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a spin of 9/2+, 7/2+, or S/2+ may be assigned to the
corresponding level. All that can be said about the
characteristics of the principal gamma radiations is that
they are very little converted and the measurements
of the internal conversion coefFicients by Deutsch and
Hedgran' or Caird and Mitchell' are not accurate
enough to draw any conclusions from them.
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The general form of the energy of the ground state of a many-fermion system is shown to be exactly of
the form proposed by Brueckner and Bethe, without approximation. In a variational treatment, if the trial
wave function is picked containing only pair correlations, together with all possible unlinked pairs, it is
described by a two-body excitation matrix (m&ms~A

~ p&ps). Variation of this matrix in the Ritz-Rayleigh
principle yields a set of integral equations of the scattering type for the matrix A. Hole-state energies are
given self-consistently in terms of the matrix A, but particle-state energies are Hartree-Pock energies. This
may be corrected for by widely enlarging the class of terms admitted into the wave function. If the ap-
proximation is then made of omitting a class of terms, defined as cross-linked clusters in Q ~II~)), the
particle-state energies are easily renormalized, Variation then leads to an infinite hierarchy of integral
equations.

I. INTRODUCTION
" 'N recent years considerable progress has been made
- - on the fermion many-body problem by Brueckner
and collaborators' and by Bethe. ' The essential feature
of this work is the remark that states may be classi6ed
in terms of single-particle wave functions, though the
wave function itself be extremely complicated through
interparticle correlation. Formally, the energy is ex-
pressed in terms similar to the Hartree-Fock theory,
however the matrix elements of the potential of inter-
action, ~, are now replaced by a scattering matrix 6
(in the notation of Bethe). It is the task of the theory to
calculate G at least in some consistent approximate
fashion, in terms of a single-particle complete orthogonal
set. The single-particle functions are then chosen to
minimize the energy via the construction of a central
potential (in terms of the G matrix) —in exact analogy
to the Hartree-Fock equations.

In this theory one is confronted with difficulties in
formulating the scattering equation for the 6 matrix.
These are two-fold: (I) Which intermediate states
should be included and which excluded? —the Pauli
principle dictates that excited intermediate states
should lie outside the domain of occupied states; how-
ever it also allows for particle-hole and hole-hole

*Supported in part by the joint program of the Ofhce of
Naval Research and the U. S. Atomic Energy Commission.

'K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(1955). For a complete list of Brueckner's contributions to the
problem see reference 2.

~ H. A. Bethe, Phys. Rev. 103, 1353 (1956).

scattering. (2) More difficult and more subtle is the
question of the choice of the energies of the intermediate
states, remembering that a particle is in interaction
with the rest of the medium as well as with the "colli-
sion" partner in question. This latter point is discussed
fully by Bethe where it is emphasized that a unique
definition of energies above the Fermi level is not sup-
plied by the theory. The eR'ect of this arbitrariness is
supposed to be small.

It is the purpose of this paper to attempt a deriva-
tion of the Brueckner-Bethe results variationally. ' A
search for a wave function that without approximation
gives rise to the desired theory has failed. However,
it is possible to construct a trial function which in an
approximate sense, variationally gives rise to the
Brueckner-Bethe integral equations. Thus the point of
view taken in this paper is that the Brueckner-Bethe
integral equations follow variationally from part of

Q ~ JI~II)/(/~if) where li is a certain trial function. The
neglected terms are explicitly shown and, in principle,
calculable using the approximate 6 matrix. At present,
numerical calculations of Bethe' and Bethe and Gold-

3 There have been several excellent treatments of this problem
in the framework of perturbation theory. The first of these was
given by J. Goldstone (reference 4). This work has been amplified
by W. Tobocman, Phys. Rev. 1D7, 203 (1957},and N. M. Hugen-
holtz, Physica 23, 481, 533 (1957). It might be well to point out
here that Hugenholtz's high-density limit in the second of the
above mentioned papers is the same as the high-density limit
introduced by M. Gell-Mann and K. A. Brueckner (Phys. Rev.
106, 364 (1957)g in their study of the correlation energy of an
electron gas.
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stone' indicate that the neglected terms are indeed
small in the nuclear problem. In general, however, they
need not be small and application of this theory to
special cases must always be justified.

The integral equations derived in this paper include
hole-particle and hole-hole scattering in principle.
These terms correspond to three and four body clusters,
respectively, and have been shown to be negligible in
the nuclear problem. ' Hence, it is sufficient in the
nuclear problem to drop these terms. To avoid inessen-
tial complication, this will be done in the latter half of
this paper, (Secs. IV and V).

Though an approximate wave function is used to
calculate Q lHlip), the energy of the ground state is
given by a simple expression which is formally valid
for the exact eigenfunctions of the Hamiltonian. This
expression is derived in Sec. II and states that when the
exact solution is expanded in antisymmetrized products
of a complete orthogonal set of one-particle wave
functions, the energy is completely expressible in terms
of the two-particle excitation coefficient only (inter-
preted as a scattering matrix). The expression for the
energy then takes on a simple Hartree-Fock form with ~

replaced by 6, as prescribed by Brueckner.
In Sec. III, we explore the consequences of the most

simple imaginable wave function containing pair corre-
lations. It is shown that, in the approximation that the
fraction of the total number of virtually excited particles
is small, one recovers the Brueckner-Bethe theory with
two modifications. (1) Particle-bole and hole-hole
scattering is included. (2) The energy denominators in
the scattering-matrix integral equation contain Hartree-
Fock energies. This last defect is, of course, very serious
in the case of a singular potential of interaction, in
which case the whole procedure becomes meaningless.

In Sec. IV, it is shown how the hole-state energies are
renormalized to finite self-consistent values with the
simple wave function used in Sec. III. However, the
energies of the particle states are still Hartree-Fock in

the simple approximation. In Sec. V, the wave function
is completely modified in such fashion as to insure
finite energy of particle states. However, the modified
wave function introduces complicated terms into the
expression for Q lHl pi) which completely destroy the
simplicity of the form of the theory. If, at this stage,
one introduces the approximation of neglecting "cross-
linked" diagrams (to be explained in the text), then
the theory is again simple and a hierarchy of integral
equations follows by variation.

Throughout this paper we shall use the notation of
Feynman diagrams as adapted for use in this problem
by Goldstone. ' In an appendix the notation is sum-
marized for the use of the reader. For simplicity, all
the work of this paper is carried out for an infinite
medium where only momentum-conserving transitions
need be considered. It is hoped that these methods will
also be applicable to finite systems, though certain
nontrivial features arise in this case.

II. GENERAL FORM OF ENERGY

Our basis of representation will be the one-particle
complete orthogonal set ps(r) Throu. ghout this paper
we shall for simplicity deal with extended nuclear
matter so that the P&(r) are plane waves and only
momentum-conserving transitions need be considered.
Let Cs be an antisymmetrized product of @i,(r). This
will serve as the "model wave function. "

P, the true
ground state function may be expanded in antisym-
metrized products of @1,(r) where the components are
characterized by two, three etc. particles "excited"
from the model ground state into excited states. These
latter will be referred to as particle states and will be
designated with the symbol p;. The particle states
occupied in the model wave function are said to be hole
states since they usually enter into the theory as de-
ficiencies. These states will be labeled m;.

The wave function may then be expanded in the form

ip=@'o+ p' p (mims lA l pips)8(d i i(ri)&is(rs)&ms(rs) 4m~(rx))
77717772 F152

+ p' p (mimsmslA l pipsps)Q(@i i(ri)des(rs)ki s(rs)&4(r4) @ &(rw))+ . (2.1)
7'],f02, 703 Pg+2P3

In (2.1), the operator 0, is an "antisymmetrizer" and
designates the operation of taking the antisymmetrized
sum over products. The primes over summations means
sums consistent with the Pauli principle. Let us write
for (2.1) |p=Cs+7t where (C el g) =0. Then the energy E
is given by the expression

&= (@sIH l~o+7c) = (I'o IHI ~o)+(4'o IHI x» (2 2)

where H=QT;+Pe, ,", e;; is the potential of inter-
action.

The first term on the right-hand side of Eq. (2.2) is

' H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London) A238,
551 (1957).

the Hartree-Fock energy of the state 40. It is

g (milTlmi)+-' , P' (mimslelmims)=(T)+(t). (23)

The exchange term in the matrix element of v is always
included, i.e.,

m]m2 8 m]m2 —= m]m2 8 m]m2 D

—(mims l
e

l
msmi). (2.4)

The second term on the right-hand side of (2.2) has
zero contribution from T, since T is a sum of one-body
operators and x di6'ers from Co by at least two-body

5 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
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FIG. 1. Pair components oi wave function (3.1).

of a nonlocal central potential. For infinite systems,
translational symmetry imposes that the pi (r) are
plane waves.

The main point to be stressed here is that the form
(2.9) is prescribed for an infinite medium and in no way
involves any approximation.

excitation. Further, since ~ is a two-body operator only
the two-body excitation part of x gives a contribution.
This ls

E= (T)+(p+nA ). (2.6)

One usually defines a scattering matrix 6 rather than
according to

(mimsl A I pips) = — &mrms I Gl pips), (2.7)
e(pt, ps, mims)

where e(pt, ps, mims) is the energy difference between
the designated states to be subsequently defined. In
terms of G we have

»
I
mtms)= (mims

I
p —n(1/e)G

I
mims)

(mim—s I
G

I mtms&, (2.8)

Eq. (2.8), is the usual form defining the scattering
matrix &mims I

G
I
mims). It will turn out in the theory

that diagonal elements of 6 are not speci6ed. Hence
one is always free to adopt this definition This is more
than formal, for, in the event of singular potentials, v

and p (1/e) G are separately divergent whereas G is
finite. In these terms we have

Z= &T&y(G) =P &m, I
r

I
m, &

+-', g' &mlms I
G

I
mims&. (2.9)

No exchange term is included in G as this is accounted
for in the definition (2.8).

Equation (2.9) is the Hartree-Fock form of the energy

I see Eq. (2.3)] with n replaced by G. It gives the neces-
sary form that the energy will take if an expansion of
the type (2.1) is used. In itself, Eq. (2.9) is empty since
the coefficient &mims

I
A

I pips) is, in general, unknown.
Further C's is completely arbitrary so long as (2.1) is
convergent. However, in approximate schemes C 0 is
obviously chosen to be the Fermi ground state in terms
of those pi(r) which give the lowest zeroth order energy.
For finite systems, Bethe' has shown that the form (2.9)
is probably still valid. In this case one varies the Ps(r),
assuming knowledge of (mims I

A
I pips). This yields a

set of Hartree-Fock type equations for the p~ in terms

(~a IHI X&= s 2' 2 (mims I
p

I pips)
~1~2 Itl 92

X(p,p, l
A

I m, m, &=—(PA). (2.5)

Combining (2.3) and (2.5) into (2.2) gives

III. SIMPLE PAIR APPROXIMATION

The simplest imaginable improvement over a product
of single particle functions is to include a single pair
excitation

1t'=+o+ 2' (mim. I
A

I PtPs&
f01,m2

X Q(&p](ri)&ps(rs)&ms(rs) ' ' 'Pm&(rN)), (3.1)

where C 0 is normalized to unity. The second term is
diagrammed in Fig. 1(a). Actually, this trial function
will not lead to any substantial improvement over the
Hartree-Fock theory when &P I

H
I P& is calculated.

The reason for this is that Eq. (3.1) permits only 2

nucleons to correlate at a time, whereas it is over-
whelmingly probable that when the pair (12) is inter-
acting then some other pairs (ji) are also interacting,
completely independently of (12). This dictates that
one must include terms of the type &mims

I
A

I pips)
&msm4 I

A
I psp4& (mi Nms Ams/m4) in the wave func-

tion. More generally, one must include all possible
e-fold products of mutually distinct 2-body A operators.
Such terms will be called unlinked clusters. An arbitrary
term just contains Fig. 1 (a) repeated a certain number
of times, an example being Fig. 1 (b).

We now evaluate Q I Hl |t&/&il I f& using the trial
function (3.1), where it is Nrtderstood that all urtlinhed

clusters are included.
The first contribution is the Hartree-Pock energy of

the model wave function.

(3.2)

Next, we consider the contribution from that part of
the product &i'll HI ip) which arises from identical two-

body excitations in iP* and it (termed diagonal con-
tribution), e.g.,

(mims I
A

I pips)~ +(4 pi*4 ps*4'~s* 4'~iv )

XHQ(ppippspms ~ ~ pmiv)(pip, l
A

I mims). (3.3)

The integral in Eq. (3.3) has for its basic contribution
(@,I

H
I
@s& which is corrected for by adding on the

particle energies and subtracting the hole energies.
That is, (3.3) is

&~o I
H

I
C'o&

I
(mrms

I
A

I pips& I

'
+(mrms I

A
I pips&l eH. p. (pt) +eH. F.(ps)

err. F.(mi) —eH. F.*(ms))&pips I
A Imtms), (3.4)
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where

«.F.(pi) = &pi I
2'I pi&+2 (pimp I

v
I pims» (3 5)

m3

eH. F.(mi) = (mi I
2'I mi)+g (mim31v I

mlm3) (3.6)

Strictly speaking in (3.5) and (3.6) ms/mi, ms should
be specified but this is an infinitesimal correction. Also
the element (pips I

v
I pips) has been neglected.

The sum of all diagonal contributions that multiplies

(tpllllC'p) is merely &C'plIIIC'p&LQ'lg&7 Next we con-
sider the eBect of the unlinked clusters insofar as they
effect the second term in (3.4). Let us take a sample
term with v excited pairs, i.e., that component of the
wave function containing the coefficient

(mims I
~

I pips)(msm41~1psp4)" .
X (m2 1m2 —

I
+

I p2 —1p2 ). (3.7)

The diagonal contribution of this term is

IJl 1(ms'-ims'I ~
I ps-ips') I

')
i=1

&& L(c'p
I
+

I
C'3)+Q (eH. F.(p2i—1)+eH. F.(p2i)

i=1

sH. F.(m2, 1)—eH F.(ms'))+ (corrections)), (3.8)

where e(p) and e(m) are defined by (3.5) and (3.6),
respectively. The term (corrections) in (3.8) comes
about from the fact that in the component (3.7), not
all the particles but the two in question (e.g. , 22—1, 2i),
occupy their hole states. Thus the difference of the
diagonal contribution from & CIHpIC'p) may not be
expressed in terms of the energies (3.5) and (3.6) alone.
The correction term to eH. F (Pi) is thus

(d) (e) (f)

FIG. 2. Diagrams contributing to Q ~
H

~
Ip) from pair

components with X ~~2/X= 1.

terms of type (3.9) always come in as a difference of
quantities. It may thus happen that even if P is not
particularly small these corrections will tend to Quctuate
in sign and cancel out. If this is so, one might hope that
the theory is better than one might expect. It should

be worthwhile to check this point in terms of Brueck-
ner's numerical results.

Going back to (3.8), in view of the preceding discus-

sion we shall neglect "(corrections). " In this approxi-
mation it is seen that following a given pair term
comes a whole sequence of terms all containing
the same factors, e.g. 1(mims I

~
I pips& I

'L.H. F.(pi)
+eH. F.(P2) —cH F.(mi) —eH. F.(ms)). The other factor is

the normalization factor that would be obtained for
S—2 particles with the hole states nsl, m2 omitted.
This factor we symbolize as E ' ', and the whole nor-
ma1ization (flip& is called E.t In summary the total
diagonal contribution to Q I

H
I 1()/Q I tp) is, to first order

in $

&p+p(mim21& I pips)eH. F. (pips, m,m, )
X&pips I

A
I
mims)X"'"3/E, (3.10)

2v

L&pip I
s

I pip )—&pim'I el pim )) (3 9)
j=2

This term is, in general, not negligible since v=O(1V).
However, it is clear that if the fraction, $, of the mean

number of excited pairs is small then a small error of

O(P) is made in neglecting (3.9). As this approximation
is intrinsic to the theory of Brueckner and Bethe we

have analyzed this point more closely in Appendix B.
Here it is shown that the relatively low density of the
nucleus is responsible for keeping $ small. The ultimate
reason for the smallness of P or alternatively for low

nuclear density is the weakness of the potential of
interaction. The success of the theory, in our opinion,
depends critically on this fact.

It should be pointed out, however, that the neglected

where t.H. p ——difference in Hartree-Pock energies. The
diagrams contributing to (3.10) are given in Figs. 2(a)
and (b) for particle and hole states, respectively.

'

The next terms are those arising from cross-products
of the two-body A operator with Co. When the un-

linked clusters are taken into account these terms give

L&mim21A I pips)(pips l
elmims)+c. c.)cV 1 2/X, (3.11)

which is diagramed in Fig. 2(c). Finally the terms
that arise from non-identical A operators represent
double scattering processes twice by A operators and

t Pote added er4 proof One should also de.—lete the particle states
pIp2. However, we shall omit this effect in that for singular poten-
tials it turns out not to be important. The exclusion eGects on hole
state energies, on the other hand, will be most important as they
give the Brueckner self-consistent energy denominator as shown
in Sec. IV.
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once by a ~ operator. These are'

(mlmslA IP1P2)(P1P2lvlP1'P2')(Pl'P2'IA Imlms)1V '"'/1V, particle-particle Fig. 2(d),

&mlm2I A
I plp2)(plm3 I

v
I
pl'mi)(pl'p2I A

I
m2ms)1V"'"'"3/», p«ticie-hole»g. 2 (e),

(mlmslA l pips)(plmslvl pl'ms)(pl'pslA lmlms&1V ' ' '/1V, particle-hole exchange Fig. 2(f),

&mlmslA IP,P2)(msm4lvlmlm2)(P1P2IAlmsm4)1V ' ' 3"4/1V, hole-hole Fig. 2(g).

(3.12a)

(3.12b)

(3.12c)

(3.12d)

All diagrams in Fig. 2 are with the normalization ratios
set equal to 1. The corrections due to the unlinked
clusters as they appear in normalization ratios is
discussed in Sec. 4. In (3.12) the factor 1V ' 3~3/1V is
the ratio of the normalization factor, with the three
states m~, tn2, m3 missing, to the correct normalization
factor, and similarly for E~'~'~3~4.

We shall now study the eGect of variation of
the coeKcients (Pljs I

A
I mlm2) in the approxima-

tion where the normalization ratios are unity. The

eH p A+v+Av=0, (3.13)

where the product Av contains all the intermediate
scattering included in diagrams 2(d) to 2(g). Equa-
tion (3.13) is put into standard form by defining the
scattering matrix 6".

factor (plpslA Imlms) appears as a linear coefFicient
in the diagrams 2(a) to 2(g). Hence variation puts all
these diagrams equal to zero with A determined by the
integral equation

(m, m2
I
A

I p,p,)=— (m,m,
I

G"
I p,p,).

eH. F.(plp2 mlm2)

In terms of G", (3.13), when written out in detail, becomes

(3.14)

(mlmsl G"
I pips) =(mlms

I vl pips) —~ &mlmslG"
I
pl'ps'), , (pl'ps'I v

I pips&
u1'u~' eH. p. (pl'ps', mlm2)

(msm4I G"
I P1P2) (mlms

I vl m3m4)
m8m4 eH. p. (p13ps j m3m 4)

—2 (mlmslG"
I pl'ps), (mspl'lvlmspl)

m33 Pl eH. F.(pl p2 mlm3)

&msms I

G"
I ps'pl), (mlps'I'I msp2&

fsay2' eH. F.(p2 plj m2m3)

(mlm3 I

G"
I p2 pl), (msps'

I vl msps)
tn3S 2' eH. F.(p2 pl mlm3)

(msms
I

G"
I pl'ps) (mlpl'

I
v

I mspi). (3.15)
ms@I' en. p. (pl'ps., msms)

Equation (3.15) differs from the Brueckner-Bethe
formulation in two respects: 1. Intermediate states
include hole-hole and particle-hole scattering Ldia-
grams 2(e), 2(f), and 2(g)$. 2. Energy denominators
contain Hartree-Fock energies defined by Eqs. (3.5)

' Xn addition to the terms listed above there are a few other
ways that unlinked clusters enter into hole state interactions
L(3.12b) (c) and (d)g, in addition to the simple diagrams listed
above. For example, a term entering together with (3.12b) is

(mlms I
A

I p3ps)(plm3 I 3
I p3'mr)(pr'ps

I
A

I msm3)

x (m3m4 I@ I p3p4)(p3p4 I
A Imrm4)

Such terms lead to considerable combinatorial complication. As
we are interested in the derivation of the Brueckner approxima-
tion we shall not pursue these terms further in this paper. They
constitute refinements on 3-body clusters, already shown to be
small in the nuclear problem.

and (3.6). We return shortly to a discussion of these
points, after first deriving the expression for the energy.

The integral equation (3.15) has put all the diagrams
of Fig. 2 equal to zero. This leaves over the first term
Eo in (3.10) and the complex conjugate term in (3.11).
The Hartree-Fock potential energy contribution to Eo
and the term A v that arises inEq. (3.11)are diagrammed
in Fig. 3 together with their sum as given by Eq (2.6). .
In accordance with the general theorem of Sec. 2, the
energy is expressible in terms of these two terms alone,
even though an approximate wave function was used.
The energy is given by Eq. (2.9) using (2.8) with Har-
tree-Fock energy denominators. Equation (3.15) must
be solved to find the term (mlmsl G"

I P1P2) that enters
into the definition (2.8).
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We now return to a discussion of the integral equa-
tion (3.15). The intermediate states other than the
usual particle-particle scattering are given by diagrams
2(e), 2(f), and 2(g). It is obvious that any theory
which handles scattering matrices in an unbiased
fashion must come out with these diagrams included
since they are merely symmetric counterparts of
particle-particle scattering. In the theories of Brueckner
and Bethe these higher order interactions of holes are
said to be three- and four-body clusters (since the
number of particles involved is given by the highest
index on m in the integral equation). This is, a some-
what useful classi6cation, though artificial. It is arti-
6cial because, in the general theory, holes and particles
always are involved symmetrically. The classification
is useful because, for hard-core-type interactions, the
momentum restrictions in hole interactions (a hole has
momentum less than the Fermi momentum) renders
these terms negligible. For nonsingular interaction, the
hole interactions are as important as the particle inter-
actions. Here, however, the Born approximation is
probably fairly good in the nuclear problem as has been
emphasized by Swiatecki' and Bethe. ' In this case, the
whole question is unimportant. At high density, the
Born approximation decidedly breaks down as has been
pointed out by Hugenholtz' and the hole interactions
will certainly play an important role (in fact dominant).

The other interesting point about the integral equa-
tion is the presence of Hartree-Fock energy denomina-
tors. These were prescribed by the form of the integral
equations for the A operator in (3.13) which in turn
followed from the analysis leading to the expression
(3.10). For nonsingular potentials it is reasonable to
accept the Hartree-Pock energy denominator as a 6rst

Fio. 3. Diagram of the energy equation (2.8).

approximation since this accounts in a rough way, for
the particle interaction with the medium. For singular
potentials, this is out of the question and a more
sophisticated theory must be developed. The trial
function given by (3.1) will not give finite particle
state self energy. The reason for this is that when the
trial function admits of the correlation of a pair, then a
given member of that pair may not be simultaneously
correlated with another third particle in the medium.
It is thus that the uncorrelated or Hartree-Pock
particle energy enters into the integral equation (3.13).
This necessitates broadening the class of admitted trial
functions as will be discussed in Sec. V. However, the
hole states do have finite self energy, expressible in
terms of the scattering matrix G, even for the simple
pair function (3.1).These corrections lie in the unlinked
clusters as they enter into the normalization ratios
1V '"'/N. The discussion of such terms is the subject of
the next section.

IV. HOLE-STATE ENERGIES

To calculate renormalized hole-state energies, it is
necessary to evaluate the normalization ratios 1V '"'/1V
that appear in (3.10) and the following. N~'~' is, by
definition, the normalization factor with m~, m2 missing
which leads to

N '"'=1+ 2 2 I(m3~4IA I pap4&l'
m3, m4+m1 r m2 P3P4

m3, m4, ms, m6+m], m2 p3, +4, pg, p6
I(~3~41 A

I p3p4) I'I(~5~~IA
I p~pe) I'+ (4 1)

Equation (4.1) is conveniently rearranged by adding and subtracting the restricted terms.

I(~i~3IA I pip3) I'—p I(~2~3IA I p2p3) I'
m3+mg m3gm2

—2 l(~i~alA I pip3) I' ~ 1(~4~~IA I p4p~) I'
m3+m1 m4, mg+m1, m3

—Z l(~2~8IA I p~p3&l' ~ l(~4~~IA I p4ps)l' —". (4.2)
m3/m2 m4, m5&m2, m3

All p indices are to be summed in the above.
In (4.2) we have neglected those special terms which

arise from m~, m2 occurring in the same factor of A.
This kind of neglect leads to a 6nite error in terms which

are very high order interactions in (4.2). Again the
argument following (3.8) pertains i.e., if a small,

'%. J. Swiatecki (quoted by H. A. Bethe in reference 2).

albeit 6nite, fraction of particles are in excited states
in the large components of the wave function then the
approximation is acceptable.

Equation (4.2) is easily converted into a recurrence
relation by noticing that the factors which follow

I (mrm3
I
A

I pip3) I

' are precisely those that enter into
the de6nition of E ' 3 and similarly for m2.

Hence, we have the integral equation for N~i~2/1V
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given by
&"'-'/&=1 —2 Z l(mtmsIAIptp)l'1l1-'-'/& 2— & l&msmsIAIpps)l'&"' '/& (4.3)

t$3+tRl PI@3 tn3/m2 P2u3

We shall use Eq. (4.3) together with the expression
for Q IVI)P&/Q I)P& found in Sec. III to find variation-
ally the best (mtmslA jptps&. We will omit terms in-
volving hole-state interactions L(3.12b)—(3.12d)5, as
the argument below is not so simple when these terms
are included. Inclusion of these terms not only renormal-
izes hole-state energies but introduces additional com-

plicated terms. The retained terms are those which
lead to the Brueckner theory.

For easy reference we write below the expression for
&tt I

FI l)P)/(p I lt ) omitting hole-state interactions as well
as corrections higher order in $ as discussed after
Eq. (3.8). Thus we take the sum of (3.10), (3.11),
and (3.12a)

&lt I
&

I 0&/8 Ilia&= Eo+2 I (m(ms I
A

I P~ps& I
'«.F.(P~ps; m~ms) &-'"'/~'

+Zj:(mtms I
A

I p)ps&&p)psjv Imtms&+c. c.5)V"'"'/7

+&&m~msl A
I Ptps)(p~ps I

vjpt'Ps'&&Pt'Ps'I Ajm~msP"'"'P' (4 4)

In (4.4) appear the coefficients X"( ' which are func-
tions of the A matrices given by the solutions of Eqs.
(4.3). This functional dependence is most easily ac-
counted for by using the method ofI.a Grange multipliers.
We consider the E ' & to be independent variables in

(4.4) and the Eqs. (4.3) are taken to be conditions

among the variables. Introducing the multipliers

)).m')))&', we shall minimize the function LQ I VI)P)/&)P Ilt'&

Q))m)m&Fm~m) 5 where

F,-;—=1—&"'"—2 LZ l(mm. IA I
p'ps&l'V"'"'+& lm mal A

I p p")I'1l™5. (4.5)

Varying (ptpslA I mtms) leads to the equation

{m,mslAlp, ps&LeH. F.(ptps,
.mtms)+/ X 1 3+/)( 2 85

m3 fn3

+&m~ms I vl ptps)+Z(m~mslA I p~'ps'&(pt'ps'I vl p~ps&=o, «6)
and variation of E ' ' leads to

2 (I&mtmsIA I ptps) I'«.F.(p~ps; mtms)+L&mtmsIA I p~ps)(ptpsjvlmtms)+'c 5}

+(mtms I
AvA Imtms)+)) ~t~s+ & )(~t~sj(mtms I

A
I p)ps) I

'+ 2 "ms~sl (mtmsl A
I ptps) I

'=0 (4 7)
~3y F172 m3y PlP2

The last three terms in (4.7) come from the coefficients
of S ' in Fmym2, Fmym3 and Fm2ms, respectively, these
being the only terms that contain 1V ' '. Equation (4.7)
is easily rearranged into more recognizable form by
putting the terms containing Amjma and Am~m3 together
with eH. F.(pimps mtms). Using (4.6) it is then seen that
almost all terms in (4.7) cancel, leaving the equality

Ke define the renormalized hole state energies by

e(mt) =)!(mt)+P (mtmsl v —v(1/e')O'Imtm„"&, (4.9)
m3

where

(4.10)
e'=eH F (pt)+eH. F. (Ps) —e(m~) —e(ms),

Equation (4.8) determines the Lagrange multipliers )),.
It is thus seen that the simple pair wave function

g (m,m, l„lp,p, )(p,p, lAlm, m, ) (48) The operation (4.9) is diagrammed in Fig. 4. The
integral equation (4.6) becomes

G' = v —G'(1/e') v. (4.11)

H3
(a) (b) (c)

Fro. 4. Diagram of the definition of the self energy of a
hole state fEq. (4.7a)).

Fto. 5. The first few components added to the wave function to
modify the particle-state seH energy.
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Q-» l~
)

1f

(a) (b)
FIG. 7. Diagram of the definition of the self energy of a

particle state.

(c)

FIG. 6. Energy diagrams arising from the presence of
diagram 7(a) in the wave function.

leads to an integral equation for the two-body scattering
matrix by a variational procedure valid if the fraction
of excited pairs is small, and hole-state interactions are
neglected. The energy denominators involving hole
states are renormalized according to the Brueckner
self-consistent prescription (4.9). The particle-state
energies are still Hartree-Fock.

V. PARTICLE SELF ENERGY

In order to convert the Hartree-Pock particle energies
in Eq. (4.9) to "G matrix" energies, it is necessary to
enlarge upon the original trial function (3.1).One must
admit components of the wave function which permit
interaction of the excited states with the medium. Thus
a typical added component diagrammed in Fig. 5(a) is
(mlm2I A

I plp2) &plm3I A
I pl'p3)

X O(y» y.2e.3e-4 e-~). "(5.1)

Together with all the unlinked clusters of two- and
three-particle excitations Li.e., unlinked combinations
of Figs. 1(a) and 5(a)j.

The addition of component (5.1) to the wave func-
tion introduces various new terms into &QI1+ Ilp&.

There are s~x new bubble diagrams, a sample of which
is shown in Fig. 6(a). There are two diagrams which
close off the AA product of (5.1) with a mA product.
One of these is shown in Fig. 6(b). There are six inter-
action terms which are the analogs of Figs. 2(d) to
2(g). A sample is the particle-particle interaction shown
in Fig. 6(c). Finally there are diagrams of the type 6(d)
in which particle "3," having interacted with particle

"1"through an A matrix, is scattered back to its hole
state by particle "2." We now introduce the funda-
mental approximation stated below.

A pproximatio23. Tho—se diagrams in which more than
two particle-hale loops are directly connected Las in
Fig. 6(d)] will be neglected. Thus if a particle F inter-
acts with a particle v' involving a change of state, the
inverse of this process again involving the par-
ticles v and v' must occur in the diagram either
through a dotted line or a wavy line. With this ap-
proximation it is simple to find an integral equation for
(plm3I A

I pl'p3) by variation. We first define

(plm3IG'I pl p3)ml;m2F2

6H.F. 1 &H.F. 2 &H.F. 3

—4(m, )—e(m2) —2(m3) j(plm3IA I pl p3). (5.2)

The subscripts ml, m2, p2 in Eq. (5.2) indicate the holes
and excited particles that appear in a given diagram
other than those specifically involved in the particular
scattering process. This is a necessary notation as is
witnessed by the presence of the six possible bubble
diagrams one of which is Fig. 6(a). The integral equa-
tion is then (we again omit hole-state interaction)

(plnz3 I

O'
I pl'p3)ml;m23 2

=(plm3IF —G'(1/e')F
I pi'p3). (5 3)

The e' in Eq. (5.3) is the threefold energy difference that
appears in the definition (5.2). Equation (5.3) contains
the so-called oG-energy-shell propagator due to the
presence of the difference e(p2) —e(m2) in the scattering
equation for particles "1." and "3."

Once the matrix &plm3I GI p, 'p3)ml;m2F2 is known it
may be substituted into the complex conjugate diagram
of Fig; 6(b). This is then combined with the dotted-line
bubble diagram of Fig. 2(a). The result is a wavy-line
bubble diagram as indicated in Fig. 7. Thus the particle-
state energy is

Le(pi) jml;m2F2= (pl I
T

I
p—l)+p (plm3I G'I plm3)mi;m23 2,

fn3

(plm3 I
G

I plm3&ml m2F2—= &plm3 I
F

I plm3) —&(plm3 I
F

I
pl'p3)

(5 4)

X- (p'p IGIp ) (55)
eH. F.(pl )+eH. F.(p2)+eH. F.(p4) (2m) le(m2) e(m3)

The hole energies are still given by Eq. (4.9).
It is now necessary to add to the trial function

terms which will convert the dotted-line bubble dia-
grams 6(a) to wavy-line bubble diagrams. These terms

are diagrammed in Figs. 5(b) and 5(c), respectively,
defining the SymbOlS (m4pl'IG'Ip4p, ")mlim2P2im333 and

(m4p3I G
I p4p3 )mlyl', m2F2;m3. With the use of our funda-

mental approximation, these terms introduce diagrams
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which convert the bubble diagrams of Fig. 6(a) to
wavy-line bubble diagrams. Hence the integral equation
(5.3) must be rewritten now containing "G matrix"
particle state energies as well as "G matrix" hole-
state energies. The hole-state energies are given by
an equation of the form (4.9) with G' replaced G.
(mim~(G)mim2) is defined in terms of (mim~(G(pip, )
as in Eq. (2.8) with the energy denominator expressed
completely in terms of "G matrix" energies.

The general pattern is then to add successive particle-
hole pair components to all particle lines that appear
in f. For a component possessing v excited pairs, there
are all possibilities of diagrams containing ~ scatterings
of one particle to one scattering each of v+1 particles.
Each such scattering de6nes a G matrix with a subscript
de6ning the previous history of the diagram before the
particular scattering in question. This subscript labels
the number of holes and particles present in the wave
function at the time of the scattering in question.
Variation of each of these G matrices leads to an in-
finite hierarchy of integral equations.

As this hierarchy of equations has already been
presented in the literature we shall not duplicate it here.
Reference may be made to Brueckner and Gammels
where it is shown how the entire hierarchy may be
reduced to a single equation. We would like to stress
here, that this hierarchy of equations is not derivable
variationally even to first order in the parameter (
introduced in Sec. III. The theory here depends com-
pletely on the proof of the negligibility of the cross-
linked clusters such as in Fig. 6(d). All that has been
shown here is that the Brueckner-Bethe hierarchy of
equations minimizes a part of (P ~

H ~P)/g ~P) (the non-
cross-linked diagrams and intermediate particle-state
interaction only) if P is small.

VI. CONCLUDING REMARKS

We briefly summarize the results of this paper. The
simple trial wave function introduced in Sec. III suc-
ceeds in formulating the energy in terms of a,diagonal G
matrix. In the approximation that only a small but
finite fraction of the particles are excited in the im-
portant part of the wave function and intermediate
hole-state interactions are omitted, it is possible to find

by variation an integral equation for the nondiagonal G
matrix. However, this integral equation contains Har-
tree-Pock energies for the particle states. The hole-state
energies are given by diagonal G matrices as proved in
Sec. 4. In order to convert the Hartree-Fock particle-
state energies to "G matrix" particle energies, the trial
wave function must be completely modihed. These
modifications destroy the simplicity of the simple pair
theory by introducing cross-linked clusters such as
Fig. 6(d). If the approximation is made of neglecting
all such cross-linked terms, but retaining all "self-
energy" terms, the simplicity of the pair theory is

K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(&958).

recovered. All particle state energies are then converted
to "G matrix" energies. These particle state energies, in
addition to being functions of the state in question, are
also functions of all holes and particles that exist in a
particular diagram at the time the particular pair
containing the particle in question is created. This
circumstance necessitates defining an infinite hierarchy
of integral equation. The result is that the part of

Q ~

H
~ P) containing non-cross-linked diagrams and

particle state interactions only is minimized to first
order in P. Only in this sense are the Brueckner-Bethe
integral equations derivable from a wave function.

To the extent that the omitted terms are small, varia-
tional thinking is valid and Brueckner's procedure of
minimizing the energy with respect to the density is
permissible.
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APPENDIX A

The diagram notation of Goldstone as used here is
the following. The sequence of events in a matrix ele-
ment reads from left to right in the notation of
this paper. Correspondingly a diagram reads from
down to up. Particle (hole) states are represented
by lines directed up (down). An A matrix of the type
(mim, ~A~p, p, ) creates two particle-hole pairs. These
are created on the same level of the diagram and are
connected by an "A" line which is a wavy line. This
explains the notation of Fig. 1(a). Some A matrices
create a pair while merely scattering a second particle
from one particle state to another, i.e., (pima~ A

~ p, 'p, ).
This is diagrammed in Fig. 7. The same notation is used
for v matrices, but the wavy line is replaced by a dotted
line.

Some interactions scatter particles from one state to
the next. These are represented by dotted (for v

matrices) or wavy (for A matrices) lines terminating on
the hole and particle lines that are scattered such as
Fig. 4(d).

Other interactions are diagonal in character and leave
the particle in the same state it was in before. In this
paper both direct and exchange elements are grouped
as one and are represented by one bubble diagram
attached to the particular particle or hole line in ques-
tion. An example is Fig. 2(a).

APPENDIX B

In this appendix, we will And an approximate expres-
sion for the fraction of excited pairs in the pair wave
function (3.1) together with all unlinked clusters. Let
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us consider all terms in the normalization integral

Q l P) that have P pairs excited. These number

N!/(N —2P)!P!2;P&N/2. Their average coeKcient
is (Qplpsl(1sgÃzslA lprpsl')A, , where the average is
over hole states. Calling this latter coeKcient $/N, we

have for the contribution of all terms with I' pairs
excited the value

(P) „/,'N=$. - (8-2)

If g«1, then (8-1) is a good approximation. Further
the relative dispersion about the (P)p„ term is small like

O(1)/N, i.e., (P')p„/(P)A„' ——1/(P) p, . In this respect
Q l P) is quite like the cluster expansion of the partition
function in statistical mechanics where the relative dis-

N! )P ~ Nr P
I' P

f.. —«1 (8-1)
(N —2P)!P!NP (2j P! &2) N

Let us assume (8-1) to be valid for all P. Then (8-1)
dehnes a Poisson distribution and we have for the mean
fraction of excited pairs the value

1
g-l (14" .I')"—ll (8-4)

volume over which a pair is correlated
(8-5)

volume per nucleon

Bethe and Goldstone4 have shown that for a hard-core
interaction of the correlation range is of the order of the
core radius. Further, they expect that an attractive well
outside the core will not change this substantially.
This would give an estimate for $ from (8-5) of $= 1/10.

persion about the mean cluster populations is again
O(1)/N.

An expression for $ is found by observing that for an
isolated pair the wave function of the particles in the
pair is

lf stss ——el ystyss+Q, (k,ks l
A

l kt+ q; ks —
q)

Xg&r+p41ps —s, (8-3)
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Longitudinal Polarization of Bremsstrahlung and Pair Production*
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Brookhaven Xationa/ Laboratory, Upton, Rem York
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The Born approximation bremsstrahlung (and pair production) cross sections, valid at all energies and
angles, are given for all possible states of longitudinal polarization of the particles involved.

When the photon-incoming electron angle (Hp) and the photon-outgoing electron angle (H) are both zero, a
cancellation of Feynman diagrams causes all cross sections to vanish in Born approximation. Further, if
both Hp and H are small compared to happ/&pp, the "spin-Qip" cross sections are small (of order H') relative to
the "non-spin-Qip" ones. When account is taken of the above cancellation, angular momentum conservation
is sufficient to determine this small-angle behavior, but it explains neither the sign nor the magnitude of the
bremsstrahlung circular polarization.

INCH the recognition by Goldhaber et al. ' that the
circular polarization of bremsstrahlung can serve

as a useful means of measuring longitudinal electron
polarization, considerable interest has developed in the
bremsstrahlung cross sections for specific polarization
states of the incoming and outgoing particles. Although
several cross-section calculations are now available, '
little emphasis has been given to the differential cross
sections for the most general combinations of longi-
tudinal polarization, nor has an attempt been made to
understand the physical origin of the polarization
effects. We shall present these cross sections in detail,

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' Goldhaber, Grodzins, and Sunyar, Phys. Rev. 106, 826 (1957).' A definitive calculation of those integrated cross sections which
are of most immediate experimental interest has recently been
supplied by C. Fronsdal and H. Uberall LPhys. Rev. 111, 580
(1958)j, which contains references to previous calculations.

and call attention to their seemingly anomalous be-
havior at small angles. The explanation of this anomaly
provides some physical insight into the details of the
process, and brings to light the rather unexpected role
played by orbital angular momentum in the polariza-
tion phenomena.

In both bremsstrahlung and pair production, the
total number of incoming and outgoing particles
(apart from the static nucleus) is three, and since each
particle has two states of longitudinal polarization,
there are eight possible cross sections. However, by
Lenard's theorem, ' two cross sections which differ
from each other only in having all three spin directions
reversed are equal in Born approximation, so to this
approximation there are only four distinct cross sec-
tions. H only one of the outgoing particles is to be

' A. Lenard, Phys. Rev. 107, 1712 (1957).


