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It is shown that by a transformation of the usual expression for the kinetic energy matrix elements
a simpler formula results which yields, for numerical wave functions, higher numerical accuracy for the
kinetic energy than has previously been obtained. The derivation of the transformation and the numerical
results of several applications are presented.

' 'N the one-electron approximation to solutions of the
many-electron problem, accurate one-electron wave

functions are necessary if reasonably accurate results
are to be achieved. For problems involving the proper-
ties of molecules and solids it is common to use as
basis, sums of products of suitable linear combinations
of a set of atomic functions which are accurate solutions
of the Schrodinger equation for the free atom. As is well

known, the "best" set of free atom wave functions are
those found as self-consistent field (SCF) solutions of
the Hartree-Fock equations. However, as these wave
functions are tabulated to three decimal figures only,
it is not easy to overcome the difficulties associated with
calculating total energies. This is particularly true in
calculating matrix elements of the kinetic energy
operator because the radial parts of the SCF wave
functions are usually rapidly varying and so are more
difficult to differentiate numerically.

It is the purpose of this note to show that by a trans-
formation of the usual kinetic energy expression, a
simpler formula results which yields a higher accuracy
than has heretofore been obtained.

The kinetic energy matrix elements K. E. are defined

by the expression

q,*(r)V2 y2 (r)dv,

where W1 and p2 are any two one-electron wave func-
tions and v2 is the ordinary Laplacian operator in
spherical coordinates. In our applications the p's are
Hartree-Fock atomic functions; the method itself,
however, is valid for any set of wave functions.

The numerical calculation of kinetic energies using
Eq. (1) yields poor results because even though the
Hartree-Fock radial functions are smooth, they are
rapidly varying functions and hence their first deriva-
tives and more especially their second derivatives,
which enter through the Iaplacian, are not smooth,

thereby introducing numerical errors into the results.
By using Green's theorem Eq. (1) may be transformed
into

K.E.= Vql (r) Vqs(r)dw, (2)

with V' the gradient operator. After performing the
angular integrations in Eq. (2), the resulting equation is

dP1 dP2 /(/+1)
K.E.= ~ ' + P1P2 dr,J, (3)

where P, (r) denotes r times the radial part of q, and / is
the ordinary angular momentum quantum number.
The advantage of circumventing the use of Eq. (1) and
its associated difficulty in attaining numerical accuracy
has led to a widespread use of Eq. (3).

The results obtained from Eq. (3), although much
better than those obtained from Eq. (1) are not as
accurate as we wish; kinetic energy integrals still
represent the most inaccurate part of the numerical
calculations. This is particularly true for the wave
functions of zero angular momentum as they are most
rapidly varying at small values of the radial distance r,
where the tabulated SCF wave functions are usually
given to too few significant figures.

We shall now show that by a transformation of the P
functions most of these difficulties may be removed.
Letting P=ul/, where u is an arbitrary function, and
denoting the derivative with respect to r by the prime,
we obtain

/(/+1)
Pl P2 + P1P2

r2

ural

4 2 +uu 4 1 $2+uu 4'1/2
/(/+1)

+ (u') 24 il/2+ u24 1A
r2

d j/(/+1) u" i
u pl 1/2 + (uu l/'ll/ )+2~ ~u 1pllp2.

dr r2 u]
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The equation /(/+1)/r2 —u"/u=o has the solutions,
N=r'+' and N=r '. The former is numerically useful

1212



KINETIC ENERGY TRANSFORMATION 1213

2000

cs

I BOO—

i 600'

l 400'

l 200~

A
i 000-

I

800

Eq. (3)

600—

400—

for the functions P(r) under consideration, since the
boundary condition P (0)=0 implies that P/r'+' remains
finite at r=o.

Substituting P=r'+' into Eq. (3) and carrying out
the integration, we have the 6nal result that the kinetic
energy matrix elements equal

f d'I/i rflf's

KK = r"+'dr.
"o dr dr

The advantage of using Eq. (4) is now immediately
apparent. First of all, a calculational simplification
results by having reduced the number of terms in the
formula. Next, since the function P;(r) is usually
tabulated at small r to more significant figures and at
closer intervals than P, (r), it is much easier to differ-
entiate accurately. Furthermore, at small r, dP;/dr is
smaller than dP, /dr, and the r"+' multiplicative factor
reduces the integrand even more. The peak of the
derivative is thus shifted out to large r and broadened.
All these effects systematically help to improve the
numerical accuracy of the results.

To illustrate these effects, we show in Fig. 1 a plot
of the integrands in Eqs. (3) and (4) for the oxygen 1s
Hartree-Fock function. ' That this result is typical also
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Fro. 2. Comparison between the integrands of Eqs. (3) and (4)
for a typical 1s function 2o& exp( —or) with a= 1.

for other representations is seen from the graphical
study of the integrands in Eqs. (3) and (4) given in
Fig. 2 for the 1s function 2a' exp( —ar) having a=1.
For functions of higher quantum numbers, the simpli-
fying effect of Eq. (4) is still more striking.

When the basis functions are of the simple Slater'
form, or when the Hartree-Fock functions are expressed
as linear combinations of such exponential functions, '
Eq. (4) also results in another useful simplification.
For example, for the simple 1s function cited above,
the integrand in Eq. (3) is (4r' 8r+4) exp( —2—r)
whereas the integrand of Eq. (4) is just 4r' exp( —2r).
For more complicated wave functions the reduction of
the algebraic computations is of course much greater.

The accuracy of this method has been tested in
calculations on several atoms using Hartree-Fock func-
tions. The kinetic energy integrals for atomic oxygen4

and atomic nitrogen' were calculated by one of us
(A.J.F.) using both Eqs. (3) and (4).' For oxygen and
nitrogen the difference between the results obtained
from Eqs. (3) and (4) was 0.066 and 0.064 Rydbergs,
respectively, for the 1s electron and much smaller for
the 2s and 2p electrons. Furthermore, the results of
applying Eq. (4) gave a total kinetic energy which

satisfied the virial theorem, whereas those of Eq. (3)
did not.
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FIG. 1. Comparison between the integrands of Eqs. (3) and (4)
for a typical Hartree-Fock 1s wave function. The crosses and
circles indicate the r values at which the function is tabulated.
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