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us consider all terms in the normalization integral

Q l P) that have P pairs excited. These number

N!/(N —2P)!P!2;P&N/2. Their average coeKcient
is (Qplpsl(1sgÃzslA lprpsl')A, , where the average is
over hole states. Calling this latter coeKcient $/N, we

have for the contribution of all terms with I' pairs
excited the value

(P) „/,'N=$. - (8-2)

If g«1, then (8-1) is a good approximation. Further
the relative dispersion about the (P)p„ term is small like

O(1)/N, i.e., (P')p„/(P)A„' ——1/(P) p, . In this respect
Q l P) is quite like the cluster expansion of the partition
function in statistical mechanics where the relative dis-
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Let us assume (8-1) to be valid for all P. Then (8-1)
dehnes a Poisson distribution and we have for the mean
fraction of excited pairs the value

1
g-l (14" .I')"—ll (8-4)

volume over which a pair is correlated
(8-5)

volume per nucleon

Bethe and Goldstone4 have shown that for a hard-core
interaction of the correlation range is of the order of the
core radius. Further, they expect that an attractive well
outside the core will not change this substantially.
This would give an estimate for $ from (8-5) of $= 1/10.

persion about the mean cluster populations is again
O(1)/N.

An expression for $ is found by observing that for an
isolated pair the wave function of the particles in the
pair is
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The Born approximation bremsstrahlung (and pair production) cross sections, valid at all energies and
angles, are given for all possible states of longitudinal polarization of the particles involved.

When the photon-incoming electron angle (Hp) and the photon-outgoing electron angle (H) are both zero, a
cancellation of Feynman diagrams causes all cross sections to vanish in Born approximation. Further, if
both Hp and H are small compared to happ/&pp, the "spin-Qip" cross sections are small (of order H') relative to
the "non-spin-Qip" ones. When account is taken of the above cancellation, angular momentum conservation
is sufficient to determine this small-angle behavior, but it explains neither the sign nor the magnitude of the
bremsstrahlung circular polarization.

INCH the recognition by Goldhaber et al. ' that the
circular polarization of bremsstrahlung can serve

as a useful means of measuring longitudinal electron
polarization, considerable interest has developed in the
bremsstrahlung cross sections for specific polarization
states of the incoming and outgoing particles. Although
several cross-section calculations are now available, '
little emphasis has been given to the differential cross
sections for the most general combinations of longi-
tudinal polarization, nor has an attempt been made to
understand the physical origin of the polarization
effects. We shall present these cross sections in detail,

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' Goldhaber, Grodzins, and Sunyar, Phys. Rev. 106, 826 (1957).' A definitive calculation of those integrated cross sections which
are of most immediate experimental interest has recently been
supplied by C. Fronsdal and H. Uberall LPhys. Rev. 111, 580
(1958)j, which contains references to previous calculations.

and call attention to their seemingly anomalous be-
havior at small angles. The explanation of this anomaly
provides some physical insight into the details of the
process, and brings to light the rather unexpected role
played by orbital angular momentum in the polariza-
tion phenomena.

In both bremsstrahlung and pair production, the
total number of incoming and outgoing particles
(apart from the static nucleus) is three, and since each
particle has two states of longitudinal polarization,
there are eight possible cross sections. However, by
Lenard's theorem, ' two cross sections which differ
from each other only in having all three spin directions
reversed are equal in Born approximation, so to this
approximation there are only four distinct cross sec-
tions. H only one of the outgoing particles is to be

' A. Lenard, Phys. Rev. 107, 1712 (1957).
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observed, then we are interested in the cross section
which is summed over the two spin states of the other
outgoing particle, and it is these (two) cross sections
which are given in reference 2. However, if one wishes
to use these processes as sources of longitudinally
polarized outgoing particles, or if the longitudinal
polarization is to be followed in the particles of a de-
veloping electromagnetic cascade, 4 then the four cross
sections, in which the polarization states of all three
particles are specified, are of interest. The relativistic
limits of these cross sections were published some time
ago'; the expressions given below are valid for all
energies and angles to which the Born approximation
is applicable. Screening has been neglected in these
expressions, but can be included merely by modifying
the q

' factor; it becomes important only for relativistic
particles, where its effects are those given in reference 2

and reference 5.

I. BREMSSTRAHLUNG

We shall specify the spin states of the particles
involved in bremsstr'ahlung by the helicities co, c, and

8,' for the incoming electron, outgoing electron, and

photon, respectively. They take on only the values

&1, +1 referring in each case to a "forward-spin"

particle, i.e., one whose spin and momentum define a
right-handed screw. We use the notation of Bethe and

Heitler, ' in which (pp, Ep), (k,k), and (p,E) are the

momentum and energy of the incident electron, photon,

and outgoing electron, respectively, and v=1. Also 80

is the (pp, k) angle, 0 the (p, k) angle, ct the (pp, p) angle,

and p the angle between the (ypk) and (p,k) planes.

E,=E+k and q = pp —p —k. The four cross sections can

be written in the following unified fashion:

Z'e4 P dkdQpdQ 1
d~(ep, b,e) = —— -X(e„b,e),

137 Pp k (2sr)' q4

X(ep,b,e) = {pp' Sin'gp(EEp+ms+eepppp) (1+«p COStr)

(Ep—
Pp cosgp)

+k'(Ep Be,p p—) (E bep) (—1 Be co—sg) (1+bep cosgp)

+beP pkf(Ep beppp) —(E bep)+—m']D1+bep cosgp) sing singp cosp+eep(1 be c—osg) sin'gp])

+ {p' sin'8(EEp+m'+eepppp)(1+ceo cosn)
(E Pcos8)'—
+k'(Ep+bepPp) (E+bep) (1—be cosg) (1+bep cosgp)

+beppkL(Ep+Beppp) (E+bep)+m ][(1—be cos8) sing singp costo+eep(1+bep cosgp) sin'8])

{2(EEp+m'+ eepppp) (1+eep coscr) ppp sing sin8p cos po

(Ep Pp cosgp) (E—P cos8)

+2k'm'(1 —be cosg) (1+bep cosg,)

+beppkL(Ep+beppp) (E+bep)+m']L(1+bep cosgp) sing singp cosy+ceo(1 —be cosg) sinsgp]

+bepPk L(Ep —bepPp) (E—bep)+m']L(1 —Be cosg) sing singp cos io+ eep(1+bep cosgp) sin'87}.

The validity of Ienard's theorem' is evident from

the fact that the helicity coef6cients appear only bi-

linearly, as e.pB, cp5, ol 88.
As for comparisons with previously published cross

sections, the sum of all four cross sections is just the

Bethe-Heitler expression, as it should be. In addition,

if only the spin-states of the outgoing electron are

summed over, the resulting expression agrees with

Eq. (13) of reference 2, for the special case of s parallel

to p& in that equation.

' F. J. Dyson, Ann. Phys. (to be published).
4 K. W, McVoy and F. J. Dyson, Phys. Rev. 106, 1360 (1957).

II. PAIR PRODUCTION

The pair production cross sections are obtainable

from those for bremsstrahlung, of course, by the sub-

stitution law, but since spin states are involved, we

shall describe the substitution in detail. If we take as

energy and momenta (k', k'), (E,p ), and (E+,p+) for

the photon, electron, and positron, respectively, the

6 For more explicit definitions, see, e.g., K. W. McVoy, Phys.
Rev. 106, 828 {1957).

s See, e.g. , W. Heitler, Qstantetm Theory of Radiation (Oxford
University Press, Oxford, 1947), second edition, p. 164.

4 See, e.g. , J. M. Jauch and F. Rohrlich, The Theory of Photons
and Eteotrons (Addison-Wesley Press, Cambridge, 1955), p. 161,
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simplest substitution seems to be

k'=k, k'=k; p =po, E =Ep, y+= —p, E+= E;—
8 =6, 8 = cp) and c+= —8)

where e+ is the helicity of the physical positron (not of
the "hole"). In addition, Eq. (1) must be multiplied
by p'de/k'dk

As for the generality of these expressions, they are,
of course, not restricted to beams of completely longi-
tudinally polarized particles, but are applicable to any
beam of incoming particles described by a spin density
matrix which is diagonal (with respect to eigenstates of
definite helicity). Physically, for an electron beam this
is one in which all electron spins make the same angle
with the momentum direction, but are distributed
randomly over azimuthal angle. This is indeed just the
type of beam which occurs most commonly in P decay.
The above cross sections can than be employed in the
following way. Let o.g and o-l, be the bremsstrahlung
cross sections given above for incoming right and left
electrons, both leading to the same final states. Then
the corresponding cross section for a beam of incoming
electrons of the above type in which )az~' and ~«('
are the diagonal elements of the spin density matrix
(I ~~I'+ I«l'=1) is,

o = Qg og Cl. OL,.

Since the measurement of the spin states of both
outgoing particles implies a measurement of their
production-arigles as well, only the differential cross
sections are of interest in this case, and there seems to
be no point in integrating them over the directions of
the outgoing particles. '

III. THE "EXPLANATION" OF THE BREMSSTRAH-
LUNG POLARIZATION IN TERMS OF ANGULAR

MOMENTUM CONSERVATION

The "naive" explanation of the high degree of circular
polarization observed in bremsstrahlung from rela-
tivistic, longitudinal electrons goes as follows. Let us
label the four cross sections by helicity suKxes, o.»|.-,
denoting the helicities of the incident electron, photon
and outgoing electron, reading from left to right. Each
suKx can be either E or I., "E" denoting a "right
particle" or "spin-forward" particle. Now the brem-
strahlung from relativistic electrons is emitted mostly
at small angles, so let us consider the special case in
which both the photon and outgoing electron momenta
are parallel to that of the incident electron. If we
quantize angular momentum along this axis, none of
the particles have components of orbital momentum
along the axis, so their spin components along it must
be conserved. For an initial R electron, J,=S,=+-,'

' For very relativistic electrons, the outgoing particles are very
much forward, and the average cross section for a given polariza-
tion state may be of use. The integrations for this limiting case
were given in reference 5, and an example of the their application
is reference 4.

along this axis. This can be achieved in the final state
only by adding +1 from the photon to ——,

' from the
electron, so all cross sections except oggL, must be zero
in this case, and the bremsstrahlung helicity should be
the same as that of the incident electron.

This argument, however, is invalid, for o.gal, is also
zero, and in Born approximation there is no radiation
at all, when yo, p, and k are parallel. If the electron
had no spin, this result mould be a consequence of
angular momentum conservation. The initial and 6nal
"electrons" would have J,=O, and could only radiate
a photon with J,=S,=O; but S,=&1 for the electro-
magnetic radiation Geld, so the process would be for-
bidden in. all orders. Dirac electrons, however, can
conserve angular momentum in the process by spin-
Qip, and there seems to be no conservation law which
forbids the radiation process in this case. Its non-
occurrence appears to be a peculiarity of the Born
approximation, and can be traced to a cancellation be-
tween the two Feynman diagrams which contribute in
this order. It can readily be seen (e.g. , from the expres-
sions given in reference 6) that both diagrams are zero
in each of the cases (RRR), (RLR), and (RLL) if po,

p, and k are parallel. For the case (RRL), however,
which is allowed by angular momentum conservation,
neither diagram is zero when all momenta are parallel,
but the two cancel exactly in this case."

Furthermore, the above "naive argument, " invalid
for Op=0=0, does not even. retain approximate validity
for small ep and 0. This is because the entire matrix
element is infinitesimal in this limit, so that the L,/0
contributions, while infinitesimal, are not negligible,
and orbital angular momentum actually plays an im-
portant role as we shall show explicitly below.

However, angular momentum conservation, when
applied carefully, does explain certain important prop-
erties of the cross sections of Eq. (1). Speci6cally, the
angular dependence of the cross sections in the small-
angle limit can be explained in this way, but the
polarization of the bremsstrahlung ca+cot. Before pre-
senting the argument, the exact limiting results we wish

to explain are the following. Consider the limit Op
—+ 0,

8 ~ 0 of Eq. (1), and keep only the leading terms in e,

where we shall let e stand for any of the small quantities
ep, 0, and n. None of the cross sections remain 6nite
in this limit (which is clear from the fact that the
Bethe-Heitler cross secti.on is proportional to e' in this

"This cancellation will occur for bremsstrahlung in any central
6eld, providing the recoil energy of the nucleus is neglected.
Peculiarly enough, this effect persists in bremsstrahlung even
when the electrons are described by Sommerfeld-Maue-Furry
wave functions, although it does not persist in pair production
calculated in this way. Since the electron-positron interaction is
not included in this calculation, the same dynamical conservation
laws should apply to both the bremsstrahlung and pair production
processes in this approximation. The fact that they behave dif-
ferently when p0, p, and k are parallel would thus seem to indi-
cate that the behavior cannot be due to a conservation principle.
For these calculations see H. A. Bethe and L. C. Maximon, Phys.
Rev. 93, 768 (1954).
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limit), and the individual cross sections have as leading
terms,

&ZaL~~,

&RLB 6 ) GALLING ~

(3)

In other words, the cross sections involving no electron
spin-Rip are larger, at small angles, than those with
spin-Rip. This is true at all energies, and disagrees with
what one would expect by extending the above "naive"
argument from zero angle to small angles, for crggL is
actually one of the "small" cross sections. (However,
the forward radiation from relativistic electrons does
have predominantly the same helicity as the incident
electron. This is because rggg is the largest of the four
cross sections, and is not a consequence of angular
momentum conservation, as will be seen below. )

These small-angle results can be obtained very
simply in the nonrelativistic case, which is worth a few
moments' consideration. If we suppose for the purpose
of illustration that Z is so small that Ze'/kit«1 even for
a nonrelativistic electron, we can use the Born approxi-
mation, in which case the angular dependence of the
matrix element (for arbitrary Hs and 8) has the well-
known form

p'C(po p) ' ej(&o &)

where its(ps) and N(p) are the Pauli (2-dimensional)
spinors for states of definite helicity, and e= (e,+ice„)/
W2 for a photon travelling along the s axis (8=&1 is
the photon helicity). From this we see immediately
that, if ps, p and k are parallel, then (ps —p) e=0, and
the process cannot occur at all, just as a dipole cannot
radiate (transverse) photons along its own axis. Sec-
ondly, if we note that

N~(po)'N~(p)-1, »(po)'~~(p)-~,
(4)

poe 0p, pe 0,

as e —+ 0, we immediately get the results (3)."
To see that the small-angle behavior (at all energies)

does indeed follow from angular momentum conserva-
tion, " let us consider the bremsstrahlung matrix ele-
ment as an element of the 5 matrix,

OR=(f[S[i). (5)

The only property of the S matrix we need is LS,J',)=0,

i.e., J,=I,+s, is conserved. Since the nucleus is treated
in the static approximation and exerts only a central
force on the electron, it can absorb no angular momen-
tum, so in. (f) only the J, of the photon and outgoing
electron need be considered.

For simplicity consider the special (but entirely repre-
sentative) case in which k, taken along the s axis, is
parallel to ps but not to p (Fig. 1).The argument then
proceeds exactly as before, except that 0/0, so the
outgoing electron carries both orbital and spin angular
momentum components along the s axis. If the initial
electron and the photon helicities are ep and 8, the
outgoing electron must carry total angular momentum
J,= (es/2 —8) along the s axis, so if its wave function
is expanded into J, eigenstates, only that part with
J,= (es/2 —8) can contribute to OR.

In order to accomplish this expansion, we can use
the following spinor transformation. If Nit(p), t'ai, (p)
are the eigenstates of o" p, and m+, n the eigenstates
of o-„ then

Ns (p) =A+ cos-', His++A sin-,'He'eii,

iii, (p) = —A sin-,'He-'&e++A+ cos-', Hii,
(6)

the limiting expression giving its behavior as 0 —& 0.
When (7) is substituted into (5), the conservation

of J, then gives the following nonzero contributions to
BR, for the four polarization states:

where A~ are real numbers, independent of 8 and P,
the polar angles of p.

The desired expansion of the outgoing electron state
is then

M(P)e"'=4 pij'i(pr)Yi *(p)Fi (r)Leu~+pu j, (7)
lm

where n(p), p(p) are the expansion coeKcients of Eq.
(6). Since Fi~(r)m+ and I'i (r)ii are J, eigenstates
with M=m+ts and M=m —s, respectively, we can
immediately read off the terms which will contribute
to BR for each of the four cross sections. This in turn
gives the dependence of 5R on the direction of p
through the factors Fi (P), tt(P) and P(P). It is con-
venient to define

lt-(P) =4 Z i'ji(Pr)Fi-*(P) I'i-(r) ~ 8 s '"', (g)

(ABC)

RRR,

J, eigenvalues

(ep/2 —8)

J, eigenfunctions

LI'i„(r)ii~$

Angular dependence of OR(p)

(General 8) (8 ~0)
lf s sin(-', 8)e'~; P i cos(—,'8)

RRL.
2 I ~pQ; I ), yQ+ I

Pecos(-,'8) &f i sin(-,'8)e '& 1'02

RLR

RLL.'

Fq, ~N+, F~, 2N

ft cos(-', 8); Ps sin(siH)e'~

lt i sin (-',8)e '";fs cos(-,'8)

0e i~

02'—2i rp

"Incidentally, we might note that (ps —p). e=q e g, +isg~ C=onsequent. ly ~q e~'=q, '+q„'and isindependent of S, the photon's
helicity, so the bremsstrahlung from nonrelativistic electrons has no circular polarization, now matter hat its angle of emission.

"My thanks to Dr. J. Weneser, who suggested this form of the argument.
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Po

FIG. 1. Momentum relations for the special case
under consideration.

In the small-angle limit, (RRL) would appear to
remain 6nite and thus be the largest of the cross sec-
tions, as the "naive" argument suggested. However,
we know by explicit calculation that all matrix elements
are zero when 8=0, so the contribution to the (RRL)
matrix element from the m =0 term of Eq. (7) must in
fact be identically zero in Born approximation. This is
another way of describing the unexpected cancellation
of Feynman diagrams discussed above, and does not
seem to have a physical interpretation. Once we recog-
nize the cancellation, though, and discard the "1"
term, we see that (RRL) 8', and the angular momen-
tum argument does reproduce the results (3) obtained
in Born approximation. For the range of validity of
Eq. (9) see Appendix I.

In summary, if we keep only terms through e' in the
small-angle limit, the expansions of the bremsstrahlung
cross sections are'

nonrelativistic case:

[daggg)d ggg)Tg)i&pl'lg)dOQIQ j, [1)0,1)0j~'dQOd&;
(10)

extreme relativistic case:

[d)rRRR)d)rRRL)d)rRLR)d)rRLL J [Eo )0)E )0/6 dQOdQ'.

Although this limiting angular dependence is a conse-
quence of angular momentum conservation, the sign
and magnitude of the bremsstrahlung's circular polar-
ization arise from the fact that o.gg~&crgl, g, which is
not obtainable from an angular momentum argument.

APPENDIX I. RANGE OF VALIDITY OF
THE SMALL-ANGLE EXPANSIONS

It should be noted that the range of applicability of
the small-angle expressions (3) and (9) is actually

quite small, for the neglected terms in these expansions
become significant even at very small angles. This is of
most interest for very relativistic electrons, in which
case the expansions are valid, as we shall see, only in
the angular range given approximately by

e & (m'/EO2) (A-1)

At these energies the determining factor is ~4, and the
Taylor expansion of q~ begins with

q2= (eP&/2EEo)2+Po~8o~+P2P 2PP48—0 cosy. (A-2)

If we consider Eo, E, and k to be of the same order of
magnitude, the e' terms clearly are negligible only if
~« (m'/E'), and since the e' terms urere neglected in (3),
this expansion cannot be used at larger angles. This is
made somewhat clearer if we recognize that the maxi-
mum of the cross section comes at e m'/EO2, for it is
apparent that the simple behavior of (3) cannot hold
beyond this maximum. Since the cross section remains
significant out to e m/Eo, we see that the expansion
(3) holds over only a very small fraction of the sig-
nificant angular range.

From another point of view, the angular momentum
argument, which was employed to derive the small-
angle approximation of Eqs. (9), itself implies a severe
restriction on the range of validity of this approxima-
tion. The limiting behavior was obtained from a small-
angle expansion of F'~ (8,p). For te &l/2, which is true
in the cases under consideration, the required expansion
has the general form

Pp(cos8) 8 [1+P8'+1'8'+ j (A-3)

so that the range of validity of the approximation
P), 8, which we used in deriving (9), is 8&1/1 Since.
in fact we employed this approximation in the sum (8),
this implies the strong restriction 8&1/L, if the major
contributions to (g) came from /&L.


