, 3I, l&, l2, and s~. However,
when three angular momenta are coupled to form an
eigenstate of the total angular momentum, we must
also specify the eigenvalue of one of the three sums:

Re( Q A A S I2 S p L Q O(Qp& p ' L1L2M1)PL1 (81)Pr'2 (82) cosM14)j)

where
ap, ct'p' ~1L2~1

2t "+'~'" 12'l (2lt+1) (2l2+1) (2l1'+1)(2l2'+1) (2jr+1)(2j2'+1)
4n- (2L1+1)(2I2+1)

&(C(lrlt L1,' 000)C(l2l2 L2) 000)W(ltgtlt'gt, -', L1)

+2 ( ( 1) C(l2jlI P22r11~)C(l2j~1 + p2 2P21 )M)C(l2l2 L2, p2i22 Ml)C(jl jl I1, 821@213f1)),
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C( ) are the Clebsch-Gordan coeflicients, W( ) is
the Racah coefficient, I'I,~ are the associated Legendre
functions, &=Pi—P2, lt is the de Broglie wavelength in
the incident channel, ' and the summations are taken
between the limits

0&l& 0&l'& ~,
I
t—,'I &J-&E+-'„

I
t' ——', I

&J'&E'+-'„

0&le& ~, 0&le'& ,
I t,—k I

&ji«i+2 It,
'—

2 I
&j,'&t,'+

l~—jil &t,(Jpji I~'—ji'I &E2'&J'p ji'
Iti —Ei'I &1i&ti+Ei', ltp —E2'I &12&E2+E2',

—J, —J'&M&J, J',
—I.j, —L2&Mj&I.g, 1.2,

l2& p2& l2)

the remaining quantum numbers being given by
I

p2 =p2 My)

m~ ——M —p2,

This result is derived in the appendix. The general
term results from interference between the states
labeled by the unprimed quantum numbers and those
labeled by the primed ones. I.&, I.2, and M& are just
indices describing the expansion of the angular dis-
tribution as a sum of products of spherical harmonics.

III. CHOICE OF REPRESENTATION

So far, we have not properly de6ned the angular
momenta li and 12. If we work in some definite frame
of reference, then momentum conservation leaves two
arbitrary independent momenta to be specified in the
final state. Let us denote these by ki and k, . Then the
statement that the 6nal state is in an eigenstate of l~, p1
and E2, p2 corresponding to ki and k2 is merely the state-
ment that the angular dependence of its wave function
is given by

F4~ i (4) I'i2i 2 (4),
A A

where ki and k2 are the directions of ki and k2. If we
were really to take all states of the system into account,
i.e., if we knew all of the quantities 5 p, then the choice
of p would not matter. Similarly, we have seen that we
must choose whether to label the outgoing states by the
eigenvalues of ji, j2, or L; here again the choice would
not matter if we knew all the 5 p.

However, since we are trying to make a phenomeno-
logical analysis without assuming a detailed theory, we
do not know any of the S p, but try to find qualitative
reasons for neglecting all but a few of them, so as to
leave our result with as few arbitrary parameters as
possible. Hence in choosing our definition of the P, we

' We have used the de6nition and normalization of reference 8
for our wave functions; S is a unitary matrix.

try to select them so that they differ in ways which

correspond to qualitative physical difkrences. First of
all, let us discuss the choice of li and 12. In terms of the
angles 8i, 82, @ which we have used above:

k'ki k k2
cosgy = ) cos82=

(kXki) (kXk2)
co+= (9)

IkXk, l lkXk2I

where k is the momentum of the incident beam, whose
direction is taken as the quantization axis.

The most convenient frame of reference is the center-
of-mass frame de6ned by the incident beam and the
struck nucleon. The simplest choices of ki and k2 are
then the momenta of the two outgoing pions in this
frame of reference. This treats the two pions in a sym-
metrical fashion and also has one particular advantage
from the point of view of experiment. In this case the
angle g, which is the angle between the production
planes de6ned by the incident beam and each of the
pions, is invariant under Lorentz transformation along
the beam direction. This means that it is also the angle
between the production planes in the laboratory system,
which can be directly measured even in the case of
photoproduction, when the center-of-mass frame varies.

However, it might be that the two pions are not
emitted symmetrically but instead are emitted suc-
cessively, with an intermediate "compound particle"
existing in between. In this case the most sensible
choice of k2 is the momentum of the second pion rela-
tive to the center of mass of the outgoing nucleon and
second pion. Note that the direction of ki in this case
is the same as that in the previous case and is also the
direction in which the "compound particle" moves in
the total center-of-mass system. These two choices are
illustrated in Fig. 1. They are not, of course, the only
possible choices; which of the two is more reasonable
shouM be made clear by the kinematics of the observed
process.

Next we must consider the choice of coupling scheme.
Here the question is whether we expect the production
process to be more sensitive to the total angular mo-
mentum of the two pions, or to the total angular mo-
rnentum of a pion-nucleon pair. If the former is the
case, then this means that the production should de-

pend strongly on the direct interaction between the
two mesons. If we make the assumption that the direct
pion-pion interaction is small, or even the much less
severe assumption that it is of much shorter range than
the pion-nucleon interaction, then it is convenient to
make the analysis in terms of eigenstates of j1. This is
also convenient because of the known strong depend-
ence of the single meson-nucleon interaction on the
total angular momentum.
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IV. EVALUATION OF THE ANGULAR
DISTRIBUTION

Before trying to work out the coe%cients for par-
ticular cases, let us examine some of the general features
of the expression (8) for the cross section. This expres-
sion is of the form

d0 = P ALyL2LfyPLy ~(cosgy)
LIL2~1

)(PLg i (cos|j2) cosMyg) (10)

where the AL»L2M» are some complicated functions of
the energies and momenta involved. %e shall assume,
where necessary, that we are discussing the first choice
of the de6nition of k~ and k2 discussed in the last sec-
tion. As we should expect, the cross section depends
only on the digereeee in azimuth of the two pions, and
is therefore invariant under rotation of the coordinate
system about the s-direction (direction of the incident
beam). The fact that it depends only on the cosine of
multiples of g is related to parity conservation.

Next we may examine which angular momentum
states can contribute to each of the AL»L2M». First of
all, the Clebsch-Gordan coefficients C(l~l~L&, 000) and
C(l2l2'L2, 000) vanish unless (l&+l&'+L&) or (4+l2 +L2)
are even, respectively. This greatly reduces the number
of terms to be considered in any particular case. The
physical interpretation of this rule is simply that inter-
ference terms between orbital angular momenta of
opposite parities give rise to angular distributions in-
volving spherical harmonics of odd order, and vice
versa.

After this we observe that the coefBcient of I'L»~&,

say, comes only from channels P, P' such that

and a similar rule holds for I' s,2 ~&. If the observed
cross section in a given energy region is observed to
involve only low values of L,», I.2, then we can assume
that in this region high values of /», /2, /»', /~' are not
important, and ignore their contributions in all terms
One way of examining this is by looking at the cross
section as a function of the angle lt, which, as pointed
out above, should be particularly easy experimentally,
since this angle can be measured directly in the labora-
tory system. If this distribution is analyzed into its
Fourier components, then the highest value of 1.» which
is important, (Lq ) and the highest value of L2 (I-2 )
must both be greater than or equal to the highest
Fourier component which occurs (M ):

Mt

L1+ 0 1

In other words, making use of (11)., the highest value

of M observed in the angular distribution as a function
of @ should be twice the maximum pion orbital angular

momentum which contributes appreciably to the pro-

duction at the energies involved.
At energies not too far above threshold, one would

expect the most important part of the cross section to
be due to s- and p-state pions. If no higher states are

involved, then, by the above argument the highest

value of M which should be observed is 2, and the values

of L,» and'I. 2 which will occur are 0, 1, and 2. In Table I
the various possible values of /», /2, /»', /2' which can

contribute to each of the AL»L2M» are tabulated for

this case.
Up to this point, we have made no real approxima-

tions except to neglect high values of /», /2, /»', /~', which,

as we have seen, is an assumption which can be checked

experimentally. However, if we consider all the possible

values of J and j» going with the above values of /», /2,

we And that the complete expression involves 10 com-

plex amplitudes 5 p, or 19 real parameters. Even if we

were to examine only the coeKcient of cos2$, there are

still 5 amplitudes, or 9 parameters. (These numbers

apply for the case of production by pions; in the case

of photoproduction, where both parities are present in

the initial state, there are even more. ) Hence it is clear

that we must make some further approximation.
The assumption that we shall make is that the mesons

produced in p states interact with the nucleon only

through the resonant state (j=2). This also involves

ignoring the direct pion-pion interaction in comparison

with that between pion and nucleon (or taking it to be

of much shorter range: see above). This is a fairly

severe assumption which should be carefully considered.

In the region of the resonance energy, i.e., when the

energy of the pion "relative to the nucleon" (measured

in the center-of-mass system of the pion and nucleon)

is near the energy of the pion-nucleon scattering reson-

ance, then the approximation should be quite good.

However, we must remember that this is now a state-

ment about the angular momentum measured in the

center-of-mass system of the pion and nucleon, whereas

the rest of our calculations and observations refer to
the center-of-mass system of all three particles. This

Vajues Of (l&g~ t& 4 ) whjch cap co~tpjbUtp to
e@ch Of the coeKcients ALIL2M1.

I» &M; I.2 &M„,.

In the absence of accidental cancellations, in fact, we
should expect M to be equal to the smaller of I», I.2 .
If one looks for production of pairs of mesons having
roughly the same energy, then clearly we expect

I» ——J2 =Sf .

0 (0000)
(0101)
(1010)
(1111)

1 (0010)
1000)
0111)

(1101)

2 {10103
(11 11 )

(0001) (0101)
(0100) (1111)
1021)
1110)

QQ»1) (0111)
1100) (1101)

(0120)
(»OO1)

1011) {1111)
1110)

~ . (1Q»1} (1111}
(1110)

~ ~ ~ (1 2 22)

(0110} {Qiii) ~ ~ ~ ~ .
(1001) (1101)
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1+3 cos'82. (12a)

The predictions of reference 5, which are based on a
static, cut-o6 model, only include the electric dipole
term. In general one would expect the magnetic quad-

should not have very much eGect in practice for the
case of resonance pions. For in this case the maximum
velocity of the Lorentz transformation between these
two frames of reference is about c/10, whereas a pion
at resonance is fairly strongly relativistic. In other
words, the angular dependence of the pion wave func-
tion will be amost the same in the two systems, and a
pure j= ~ state in one system will be mainly j=~ in
the other system also. The approximation does break
down at energies far from the resonance; however these
regions should give relatively small contributions.

At this point we may compare some points of this
discussion with the specific calculations of Cutkosky
and Zachariasen. ' They make a calculation using the
Chew-Low theory for the specific case when one s- and
one p-state meson are produced, and ignore all other
cases. This seems a reasonable approximation if one
pion is produced with very low energy and the other
near resonance. However, to neglect the production
with both mesons in p states implies that the amplitude
for production of the pion with the lower energy in a
p state is small, and hence the amplitude for such pro-
duction with the near-resonance pion in an s state
should be at least as small as that for two p-state pions
(and probably much smaller). Hence, in Kq. (17) of
reference 5 only one of the three terms should be
appreciable, if the approximations are valid; it will be
either the first or the second according as the near-
resonance pion is positive or negative. In our notation
this corresponds to saying that we must only allow

Ig=O; L2=0, 2,

(2 denoting the higher energy pion) but that the inter-
ference term with /j=1, l2 ——0, l~' ——0, l2' ——1 should be
as small as the other neglected terms. The angular dis-
tribution as a function of 02 can be calculated either by
substitution into the general expression (g) or, more
simply, by noting that the only effect of the emission of
the s-state pion is to change the parity of the system
with no effect on the angular distribution. In other
words, the distribution will be the same as that for the
production of a single p-state scalar pion. For photo-
production this can be obtained from the usual expres-
sion for single production by interchanging electric and
magnetic amplitudes, giving

[ Ei ['(2+3 sin'82)+
~
M2

~
~(3+3 cos'8~)

+2@3Re(Ei*M2) (3 cos'82 —1), (12)

where E2 and M2 are the electric dipole and magnetic
quadrupole amplitudes, respectively, (assuming only
J=2 occurs). For production by pions the angular
distribution is of the form

rupole term to be much'smaller (it should be much less

important than the electric quadrupole term for single
production). Since in this case the interference term
would be the important one, and if the phases of the two
amplitudes are suitably related it has the same sort of
angular dependence as the electric dipole term, it would

be difIicult to detect anything but a very large magnetic
quadrupole contribution.

V. EFFECT OF THE "SECOND RESONANCE"

When we consider the production of two p-state
pions, we are led to a very complicated distribution, for
in general there are three possible values of J, all of
which may interfere. However, it has been suggested"
that nearly all the photoproduction phenomena in the
region of 700-Mev photon energy, and also the pion-
nucleon scattering at corresponding energies, can be
Gtted on the assumption that they all take place through
a resonant state of the nucleon, lying above the known
J'=-', level and below the rather higher (probably J'= ~~)

level observed in the scattering. " Amongst the phe-
nomena which can be observed in this region is the
production of two p-state pions, and it seems worth-
while to examine the consequences. This introduces a
great simplification into the calculation, for it means
that we only allow one value of J, though this may be
any of the three values.

If the analysis is done for the coefficient of cos2& in
the distribution (again assuming only j&——~ occurs),
then we find the following result for the coefficient of
sin'8i sin'8~ cos2$ (for photoproduction):

(3/g) IMil'
—(1/&) (3 ( Mi ('—4/3 Re(Mi*E2)+9

) R ('),
(9/20) () E2('+ (4%2/3) Re(M3*E~)+2

(
M3['),

(13)

where M~, E2, M3 are the amplitud'es for magnetic di-

pole, electric quadrupole, and magnetic octupole
transitions, respectively. For production by pions the
form is similar but with only the "magnetic" terms.
The significant feature of (13) is that for J= i~, 5~, this
coefficient is positive, while for J=~ it is negative,
whatever the relative phases of E2, 3f~, M3. Further-
more, for J=—,', —,', production of two s-state pions
cannot occur, while for J=—,

' production of one s- and
one p-state pion cannot occur. For the s- and p-pro-
duction in the case when J= &, we now make no further
assumption in assuming j&

=—,', and therefore the angular
distributions should be strictly as given in (12). In
other words, if there is a J= ~ resonance then near the
resonance, if both pions are produced with energies in
the region of 150 Mev relative to the nucleon, the dis-
tribution should have a term in cos2& whose coeKcient
should be negative.

' R. R. Wilson (private communication)."Cool, Piccioni, and Clark, Phys. Rev. 103, 1082 (1956).
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Hence, if we assume that the resonance exists, it
should be quite possible to determine its angular
momentum, provided its parity is even so that 2p pro-
duction is possible.

VI. SUMMARY

We have seen that it is quite possible to derive a
general expression (8) for the production cross section
for pion pairs in terms of unknown complex amplitudes
or matrix elements. By making various approximations
and assumptions it was then possible to make some
de6nite predictions without any detailed model of the
production process. These conclusions may be sum-
marized as follows:

For the production of two mesons of similar energies,
if l is the maximum orbital angular momentum (of
either one) which contributes appreciably to the pro-
duction under the given conditions, then the angular
distribution, as a function of their relative azimuth P
should have no Fourier components higher than cos2@.
This is quite generally true, whatever the choice of
coordinate system, though in any particular case the
value of / thus obtained will depend on the choice of
reference system. Hence, if we assume the pion-pion
interaction to have negligible eBect, a measurement of
this sort can give information about the angular mo-
mentum dependence of the siegle pion-nucleon system.

If only s and P states are important, which, as seen
above, is an assumption which can be checked, then:

(a) If we assume that for a P-state pion, whose
energy relative to the nucleon is near the resonance,
only the j=

~ state is important, then for the production
of one low-energy pion and one near resonance the
angular distribution should be given by (12).

(b) If we assume in addition that production takes
place through a definite resonant state of the nucleon,
then for the production of two pions with energies near
resonance (both energies measured relative to the nu-

cleon) the angular distribution should show an azi-

muthal dependence in which the coefFicient of cos2& is

positive if J=—,
' or J=~, and is negative if J=~. If the

latter is the case, then for the case mentioned in (a) the
angular distributions given in (12) should be independ-
ent of any separate assumption that j&=~.

Some estimate of the validity of assuming j&=—, can
be made by looking at the coeKcient of cosp. If this is

negligible except at energies where there is also an
appreciable term in cos2&, then the assumption is

probably valid.
In conclusion, it is interesting to note that although

the three-body system is far more complicated than the
two-body one, and in general much more dificult to
analyze, with a few assumptions it is possible to use the
extra complication of azimuthal dependence to sort out
diferent angular momentum states, which is much more
dificult to do in the simp1er two-body case.

where v~ and v2 are the velocities of the two outgoing
particles, I'~„are spherical harmonics and g is the spin
wave function of the nucleon. We may write this as

z F ilail(81)$1) Fl2y2(82)$2)+) (A1)

where now F is independent of angle or orbital angular
momentum. We now expand the states in which we
are interested in terms of these states:

4'(lll2J jlM) = p C(l,sfj 1, ?ilm, fml)C(l2 jlJ; p2mlM)
???1Jll 1P2

XZ "+"Till 1(81,yl) Y(21,2(82)$2)F) (A2)

where C(jjj'";mm'm") is the Clebsch-Gordan coefFi-

cient. In this way we 6nd that, after substituting into
(1), Eq. (2) becomes

do~, f dr Q Q—— Q A *A, S p*S p
0'p+ p ???l1 pl i(z2 m1Plp2

XC(llsfj 1, film, fml)C(E2 jlJ; fzzmlM)

XC(/1 pfj 1', ?ll'm, fml )C(l2 J1 J ?22 ml M)

Xz""+"' " ")I'(i~i*(81,41)I'(2~2*(82,A)

X +(1 Pl (81)$1)+(2 F2 (82i$2) ~ (A3)

Note that although we have written this as a sum over
channels we do not sum over values of M. Owing to the
invariance of the problem under change of coordinate
system, the 5-matrix elements cannot depend on the
magnetic quantum numbers. Since the spin orientation
of the initial or 6nal nucleon, or the polarization of the
incident beam could, in principle, be measured without
interfering with the experiment, there can be no inter-
ference between states in which these diGer. If these
are not measured, then we must sum this expression
over values of m, f and average over values of M. Note
also that the fact that the normalization of the wave
functions included e~ and v2 means that the term dr
is simply A,'dQid02.
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APPENDIX. DERIVATION OF THE GENERAL
EXPRESSION

In the notation of the rest of the paper, we must find
the wave functions Pp to insert in (2). These are the
asymptotic wave functions of a nucleon and two pions
in eigenstates of

J, 3f, $&, l2, sf, j&.

Following the normalization of reference 8, we have
the asymptotic form of the eigenstates of /&l2sfp&p2mg f ..

+(101(81)41)I (2P2(82)4'2)xaf~~f
f' j 'p2~ 00

X Ly y (2) p )$) lpi (Iairl (ilia)&i (—2212 $12r)—



PRODUCTION OF PION PA I RS 1379

Now we use the relation

Ytlzzl (81z4'1)I ll lzl (81zpl)

This can be simplified as follows. First we use the sum
rule for the product of three Clebsch-Gordan coefB-
cients, "which for this particular case becomes:

11+11' » (2ll+1) (2ll'+1)
t

&

= (—1)"'
Lz=ltz —tz'1 zlfz=» 4n'(2L1+1) I

JA1Jg] ms
(—1)»C(ll'sf jl', pl'rn, frrt, ')

XC(llll'Ll, 000)C(ill 1'I.l, —plpl'Ml)

X»lsf1 (8,,y,), (A4)
and hence obtain

XC(ll~fji; pi zrtf zrtl)C(llll Ll plpl Ml)

= (—I)~ 1 11' 11+ 1'1 1(2jl+1) '* (2jl'+ 1)&

XW(lljlll ji'; ~fLl)C(3131 Ll zzzlzztl Ml) (A6)

Q A~*A~ S~tt*S~ tz i "1'+'z' '1 —'»—
dQ]dQ2 aa'PP' L1L2

(2ll+ 1)(2l2+ 1)(2l1'+1)(2l2'+ 1)
X(4zr) '

(2Li+ 1)(2L2+1)

where W( ) is the Racah coefficient. Then we note
that C(llll'L1, 000) vanishes unless Ll—ll —ll' is an
even integer; also we write 2jl—rzzl

——2(jl—zzzl)+zzzi
and note that 2(jl—rtzl) must be an even integer. Next
we use the fact that p2+zzzl=M= ps +zrzl or

XC(ill 1'I.l, 000)C(lsl2'L2 z 000)
I

P2 iM2 m1 ~1 ~ (A7)

X g p {(—1)»+z'2C(llsfjl, plm, frttl)
mal Pl itt2 ~1~2lftllf2

XC(l2jlI p2 lrrMt)C(ll sfj 1 pl zrt fzrtl )

XC(l2'jl'J'; p2'ml'M)C(llll'Ll, plpl'M, )

Since the expression for dzr/dQld02 contains the two
terms C(j lj 1'Ll, —tzzlrzzl'Mi) and C(lsl2'L2, —psp2'M2),
it follows from (A7) that

M2= —Mg.

XC(lsls'L2, ' —psps'M2)»lszl(8141)»ssrs(8242)} (A5) Making use of all these results we obtain, finally:

dQ~d02 aefPPf L1L2M1

(2l1+1)(2l1'+1)(2l2+1)(2l2'+1) (2jl+1)(2jl'+1)
1

'*

A *A S *S ~ .2&'z'+'2'-'1-'»(4w)-'
(2L1+1)(2L2+1)

XC(llll'L, l, 000)C(lsl2'L2, 000)W(ll jill'jl', sfLl)

XQ {(—1)' C(lsj13; pszrtlM)C(l2'jl'I'; p2'rrtl'M)C(l212'L2, —psps' —Ml)

XC(jljl'Ll, zN zzt lM—1)}P1s., '(81)Pf2™(82)e*'&4' &» (A—S).

Symmetry considerations show that only terms in cosMip can survive in the sum, and hence we obtain the
expression reproduced in (8). The origin of the various limits on the summations are all straightforward.

'2 See, for example, M. Rose, Etemerztary Ttzeory of Angular 3rlomezztum (John Wiley and Sons, Inc. , New York, 195'7), p. 110.


