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Predicted Radiation of Plasma Oscillations in Metal Films*
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Because of their highly collective nature it is predicted that
plasma oscillations in a thin metal film should, under the proper
circumstances, give off ultraviolet radiation. The plasma oscilla-
tions can be excited by fast electrons, incident normal to the film

and inelastically scattered by it. Surface effects are essential, and
of the special types of oscillations which can occur in a plane
parallel slab of electron gas, only that involving motion normal
to the slab can radiate. The yield is computed to be one photon
for every one thousand electrons incident at 10 kev. The: radiation
is at the plasma frequency, co„,or at 2100 A for a sodium film.
Its identification should be facilitated by the characteristic cos8
dependence of the intensity, where 8 is the angle between the

foil normal and the direction of emission of the photon. Straight-
forward computation yields a radiative mean life of o&„(X~/sr)
)& (cos8/sin'8), which is generally shorter than that due to
intrinsic interband damping, except at small angles. X~ is the
photon wavelength and r the film thickness. From the competition
of the two decay modes it should be possible to determine the
intrinsic damping rate, and hence the product of the optical
constants nk. The radiative lifetime is so short as to produce
appreciable line-broadening, and thereby provide an independent
check on the experiment. In the appendix the inelastic electron
scattering coeKcient is derived for the excitation in a thin film
of the radiative-type plasma oscillations.

I. INTRODUCTION

M~NE of the most striking of the electronic properties
of a metal is the ability of its electron gas to

undergo plasma oscillations. These oscillations, in

which all of the conduction electrons participate, are a
consequence both of the inertia of the electrons and
of their repulsive Coulomb interactions. Definite
evidence for these oscillations is obtained from experi-
ments in which a metal foil is bombarded with fast
electrons (of, say, 20 kev) whose energy is precisely
measured both before and after they have passed
through the foil. The energy lost is found not to have
random values, which might be expected from chance
collisions with conduction electrons of various velocities
in the metal, but on the contrary to be quite discrete.
For some metals (such as Al, 3~fg, and the alkali

metals) the energy loss spectrum consists of especially
sharp lines —the so-called characteristic energy losses
or eigenlosses. These lines appear at multiples of a
basic quantum of energy which is generally found to
be equal to Plznck's constant times the classical
frequency of oscillation of the electron plasma in the
metal. For this, and other reasons, the energy loss

experiment is most naturally interpreted in terms of
plasma excitation' ' and the basic unit of energy has
been termed the plasmon. '

The accuracy and resolution of the energy loss

experiments are limited by the necessity of using high-

energy electrons. (The mean free path of the incident
electrons must be of the order of magnitude of, or
greater than, the thickness of the foil. Otherwise more
complicated multiple scattering processes will occur. )
The energy loss is of the order of a few electron. volts
and quite small by comparison. The quantity of
interest is thus unfortunately the di6erence of two

la,rge and practically equal numbers. It would conse-
quently be highly desirable to find an alternative
method of measuring the frequency of the oscillations.
Since accelerated electric charges in general radiate, it
is only natural to hope that under suitable circumstances
the plasma oscillations will give off electromagnetic
radiation. The wavelength of this ultraviolet light would
then yield a precise value for the frequency. It is
immediately clear that the oscillations must have
wavelengths at least as long as the radiation arising
from them. As a consequence the electric field, which
acts between diGerent portions of a plasma wave and
sustains its oscillation, may suer important retardation
corrections. Although these corrections have not yet
been thoroughly studied, 4 we want to present in this
paper several conclusions which seem to be independent
of retardation. In particular, we find that fast electrons
passing through thin metal foils should yield some
fluorescent radiation via plasma oscillations.

Although the sharp eigenlosses observed in many
metals are quite generally attributed to collective
oscillations of the electron plasma, there seems to
have been no attention, either experimental or theore-
tical, to the possibility that these oscillations might
give oG detectable radiation, of wavelength correspond-
ing to the characteristic frequency of the plasma. '
This situation is without doubt attributable to the
longitudinal nature of plasmons in a bulk electron gas.
In such a case the electron motion is in the direction
of the plasmon momentum and is therefore not coupled
to the transverse waves of the electromagnetic field.
This restriction does not, however, apply to the thin
foils which are used in the transmission-type eigenloss
experiments. The image force at the surfaces of a
foil constrains the electrons to remain inside, and

* Supported in part by the 0%ce of Naval Research.
' R. A. Ferrell, Phys. Rev. 101, 554 (1956).
s R. A. Ferrell and J. J. Quinn, Phys. Rev. 108, 570 (1957).
' D. Pines, Revs. Modern Phys. 28, 184 (1956). This survey

article should be consulted for further references in the field.

4 They are presently being investigated by the present author
and E. A. Stern of this university.

"A report on these ideas has been given at the Eugene, Oregon
meeting of the American Physical Society LR. A. Ferrell, Bull.
Am. Phys. Soc. Ser. II, 1, 244 (1956)g.
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contributes an uncertainty to the momentum normal
to the foil. The plasrnon thereby acquires a degree of
transversality, which enables it to radiate. Experimental
detection of this radiation should not be dificult, and
promises to be a useful tool for studying the plasma
oscillations in metals. Not only would it constitute
decisive evidence for the collective nature of these
oscillations, but, as mentioned above, it would provide
a means of measuring the plasma frequencies with an
accuracy in excess by orders of magnitude of that
attained by the conventional method of electron energy
loss. As we have seen above, the energy loss method
requires taking the diGerence of two large quantities,
each of which exceeds the quantity of interest by a
factor of the order of 10'. The optical method, on the
other hand, would measure the difference directly.
Both methods are familiar in the analogous Geld of
nuclear physics. The "optical" method in the latter
case is, of course, the general technique of gamma-ray
spectroscopy, and is an indispensable tool for investigat-
ing the excited states of nuclei. It may be expected
that the corresponding technique in solid-state physics
could assume comparable importance. To push the
analogy further, the experiment we are here advocating
for the metal foils' corresponds, for the nuclei, to the
well-known Coulomb excitation by incident charged
particles followed by detection of the fluorescent gamma
ray.

The plasmons which radiate must have essentially
zero momentum parallel to the foil, since the wave-
length of the optical radiation, X„=2vrc/~„,is very
long (of the order of 10' A). (c is the velocity of light
and a&~ the plasma frequency. ) As will be shown below,
the type of oscillation which radiates involves electron
motion primarily normal to the foil, and consists
essentially, over any particular region of the foil,
of a vibrating double layer with phase appropriate
to the region. The phase varies gradually as one passes
along the foil from one region to another, and is
specified by the factor expi(k, x+k„y),where the front
surface of the foil has been taken in the x—

y plane and
kk, „arecomponents of the plasmon momentum in
this plane. This vector, which we designate by kk,
determines the direction of the photon emitted by the
plasmon. Letting the photon wave number be of
magnitude k„=2m/X„=&a„/cand have its direction at
angle 8 with the s axis (direction of motion of the
incident electrons), conservation of momentum in the
x—y plane requires k„sin8=k, or

sin8= k/k~.

(Throughout this paper we deal only with the case of
normally incident electrons. ) Thus, plasmons of
momentum greater than Ak„cannot radiate and can

'EAorts to detect the radiation from sodium foils are being
made by E. J. O'Brian, R. M. Talley, and K. P. Trounson of the
Naval Ordnance Laboratory.

dQ= (kk~/P)'2m sin8d sin8
= (hk„/P)' cos8(2m sin8d8), (2)

where the quantity in parentheses is now the differential
solid angle for the photons. The probability per unit
solid angle per incident electron of emitting a photon
at angle 0 to the s axis can consequently be written as

p„(8;r) = [p(0; r)/2](kk„/P)' cos8, (3)

where p„(8;7) is the scattering coefficient for photon
emission. A factor of one-half has been included because
any given plasmon will radiate equally both above and
below the x—

y plane.
The photon yield per incident electron, V(r), can

be found by integrating Eq. (3) over all photon solid

- 7 pdQ is v times the differential inverse mean free path" of
reference 1. We prefer to avoid introducing an equivalent cross
section per electron, as done by some authors, since the scattering
is a property of the interacting electron plasma and does not
exist for individual electrons isolated in space.

only decay by ordinary electronic damping. Those with
k&k„decay with both modes of damping competing.
According to estimates arrived at in Sec. IV below,
the effective lifetime due to radiation alone is surpris-
ingly short. Therefore, in relatively ideal metals, such
as aluminum, magnesium, and sodium, radiation
competes so favorably with electronic damping that
the decay can be expected to go almost entirely by
radiation, provided momentum conservation permits.
The radiation lifetime determined below is, to be sure,
angle dependent and increases as 8 ' for small 8.
Therefore, in the limit of small angles electronic
damping is bound to dominate, and no radiation will
be detected. The angle at which the radiation intensity
begins to fade provides therefore a measurement of the
intrinsic electronic damping rate.

By assuming that every plasmon which is a11owed to
radiate will do so, we can very easily determine the
angular distribution of the radiation. As explained in
the preceding paragraph, this assumption can be
expected to be valid except at the small angles, where

- the intensity determined here is an overestimate. From
reference 1, Eq. (8), we see that the probability of
creating a plasmon by inelastically scattering a fast
incident electron is independent of plasmon momentum
kk, for small values of k. Equation (8) must bymodified
for very thin foils, as is shown in Appendix I, but its
constancy for small k remains unchanged. Let us define
the scattering coefficient y(u; ~) by writing the probabil-
ity of inelastically scattering the incident electron by
angle u into solid angle dQ as y(n; ~)dQ, where r is the
thickness of the foil. ' Conservation of momentum for
the plasmon creation process determines dO as (k/P)'
times the element of area in the k,—k, plane, where

p is the momentum of the incident electrons. The
element of solid angle corresponding to photon emissioa
into a cone between 8 and 8+d8 is obtained by referring
to Fig. 1 of reference 1 and to Eq. (1) above. One finds
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angles,
I"(r) =li(0; r)rr(hk~/P)'.

hp=k(u, /e=2x- kX„''(e/-c) ' (Sa)

This momentum change corresponds to a difference in
the wave numbers of the initial and 6nal states of
the electron of Dk=Ap/h. Consequently, using the
Born approximation to describe the interaction of the
electron with the plasma, we see that the electron causes
the excitation by means of an eRective potential which
has a variation in space corresponding to the wavelength

The scattering coeKcient y (0; r) is calculated in
Appendix I, but here a few qualitative considerations
will su%.ce for our purpose. The main point to be noted
is that, for optimal yield, the incident electrons should
be of as high velocity as possible. This is seen by
considering the equation AE= v-Ap, essentially one of
Hamilton's canonical equations of motion, where AE
and Ap are the energy and momentum lost by the fast
electron and v is its velocity. Setting AE=Aco„, the
plasmon energy, we find the minimum value of hp by
taking the two vectors parallel:

have, after substituting from Eq. (Sb)

e' ( 8~' ) ~sin'(sr/X, „)q
m'he & (as+8Es)s) E err/A,

It is interesting that the total scattering codFicient
integrated over all angles of scattering yields simply

e' (sin'(m r/X.„)q
p(n, r)2rrndn=

~s
'

ae & ~r/), . ]' (6b)

(7a)

and does not contain the logarithmic factor of Pines"
expression for the mean free path for plasmon excitation
in a bulk electron gas. Equation (6b) is consequently
independent of the short wavelength cutoff for
plasmons. This is because only plasmons of a certain
type are included in Eq. (6a). Setting n=0, making
the choice r=X,„/2 of the preceding paragraph, and
substituting into Eq. (4) yields

X. =2m./Ak= (e/c)X, . (Sb)
This result can be increased somewhat by choosing the
somewhat smaller thickness v =0.373, , giving

d(i/X) 1

2s me'gs L rrs+8es J

(Here we use n instead of 8 for the angle of scattering,
to avoid confusion with the angle of photon emission. )
By re-examining the derivation of this expression it is
easily seen that it is relativistically correct, provided
8ir is defined as Ap/p=Fue~/ep. In Appendix I it is
shown that as a consequence of the finite thickness
of the 61m two correction factors arise. The first is
(s-r/X, ) ' sin'(~r/X, „)and expresses quantitatively
the eGect discussed in the preceding paragraph.
The second is 8s'/(n'+8s') and results from the special
nature of the plasma oscillations in thin films. Thus we

If the foil is too thick compared to P, the effective
potential will act on different parts of the plasma with
diferent phases and be ineffective for the present
purpose. For v/c= —', (about 10-kev electrons) and
X„=2100 A (Na plasma radiation), Eq. (2) gives
), =420 A. The optimal thickness of the foil would

generally be approximately one-half a wavelength,
which in this case amounts to about 200 A. In carrying
out the experiment care should be taken not to exceed
this limit, which, however, can be raised by using
higher energy electrons.

Having determined the optimal film thickness, we
now need an explicit expression for the scattering
coeKcient li(n; r). As a first approximation we can
take over the expression for the bulk electron gas
LEq. (8) of reference 1j:

Y=0.0053~/c. (7b)

Equation (7b) gives one-tenth of one percent, or one
photon for every thousand incident electrons, for the
case of e/c=-s'. As already emphasized, the yield will
be increased to the extent that it is possible to use
electrons of higher incident velocity and 61ms of
appropriately greater thickness. In this way the
scattering pattern can be contracted more into the
very small angles which correspond to the very long
wavelength radiative-type plasma oscillations. Equa-
tion (7b) predicts a maximum yield of one-half of
one percent.

A further item which we mention here only in passing
is that, in the preparation of these relatively thin
foils, the metal generally aggregates on the substratum
in the form of small spherical droplets. ""Special
experimental techniques are required (e.g., deposition
at low temperature) to obtain a uniform flat slab of
metal with plane parallel surfaces. Being the simplest,
this is the only case dealt with below. It is hoped,
however, that in the future some detailed calculations
can be made on the radiation to be expected from the
nonideal case of separate spheres distributed at random
over the substratum. If the spheres are suKciently
isolated from one another they will all vibrate independ-
ently, but in unison, at the reduced frequency co~/v3.

' D. Pines, Phys. Rev. 92, 626 (1953).
s R. A. Ferrell, Phys. Rev. 107, 450 (2957).' O. S. Heavens, Optical Properties of Thin Solid Films (Butter-

worths Scientinc Publications, Ltd. , London, 1955)."H. Mayer, Physi k Dunner Schichten (Wissenschaftliche
Verlsg Sgesellschsft, Stuttgart, 1950), Vol. I.
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II. DIELECTRIC THEORY

The dynamic electrical properties of a medium are
expressed by the frequency dependent dielectric
constant e(&e). Generally s is also a function of wave
number, but in the present problem we are interested
only in long wavelengths, i.e., in the limit of vanishing
wave number. For the free electron gas

e (ce) = 1—/d „'/e/'.

is defined as the ratio of the electric displacement
vector D= E+4s.P, (where P is the polarization), to
the electric Beld K. Thus,

D=e (9)

For a bulk gas in the absence of external sources D =0,
which requires &K=0. The condition for a nonzero
electric field is therefore e=O, which according to
Eq. (3) gives

just the classical frequency of oscillation. The case of a
bounded slab of gas extending from the plane s= —7/2
to s=+r/2 is more complicated. In the absence of
external charge we can no longer conclude that the
displacement vanishes, but only that it satisfies the
continuity equation

v' 9=0.
This equation has the well-known consequence that
the normal component of D, in this case D„is con-
tinuous across the boundaries. Substitution of Eq. (9)
into Eq. (11) gives V E=O, except at the boundaries,
where e is discontinuous. Setting E= —V'p, where y is
the electric scalar potential, we 6nd Laplace's equation.
Because of the symmetry about the s=O (i.e., x—y)
plane the solutions must be either even or odd functions
of z, and it is necessary to consider only positive values
of s. For 0(s(r/2 we have

p= qs cos(k. x+8)(e'*Me '*),

"The optical properties of nonuniform metallic films of this
type have been studied by E. David LZ. Physik 114, 389 (1939);
115, 514 (1940)j.

Since they are all excited at the same time by the
incident electron they will oscillate in phase and
contribute coherently to some detectable radiation at
this reduced frequency. "

In the following pages, Sec. II gives a treatment of
the long wavelength plasma oscillations by means of
the frequency dependent dielectric constant. Of the
two diferent possible types, the type which can
actually radiate is selected in Sec. III, which discusses
the eGect of retardation. The radiation lifetime of
these "normal" oscillations is computed in Sec. IV
and shown to be much shorter than the ordinary.
interband damping lifetime, for relatively ideal metals.
Section V concludes this paper with a brief summary. (eke/2~e —sr/2)

6 CO

(es r/2~ e sr/2)— (12)

the dispersion relation between the wave number k
and the natural frequency of vibration co. Substitution
from Eq. (g) and solving for a/ gives the relation more
explicitly as

(1~e sT)
CO=Cgp (13)

This equation, first derived by Ritchie" in a di6erent
way, has two interesting limiting cases. For short
wavelengths, kv&&1, e ~'(&j., and the surface waves
become decoupled and do not interfere with one
another. Each surface sustains independent oscillations
at the reduced frequency of &es/V2, characteristic of
a semi-in6nite electron gas with a single plane boundary.
The opposite limit of very long wavelengths interests us
here, in which case we get "tangential" oscillations, at
the highly relaxed frequency a&=&d~(kr/2)'*, and the
electron motion is essentially parallel to the surfaces of
the foil. In addition we have "normal" oscillations, at

e/ =e/„(1 k7 /4), — (14)

or essentially the full bulk frequency. In this vibrational
mode the electrons Qow back and forth across the foil
from one surface to the other. As will be seen in the
next section, it is only for the normal oscillations that
there seems to be any prospect of radiation.

III. RETARDATION

For a foil to radiate it is necessary for the phase
velocity of the plasma oscillation to surpass that of
light, or

ce/k) c. (1~)

(This is equivalen. t to the conservation of momentum
condition of Sec. I.) It is therefore essential to know
how co varies in the limit k—4. In this long wavelength
limit the plasma oscillation involves the transport of
electrical charge over considerable distances (i.e. ,

roughly X/2) and the resulting current sets up magnetic
fields. These in turn, according to Maxwell's equations,

's R. H. Ritchie, Phys. Rev, 106, 874 (1957).

where k and x are vectors in the x—y plane and 5 is an
arbitrary phase shift, while for s) r/2 we have

q = ps cos(k x+3)e "(e'&1).
The time dependence can be included either in
(standing wave) or 5 (running wave). The normal
components of E at the boundary in these two cases are

E,= —kps cos(k x+8)(e"'/sWe s")
and

E,=kps cos(k x+6)(e""&e "'/')

Using Eq. (9) and equating values of D, gives
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relatively nearby points on the surfaces of the foil.
Therefore Eq. (14) is valid in this limit (k~O, io~id~),
as well as for the relatively shorter wavelengths. In lieu
of a definitive retardation calculation we will for the
present interpolate and assume that Eq. (14) also
holds for the intermediate wavelengths, or at least,
that it is not seriously altered by retardation. The phase
velocity then becomes, approximately,

(l~
=C

2 lt„J
(18)

1 ( 11*
= .1+ +I 1+

2q' 0 4q42
(16)

and the inequality (15) is satisfied for

produce additional electric fields and exert additional
forces on the electrons in the gas, thereby shifting the
frequency. The additional fields can be considered as
the corrections in the instantaneous Coulomb interac-
tions which are necessary to take into account the time
needed for the propagation of the true retarded interac-
tion from one point in the wave to another. Investiga-
tion of the effect of retardation is still under way.
Stern'4 has shown that the correct dispersion relation
for a semi-infinite gas is

where q=k/k„. For short wavelengths (q))1) we have
Ritchie', s" simple result id=&o~/V2, found above in

Sec. II without regard for retardation. Equation (16)
gives considerable relaxation at the longer wavelengths,
however. As a result, the crucial quantity, the phase
velocity

~/k=cL .', +q'y( ,'+q-&) *"?:--(1-7)
never attains the necessary value c but only approaches
it asymptotically in the limit q

—4. Thus there can be
no radiation from the surface oscillations of a semi-

infinite gas.
The e8ect of retardation in the actual case of thin

foils has not yet been worked out, but it is fairly clear
that the tangential oscillations, already greatly relaxed,
will be further relaxed by retardation and can be
dropped from consideration. The normal oscillations,
on the other hand, must have a much di8erent behavior.
In the limit of infinite wavelength one has simply a
plane parallel condenser discharging across itself.
The displacement current cancels out the convective
current, so that no magnetic field is set up and no
retardation correction is necessary. This can also be
seen from the fact that the restoring force acting upon

any given electron originates from charge piled up at

(1—e) Bp

(4 (2o)

It is expedient to change to a more convenient notation
than that of Sec. II and adopt the convention that the
physically real field variables are only the real parts of
the complex expressions which we now write for them.
The potential inside the foil then becomes, for a normal
oscillation,

/=2(@pe' x "' sinhksj (21)

where we have included explicitly the time dependence
for a running wave. (The phase 8 is absorbed in the
definition of the origin of time. ) For a thin foil only the
s component of current is appreciable and, from Eqs.
(12), (20), and (21), is approximately

X&X,+ (a./2) r

IV. RADIATION

The polarization current which generates the radia-
tion ls

BP (e—1) BE

Bf &W)Bf

fidk )J' — s(
~ ~ eiik x—&ot)

i~ i
(22)

0 X
=X

"E.A. Stern (private communication),

FrG. 1. Radiation 6eld outside a plasma oscillation in a thin
metal 61m. The metal film fills the region between the planes
s =Mr/2 and extends indefinitely in the directions of the x and

y axes. (The y axis is into the paper. ) The radiation field at I'
is the coherent sum of radiation originating at all parts of the
film as a result of the oscillatory motion of the electrons in the
z direction.

independent of s (since ir is a two-dimensional vector).
To calculate the radiation at a point I', many wave-
lengths from the foil, it is convenient to choose the
orientation of the coordinate axes so that the direction
of propagation of the plasmon falls along the x axis.
Then It x reduces to kx. It is further useful to choose
the origin of the y and x coordinates so that I' lies in
the x—s plane and so that the radius vector to I' makes
the angle 8 with the s axis (foil normal), respectively.
8 gives the direction of radiation and is defined by
Eq. (1) of Sec. I. If rs is the distance of P from the
origin then, as seen from Fig. 1, the distance of I' from
any other point in the x—y plane is

r= L (ro cos8)'+ (rs sin8 —a)'+y'j'*
=re—a sin8+ (x' cos'8+y')/2rs. (23)
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As is also evident from Fig. 1, the transverse vector
potential A (P,t) at P makes the angle ~/2 —8 with the
s axis. Therefore the retarded potential solution gives,
with the substitution of Eqs. (22) and (23),

f
A(P, t)=c 'sing

i J (x& & r/c)r '—dxdyds

( (ekr ) f'
i—

~ ~
&ps singe '"'

~

e"s"+~"~'dxdy
(Z~cr, & j ~

( CdkT

[&ps singe '"&' "'~'&

E2mcro &

X I t exp i~ ~(x' cos'8+y') dxdy. (24)j t. 2cr, )

Because of the thinness of the foil the variation of
phase in the s direction has been neglected. The integrals
are of the familiar form

exp(iAe')dl = (si/A) i,

so that Eq. (24) reduces to

A (P, t) =kr ps tange '"&' "«' (25)

From this expression the normal component of Poyn-
ting's vector averaged over time is easily found to be

(&osksrs
~S=

~ (
po' sing tang.

t. 8~c )
(26)

Since radiation is propagated from both sides of the
foil, Eq. (26) gives one-half of the rate at which energy
is lost, per unit area. To find the lifetime it is now only
necessary to find the amount of energy actually stored
in the oscillation described by Eq. (21).

Differentiating Eq. (21) and taking the real part
gives an electric field of approximately 2k ps cos(ka —cot),
or an average energy per unit area stored in the electric
scalar field of

U= rk'ps'/4m. (27)

As an example, for the case of radiation at 30' (8=m/6)
and 7 equal to one-tenth P„,this formula yields 7-„-'
=0.09ar„, a surprisingly fast decay rate. The mean

life itself is r,= 1.8 (2m/&o„), or only about two periods of

Because of the equality. of potential and kinetic energy
for a harmonic oscillator, U is just one™halfof the total
energy of oscillation per unit area. The radiative mean
life 7, is therefore given by

(rrp sill 8r„'=S/U= (re'r/2c) sin8 tang=re„~ —
~

. (28)
&X„Jcosg

for r=200 A=400as, (where as is the Bohr radius of
the hydrogen atom). This enormous number of electrons
radiating coherently accounts for the collective enhance-
rnent, since the transition rate of a many-particle
system is in general proportional to the number of
particles participating in the transition. The situation in
the metal foils is analogous to, but much more extreme
than, the well-known collective enhancement of
Coulomb excitation and gamma ray emission in the
heavy nuclei. "

As 8 is allowed to increase toward e/2 the decay
rate given by Eq. (28) rises to excessive values, corre-
sponding to a drastic broadening of the plasmon
energy. On the other hand, as small values of 0 are
approached the plasmon energy sharpens up. The
radiative decay rate decreases and eventually becomes
comparable to the damping rate ~~ ' due to interband
transitions. When this happens the probability of the
emission of a photon by any given plasmon is reduced
from unity by the factor 7.„'/(r, '+ rd. ') = (1+r,/rs) '
because of the branching. Consequently the factor
cosg in Eq. (3) of Sec. I, which gives the angular
distribution of the radiation, must be replaced by the
intensity function

( 1 X~ cosg)
I(8)=cosg( 1+

r,cv„7rrsinsg j (30)

The damping lifetime can be calculated from the
optical constants of the metal along lines indicated by
Frohlich and Pelzer. "The complex index of refraction
I+ik is related to the dielectric constant by the

"Alder, Bohr, Huus, Mottelson, and Winther, Revs. Modern
Phys. 28, 432 (1956).A similar collective enhancement also occurs
in the superradiant states of a gas )R. H. Dicke, Ph s. Rev. 93,
99 (1954) and A. Gamba, Phys. Rev. 110, 601 (1958 g.

'H. Frohlich and H. Pelzer, Proc. Phys. Soc. (I,ondon) A68,
525 (1955).

oscillation. Electronic transition rates in atoms are
generally of the order of magnitude of 10' sec ', while
the plasmon decay rate found here is of the order of
magnitude of 0.1 co„,or 10" sec '. This astonishingly
large enhancement factor of 10' is caused by the
extremely high degree of collectivity in the long wave-
length plasmons. Because of the lack of dependence of
the amplitude of the vector potential A (P,t) on rs we
can think of P approaching to within only a few wave-
lengths from the foil. It then becomes clear that a
rough picture of the process is that all the electrons
within a square of the foil one wavelength on a side
contribute coherently to the radiation field. From the
classical formula for the plasma frequency we have
&,=2~c/rd„= (e.mc'/ee')l, where e is the density of
electrons in the metal, and e and m are the electron
charge and mass. The number of electrons contained
in the square is

e= m (v./us) (k c /e ) = vr (137) (r/as) = 2 X10, (29)
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FIG. 2. Optical constant product nk for sodium as a function of

frequency (in units of ev/k). ek is one-half the imaginary part of
the complex dielectric constant. The circles give the measured
values of Ives and Briggs."The dashed curve shows the extrapola-
tionwhich yieldsah=0. 006at the plasma frequency ofcu~=6ev/k.
The intrinsic mean life of a plasmon against interband damping is
consequently 0.9X10 '4 sec, or about thirteen periods of oscilla-
tion. Because of the arbitrary nature of the extrapolation this
should be regarded only as a order-of-magnitude estimate. For
photon emission angles greater than about 10' the radiative mean
life is shorter than this estimate, so that the majority of the
plasmons of the corresponding wavelengths decay by emitting
a photon.

equation
e= (e+ik)'=e' k'+—2Azk (31)

GP 'ld Tg ) (32)

Thus the real part of the natural frequency of vibration
of the system remains unshifted (to first order in mk)

from co=~~, while the imaginary part is fixed by

= 2M pSk. (33)

This formula for the rate of damping by interband
transitions has already been derived by Wolff" and is
also discussed by Pines. ' Both these authors seem,
however, to have made an error of a factor of two.
The expression they give is too small by this amount.

Unfortunately, the optical constants have not yet
been measured in the necessary frequency range for
most metals. Ives and Briggs" have, however, investi-
gated the alkali metals and their data for sodium,
which we shall now consider as a special case, are
shown in Fig. 2. The value of ek is plotted ~s the
frequency times Planck's constant, measured in electron
volts. Although Ives and Briggs covered a considerable
frequency range, their highest frequency unfortunately
still falls short of co„,making necessary the extrapolation
shown in Fig. 2 by the dashed line. Since the plasmon

'7 P. Wol8, Phys. Rev. 92, 18 (1953)."H. K. Ives and H. B.Briggs, J. Opt. Soc. Am. 27, 181 (1937).

For relatively ideal metals the imaginary part of e,
2ek, will be small, while the real part will be reproduced
su%ciently accurately by the ideal expression appearing
in Eq. (8). For ek/0 the frequency at which c=0 is
shifted from the real axis to the value ~ ~/2r". —
Substituting from Eq. (8) into Eq. (31) gives

e=1 (a,'((u i/2—rg) '+—2iek—

Fzo. 3, Predicted photon intensity as a function of the angle 8
from the foil normal, for a sodium film. Because of the competition
of the interband damping with the radiative decay, the photon
intensity falls below the ideal cose distribution (dashed curve)
at the smaller values of 8. In the limit of very small angles the
radiative mean life varies as the inverse square of the angle, so
that the corresponding very long wavelength plasmons decay
almost entirely by intrinsic interband damping. The angle {here
10') at which the intensity drops by a factor of two provides a
determination of the intrinsic damping rate. Although the figure
has been drawn for sodium, it should be regarded only as schematic,
because of the uncertainty in the optical constants for sodium.
(See Fig. 2.)

energy amounts to 5.95 ev (Table I of reference 1), we
fi.nd nk=0.006, ~~ ' ——0,012co» and

1 fX„q 2nD.

rg~, Emri
=0.04. (35)

Because of the smallness of this quantity it has an
effect only at small angles, where we replace cosH by
unity and sin8 by 8. Thus, Eq. (30) becomes

cosH
I(8)=

1+(8,/8)'
(36)

where Hp= 0.2 radian= 10'. This function is plotted
in Fig. 3, which shows how the expected intensity
distribution should follow a cos8 law (shown as the
dashed curve), except at the small angles where it
drops below and passes to zero in the direction normal
to the foil. Hp is characterized as the angle at which the
intensity drops below the cosine curve by fifty percent.
Hence experimental determination of Hp, and conse-
quently the value of ek at the plasmon frequency
should be quite feasible.

An independent experimental test of the present
theory would be provided by measuring the broadening

7j 0.9X10 '4 sec.

This value should only be regarded as an order of
magnitude estimate of the mean life with respect to
interband damping. Because of the highly arbitrary
nature of the extrapolation in Fig. 2, Eq. (34) could
easily be in error by a factor of two in either direction.
If, however, with this risk of error clearly in mind, we
proceed to substitute rz from Eq. (34) into Eq. (30)
we find that the critical quantity, the coeKcient of
cos8/sin'8, takes on the value
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of the radiation at various angles. The net mean life
v & resulting from the total damping is determined by

(37)

As a consequence of the finiteness of r& the radiation
at any angle 8 will be spread over a range of frequency
according to the extended distribution function

I(8 a)) = I (8)$1+4r '(i0 —c0 ')'] ' (38)

The prime on co„indicates the slight shift determined in
Sec. II for the normal oscillations. The half-width of
the curve of intensity vs co is just 7& '. Measurement of
the angle-dependent part of v-~ ' should give, according
to Eq. (37), an independent verification of Eq. (28).
The irreducible constant part of the half-width, on the
other hand, is just the interband damping breadth
Td ' and provides a check on the angular distribution
method of determining this quantity. As shown above,
these breadths are of the order of a few percent at the
small angles. There should be no difhculty in accurately
measuring them, even with a spectrometer of very
modest resolution.

V. SUMMARY

Experimental verification of the radiation predicted
in this paper would be of considerable interest, since
it would constitute conclusive proof of the existence of
plasma oscillations in metals. The required outlay in
apparatus is very modest, consisting only of an electron
gun, a photon detector, and a means of preparing the
target film. Because the electron energy is not measured
the equipment needs to be very much less elaborate than
that required by the conventional energy loss experi-
ment. Preparation of the target is the most critical
part of the radiation experiment, since both the
thickness and the structure of the 61m must be carefully
controlled.

The characteristic angular dependence of both the
photon intensity and the line breadth should make the
identification of the radiation quite unique. It is
possible from each of these measurements separately
to derive the intrinsic interband damping rate of the
metal. The experiment consequently contains an
internal check. Although it may be argued that this
damping rate, as well as the frequency of plasma
oscillation, can be obtained from the optical constants,
it should be borne in mind that experimental values of
the latter in the necessary frequency range are virtually
nonexistent at the present time. This situation is no
doubt due to the technical difhculty of obtaining a
satisfactory source of short-wavelength radiation. The
experiment proposed here does not contain this dif-
ficulty, since the target is itself the source of the
radiation. Thus the possibility arises that the radiation
from oscillations in metal foils will not only give
information on the optical constants of the target,
but might also provide a practical source of radiation
in the ultraviolet for more conventional optical experi-

ments. Of course, difFicult intensity problems might
well be encountered here. In this connection it should
be emphasized that the radiation should be expected on
both sides of the foil. Such background radiation as
that from bremsstrahlung might be minimized by
placing the detector on the same side as the incident
electron beam.

In conclusion, although there is as yet no experi-
mental evidence for radiation from plasma oscillations
in metal foils it is clear that under proper conditions
this radiation must actually exist. The quantitative
predictions made in this paper are the result of straight-
forward calculations based on well established physical
principles. Although the calculations have been carried
out classically, they can easily be put into quantum-
mechanical garb with very minor modifications. This
is because of the very simple nature of the harmonic
oscillator. ln particular, Eq. (28) for the radiative
mean life remains completely unchanged.

APPENDIX I

In this Appendix a brief derivation will be given
of the formula for the scattering coefficient of a thin
metal 61m. This formula has already been exhibited in
Sec. I as Eq. (6a). Although the problem can be handled

completely quantum mechanically as in reference 1

the equivalent but simpler semiclassical approach of
reference 9 will be used. Let us suppose that a normal
plasma oscillation of amplitude sufficiently large to be
treated classically is present in a square of the film of
area A and thickness v. Suppose in addition that the
incident electrons are quantized in a rectangular
parallelpiped of the same cross-sectional area but of
the much greater thickness 7'. Thus the volume of
quantization is V'= A~', while the volume of the square
of foil is V=A~. From the real part of Eq. (21) the
energy of interaction of an incident electron )coordinates
e and x= (x,y) j with the plasma oscillation is

(eik I—1'rd +e Iik x+ioft)—

) sinhks, [s[ «/2xI (39)
I &e "~'~e"'~' sinh(kr/2),

~
s[)7/2,

where & is the sign of s. Only the second term in the
parentheses can cause the incident electron to lose

energy. It is therefore convenient to abbreviate the
coefficient of e' ' in Eq. (39) by H', which is thus the
perturbing term in the Hamiltonian for the incident
electron. We can now employ first order time-dependent
perturbation theory to determine the transition rate
caused by H'. According to Fig. 1 of reference 1 the
incident electron makes a quantum jump from momen-

tum state p to p —kk"&. k&3' is a three-dimensional
vector whose x and y components, by conservation of
momentum parallel to the foil, equal those of k. The
component of 4&3) on the other hand has its values
concentrated about Ak=&u„/e, because of conservation
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of energy. The matrix element of II' between the
initial and Anal states is therefore

where use has been made of Eq. (12). The charge density
is therefore approximately

(H') = V' ' dsd'x e'&o "~"*&H'. (40)
fkiiio$

p=
I Ie "*Ifi(»—r/2) —&(s+r/2) 1, (42)
Ec )

eV&—lL(gk)s+ks) —leiioss+s xi (41)

set up by the incident electron. The coe@.cient of e'"'
in the charge density for a normal oscillation is simply
a surface density at s= + r/2 of

1 ( 1) kyo( 11+—
I

1—— ID,=+-
I

1——
I

sinh(kr/2)e ""'*
e) 4~ ( .)

'QD. Gabor, Phil. Mag. 1, 1 (1956). The present author feels
that Gabor's attempt to give a complete account of all the types
of plasma oscillations excited in thin films is premature, because
of the considerable uncertainty which exists concerning the
electron distribution in these special modes of oscillation. It is
by no means correctly represented by his simple cosine dependence
as is clear from the oscillations studied here, which involve only
surface charges. In any case it should be noted that the spurious
cross-shaped scattering pattern he finds arises from the arbitrary
omission of certain modes, and is not absent for the reason he
gives. Also, there seems to be a numerical error in his discussion
of the function he defines in his Eq. (24). The sum can be evaluated
in closed form as F(x) = i2$1 —(irx/2) s sins(xx/2)g. Consequently
the asymptotic value of F(x) is ~~ and not 0.481. Finally, it must
be remarked that Gabor's use of time-dependent perturbation
theory has been criticized by many authors (see, for example,
reference 13). We likewise disagree with Gabor's statements
concerning coherence, and claim that the theory of the scattering

At this point it should be noted that it is of vital
importance to include in Eq. (40) the contributions to
the integral which come from the field outside the foil,
as well as inside. Gabor' has studied the excitation
of plasma oscillations in thin foils but failed to take
into account the energy of interaction outside the foil.
As a result he reached the erroneous conclusion that
the probability of excitation is extremely small for
very thin 6lms. As we shall see below, the dependence
on thickness is merely linear and not according to the
higher power found by Gabor.

The right-hand member of Eq. (40) is most easily
evaluated by considering the integral to be the energy
of interaction of an effective incident electron density
of —e(V') 'e"o~'+"'*i with the electric scalar potential
set up by the plasma oscillation. But by reciprocity of
the Coulomb potential, this energy is the same as that
of the charge density in the plasma oscillation integrated
over the effective potential

and Eq. (40) becomes

(H )= ipettpdzd x

2ie~ go
sin (LM r/2).

r'[(Dk)'+k'j
(43)

It is now necessary to find the degree of quantum
excitation to which our classical oscillation of amplitude
po corresponds. If the plasma oscillator is in its nth
excited state the excitation energy is mkco„. Equation
(27) gives one-half the energy per unit area calculated
classically. Imposing the correspondetsce principle yields

e= Vk'thos/(2vrhoi, ).

Because of the special nature of the harmonic oscillator,
the matrix element for creating a plasmon from the
ground state, which we designate by H&' is (n+1) &

times (H'). Since we have assumed ts)&1, we obtain

Stre'leo„
I
Hi, 'I'= I I

sin'(Dkr/2). (45)
E rr'V'I (ak)'+k')s)

It remains merely to multiply Eq. (45) by 2ir/k times
the density of states

p(E) = U'p'dQ/haik' (46)

According to first-order perturbation theory, this gives
the rate of scattering into the infinitesimal solid angle
dO. Dividing by dQ times the rate at which electrons
impinge on the film, ti/r', yields the scattering coefFicient

ffE l t'stnirr/~ex)
f (~; r)=

I II I I I (47)
27ruo Emv') &Q'+8 ') & rrr/)iex

of plane-wave incident electrons gives essentially a complete
description of the phenomenon. The scattering coefficient for
less ideal experimental situations is found by making incoherent
summations over the ideal plane-wave cases. (In this connection,
the author wishes to acknowledge valuable discussion v ith
R. H. Dicke. )

where Ak has been put in terms of X, . An equivalent
form of Eq. (47) appears in Eq. (6a) and has been used
in Sec. I to compute the photon yield.


