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We have investigated the effect that coordinate conditions and
similar conditions will have on the formal properties of covariant
theories. Two distinct types of coordinate conditions were in-
cluded, those involving first derivatives of the field variables (such
as the gauge condition of Lorentz and the coordinate conditions
of De Donder) and those algebraic in the field variables (of which
the Coulomb gauge is an example).

We have found that with either type of coordinate condition we
can construct a variational principle, or a Hamiltonian formalism,
which leads to physically meaningful field equations if associated
with appropriate initial conditions on a space-like hypersurface.
Thus the existence of a properly set Cauchy problem is always
assured.

It had been found previously that the infinitesimal invariant
transformations of covariant theories form a group and that the

coordinate (and similar) transformations represent a normal sub-
group. The members of the resulting factor group are in one-to-one
correspondence with the true observables of the theory, those
dynamical variables which alone possess intrinsic significance
without reference to a particular frame of description and whose
commutator algebra is presumably reflected in the commutators
of the corresponding Hilbert operators of the quantized theory.
In this paper we have established the appropriate transformation
groups (and their subgroups and factor groups) of a theory with
either type of coordinate conditions. We have found that in any
of these versions the theory will yield the same observables with
the same commutator algebra. One may therefore hope that a
quantization scheme based on a theory with subsidiary conditions
will be free of the arbitrariness involved in the choice of particular
conditions.

1. INTRODUCTION

T is well known that electrodynamics may be de-
veloped along three, formally different, lines: (a)
without any gauge conditions, (b) with a Lorentz-type
gauge condition on the four electromagnetic potentials,
and (c) as a theory involving only the three components
of the vector potential, the scalar potential being
eliminated. In the present paper we shall examine the
influence that similar restrictions in the choice of
coordinate frame have on general-relativistic theories.
This investigation was motivated by the circumstance
that in the absence of any restrictions on the frame of
reference, the variables in general-relativistic theories
are usually not separable. A highly nonlinear system
of partial differential equations that must be solved
simultaneously represents a formidable challenge to the
_physicist who wishes to discuss properties of the solu-
tions. If the problem can be simplified with the help
of coordinate conditions, this approach ought to be
investigated seriously.!? Aside from the usefulness of
coordinate conditions for the solution of the field
equations of general relativity and similar theories, one
may ask whether coordinate conditions may also facili-
tate the discovery or construction of so-called observ-
ables. We define observables as functions (or functionals)
of field variables that are invariant with respect to co-
ordinate transformations. Physically, they are the only
* Most of this research was carried out while the second author
was at Syracuse University. Some of the results formed his
doctorate thesis, which was accepted by the Graduate School of
Syracuse University in partial fulfillment of the requirements for
that degree. Both authors’ work was supported in part by a
grant by the National Science Foundation and by research con-
tracts among the Office of Naval Research, the Air Force Office
of Scientific Research, and Syracuse University.
1T. De Donder, La Gravifigue Einsteinienne (Gauthiers-Villars,

Paris, 1921).
2V. A. Fock, Revs. Modern Phys. 29, 325 (1957).

quantities that lend themselves to observations in
(conceptual) experiments that are constructed within
the conceptual framework of the theory. Formally,
observables are the generators of appropriately defined
(infinitesimal) canonical transformations in a covariant
theory .3+

The observables in a general-relativistic theory form
a Lie algebra. In a corresponding quantum theory they
are Hilbert operators and possess expectation values.
Other field variables do not have these properties, be-
cause they correspond to operations on quantum states
that invariably lead outside the Hilbert space of
physically permissible states. We are therefore con-
cerned with the question whether in a theory that has
been adorned with coordinate conditions, the observ-
ables can still be identified as such and whether they
form the same Lie algebra. The result of our examina-
tion, to be detailed in what follows, is that the Lie
group of a given theory can be reconstructed after the
adoption of coordinate restrictions, and with it the
observables. Unfortunately, there is a corollary to this
result: The task of carrying out these constructions is
not simplified by coordinate conditions, either. This
finding, then, indicates that the adoption of coordinate
conditions does not change the fundamentals of the
problems involved in the quantization of general-
relativistic problems. In some practical situations they
may help. Our investigation includes both the Lorentz-
type and the algebraic coordinate conditions.

2. LORENTZ-TYPE CONDITIONS

Consider a variational principle that is invariant
with respect to a given group of transformations in-
3 P. G. Bergmann and I. Goldberg, Phys. Rev. 98, 531 (1955).

* Bergmann, Goldberg, Janis, and Newman, Phys. Rev. 103,
807 (1956).
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volving a number of arbitrary functions. Let the most
general infinitesimal transformation law for the field
variables y4 be’:S:

gyA = CAipgi, p+CAiEi—yA, pgpr
(=1, --

(2.1)

E”Eax"=a”¢£i : n),

where the &, the “descriptors” of the invariant trans-
formation group, are n completely unrestricted func-
tions, except that the requisite (finite) number of
derivatives is assumed to exist. The coefficients c4;°
are presumed to be given functions of the field vari-
ables; the c4;, functions of the field variables and their
first derivatives. The choice of these coefficients is
somewhat restricted by the requirement that the in-
finitesimal transformations form a group.

That the variational principle be invariant with
respect to the transformations (2.1) means that under
any offthese infinitesimal transformations the La-
grangian adds a complete divergence,

SL=0° ,. (2.2)

It follows immediately that the field equations of the
theory,

0=LA=64L=04L— (94*L),,,
where

94=0/8ys, 84r=0/3ya,,, (2.3)
satisfy a number of differential identities,
(CAipLA), o takya, uLA—CAiLA =0. (2.4)

Up to this point, we have in no way restricted the
choice of frame. As a result, the field equations (2.3)
do not contain the second time (x°) derivatives of all
the field variables. Suppose we were to attempt an
integration of the field equations throughout (three-
dimensional) space along the time axis. If we already
possess a solution valid from / to /, then in each space
point we can choose arbitrary values for the second time
derivatives of a number of field variables equal to the
number of descriptors in the theory. The identities
(2.4) permit us directly to specify which combinations
of second time derivatives do not occur in the field
equations. In these identities there occur terms with
third time derivatives. The coefficients of these third
time derivatives must vanish. They are

cAi"aAOaBOLyB, 000+ L EO (25)

On the other hand, the coefficients of the second time
derivatives in the field equations are

LA=049B Lijp+ - - -. (2.6)

5J. L. Anderson and
(1951).

6 P. G. Bergmann and R. Schiller, Phys. Rev. 89, 4 (1953).
Earlier papers are quoted there. Equation (2.1) of the present
paper is identical with Egs. (2.2) and (2.3) of this reference.
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The matrix of these coefficients is singular, and its »
null vectors have the components ¢4° (1=1, - -, %n).
Hence, we may form # linear combinations of the second
time derivatives of the field variables,
Ai=A4d5 4, (2.7)
which are independent among themselves with respect
to the null vectors ¢4, i.e., their coefficients satisfy
the determinant condition
det| 47|50, calAd4i=A4. (2.8)
Then these linear combinations of second time deriva-
tives (2.7) may be chosen at will. More particularly,
they may be chosen to be zero, and it is therefore
possible to require that throughout space-time, certain
expressions containing no higher than first time deriva-
tives of the field variables should vanish. These require-
ments, which are to be satisfied by the field in addition
to the regular field equations (2.3), we shall write in
the form

0=C7(ya,94,,)=C*(y4)+C/4*(yp)y4,, (2.9)

They must satisfy a determinant condition analogous
to Eq. (2.8), specifically

det|Ci] 50, Ci=c4C740, (2.10)
We shall call this type of condition Loreniz-type condi-
tions, because they are a natural generalization of the
Lorentz gauge condition of electrodynamics. Their
choice is restricted in principle only by the inequality
(2.10), though considerations of convenience may sug-
gest their form in a particular theory.

In close analogy to Fermi’s treatment of electro-
magnetic theory, we may add a term to the Lagrangian
L which makes it possible to satisfy the field equations
of the covariant theory L4=0, together with the
Lorentz-type conditions (2.9), (2.10), by solving a new
variational principle with . suitable initial conditions.
Let a;;(y,x) be a square array of quantities symmetric
in the subscripts and with nonvanishing determinant.
Then the new Lagrangian

L'=L4-3a:,CC?

(Z7j=17 ,%) (2-11)

has the desired properties. The new field equations are
L= LA4a,,C1CT+%04a,;,C'CI— (a;;Ci94°CT), , (2.1
212
=LA

We shall examine the appearance of second time deriva-
tives in these new equations. We have
>\A=—a,~jCiB°CfA°g73+~ cc. (2.13)

If we form that linear combination of the new field
equations which for the L4 is free of second time deriva-
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tives, we get this time

CAkOL'A=CAk0)\A+ rer = —ai]-C“"OCkfyB—f— RN (214)
By assumption, the coefficients C?# are linearly inde-
pendent of each other. The determinants of a;; and of
C}? are both nonzero; hence the # sets of coefficients of
ip (k=1, - - -, n) are linearly independent of each other,
and ¢ fortiori nonzero.

The new field equations (2.12) would be compatible
with the original equations (2.3) if the conditions (2.9)
were satisfied, because the additional terms A4 contain
as factors the C7 themselves, or their first derivatives.
We can obtain a set of #» homogeneous second-order
partial differential equations for these 7 conditions by
forming with the new field equations the same expres-
sions (2.4) which vanish identically in the L4. We
shall not write these equations out, but merely state
that the coefficients of the second time derivatives of
the C7 form a matrix with nonvanishing determinant.
Hence, if we assume that at some time #, the C7 and
their first time derivatives vanish everywhere, then they
will continue to vanish at all other times. In other
words, if the conditions C7, and their first time deriva-
tives, vanish on some space-like hypersurface, then the
solutions of Egs. (2.12) satisfy both (2.3) and (2.9)
throughout space-time.

From what has been said, it follows that the matrix
of coefficients 94°98°L’ no longer has the ¢4 as null
vectors, but the accidental appearance of new null
vectors is not ruled out @ priori. If necessary, such new
singularities can be removed by an altered choice of
the coefficients a;;.

We shall give one example of this generalization of
Fermi’s treatment. If we replace the usual Lagrangian
of the theory of relativity” by the expression

L,=(_g);gw({:a} upu}—{:p}{ﬂp‘f}
%g"”gaal:y} { ,,ﬁa } ) 219

then it is possible to set as the coordinate conditions

P
OchE—gtxﬂ‘ }z_gc!ﬂ pq(gmr,ﬂ_l aﬁ,o’)
B § g (2.16)

—_ 1
=g o= —fgpagaﬂgaﬂ- o

and to obtain, besides, the field equations in quasi-
separated form.

To return to the Lagrangian (2.11), we may accept
L’ as being equivalent to L only if the conditions (2.9)
and their first time derivatives are set zero on some
space-like hypersurface. If we go over to a Hamiltonian

"P. G. Bergmann, Iniroduction to the Theory of Relativity
(Prentice-Hall, Inc., New York, 1942), p. 196.
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treatment, then the resulting Hamiltonian H' and the
associated canonical field equations will be equivalent
to H and its associated field equations only if the same
coordinate conditions are satisfied.

As a first step in our transition to the canonical for-
malism, we shall introduce the momentum densities
associated with Z’. In a self-explanatory notation, we

shall set
7rlA o 6AOLl — aAoL+aijCiaAOCy'
(2.17)
= 7I'A+d¢jCiC7.AO,

assuming, for the time being, that the conditions (2.9)
need not be satisfied. If we now construct the Hamil-
tonian density according to the usual procedures, we find

H =7'44— L' = (r44a,;,C'CH4% g 14— L—3a,,C'CY
= H-+a;,C(54C1 40— 3CY)
=H+%a¢jC"(g]AC7'A°—yA, SCIAS—'C*j).

(2.18)

In previous papers, it had been pointed out that in
any theory of the invariance type here considered, the
expressions for the canonical momentum densities can
not be solved uniquely with respect to the “velocities,”
the 94, because the matrix of the partial derivatives
(074/d%p) is singular; in fact, the sets of coefficients
¢4 form the null vectors of that matrix.5¢ In the
present modified theory, the corresponding derivatives
are

onr'4  9m4
— = _~+ aijCiAOCjBO.
9yr 9Ym

(2.19)

Because of the inequality (2.10), we are assured that
the former null vectors form nonvanishing products
with the second term on the right-hand side. Hence it
is possible, in principle, to express the “velocity’ com-
ponents in the Hamiltonian (2.18) uniquely in terms
of the canonical variables and to arrive at an expression
for the Hamiltonian density that is free of arbitrary
functions. Accordingly, the grounds for the appearance
of “constraints” in the Hamiltonian theory—the fact
that the canonical momentum densities 74 are not
algebraically independent of each other—are no longer
present.

Constraints do, however, reappear in that the condi-
tions (2.9) must be introduced explicitly into the canoni-
cal formalism. Our new ‘primary” constraints are
precisely these conditions, and the “secondary” con-
straints are their Poisson brackets with the Hamiltonian
(2.18). Since in our present formulation the canonical
formalism is entirely equivalent to the Lagrangian, the
canonical field equations automatically provide for the
vanishing of the second time derivatives of the condi-
tions (2.9) once these conditions and their first time
derivatives have been set equal to zero on one hyper-
surface. The proof that there will be no tertiary con-
straints in this theory is, therefore, almost trivial.
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That the new “constraints,” i.e., the Lorentz-type
conditions and their Poisson brackets with the Hamil-
tonian, are equivalent to the primary and secondary
constraints of the theory without conditions may be
demonstrated immediately with the help of the defining
Egs. (2.17). We multiply these equations by c4.°:

CA¢07rIA=CA¢07TA+aHC¢kCZ. (2.20)
The 74 satisfy the primary constraints
CAiowA—Ki(yA,yA, 3)=0. (2.21)

Hence, the new momentum densities 7’4 obey the
equations

CA,‘OWIA—‘Ki=dszikCl. (222)

By assumption, the determinants of the square arrays
a;; and C;7 do not vanish [see Eq. (2.10)7. It follows
that to require that the conditions (2.9) be satisfied is
equivalent to requiring that the #'4 satisfy the usual
primary constraints. The equivalence of the correspond-
ing secondary constraints in both forms of the theory is
a straightforward consequence, because in both theories
these are defined as Poisson brackets of the primary
constraints with the Hamiltonian.

Before concluding this section, we shall make a re-
mark about the group of transformations with respect
to which the theory with Lorentz-type conditions is
invariant. Suppose we wish to characterize the group
of infinitesimal transformations which does not modify
the form of the conditions (2.9). Under this transforma-
tion group the quantities C? considered as fixed func-
tions of their arguments y4, 4, ,, remain equal to zero.
We have

SCi= aAC*iéyA-l—(?BCiA "SyByA, o

+Ci48y 4, A+ Ci4%5y,4=0.  (2.23)
These equations are a set of linear homogeneous second-
order differential equations for the descriptors £, equal
in number to the descriptors. The coefficients of the
second-order time derivatives of the descriptors, which
appear only in the last term of Eq. (2.23), are non-
singular, again according to Eq. (2.10):

0= - Cido 4 0% o
= - +C*E go.

Accordingly, these differential equations may be solved
with respect to the second-order time derivatives of the
descriptors. An individual solution is completely deter-
mined if the descriptors and their first time derivatives
are chosen on one space-like hypersurface; these initial
conditions are free of any further restrictions.

(2.24)

3. ALGEBRAIC CONDITIONS

Instead of adding to the Lagrangian a quadratic
combination of first-order conditions, it is also possible
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to introduce, in a similar manner, algebraic conditions.
Suppose we require that # algebraic functions of the
field variables, D(y,), vanish. These functions must
be chosen so that they satisfy the determinantal
inequality

det| D] 0, Dj=c494D", (3.1)
They may be introduced into the Lagrangian by means
of a quadratic additional term,
L'= L—l—%dijDiDj. (32)

It can be shown easily that this Lagrangian L’ yields
equations that are equivalent to the original field
equations if on one hypersurface the D¢ vanish. The
modified field equations,

L'4A=LA40;D9ADi+LD'Did4a;,  (3.3)
will then assure that the first and all following time
derivatives of the D’ will be zero as well. In detail,
these expressions are

(cai?L'4), pFa*ya, uL'A—caL'4
=3{[c4:°94(aD*DY ], p+ (a*sa1D*DY), ,
—c4:0% (e D*DY)}
= (c4:*a 04D DY), p—}—%(cAipaAalele), ,
+3(aP:aD DY), )~ 3¢ 40401 D*D'— ¢ 40494 D= D
=auD#D'+DYauD¥), o
+ (8:Pca5°ari04D*D % ¢ 4 ;202 a1 D*D?
10pauD*DY) ,—beaidAa DD — ¢ 4sa,04DFD!

=0, (3.4)
Only the first term of this combination of field equa-
tions and their first derivatives contains the time
derivative of an algebraic condition D? multiplied by a
nonvanishing coefficient.

The additional terms on the right-hand side of Eq.
(3.3) contribute no time derivatives, and these equa-
tions are, by themselves, not any simpler in their
mathematical structure than the unmodified equations
LA, They can be solved with respect to their highest
(second) time derivatives if we add to them the twice-
differentiated algebraic conditions D?.

The implications of algebraic conditions become
much clearer if we introduce a transformation of vari-
ables that makes » of the field variables equal to the
algrbraic conditions D?. In other words, if these condi-
tions are satisfied, then # of the field variables will
vanish at all world points, and the number of de facto
field variables is reduced by that number. Accordingly,
we shall introduce new variables Y| consisting of two
classes, 7* and D¢, which are algebraically independent
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functions of the original field variables y,,

a(n*, D7)
det|—

#0. (3.5)

ayA

It is very easy to show that the new field equations are
linear combinations of the original field equations and
that they satisfy similar differential identities. The
equations themselves are

Ly=0uyal4, (3.6)
and their identities may be ‘written in the form
(ML), P Y™ Lar—c¥:Ly=0,
cMp=094YMcy ., 3.7

CMi’—"aAYMCAi.

If we separate in these identities the summations over
the index M into separate summations over the indices
a (belonging to the variables 9%) and j (belonging to
the D7), then Eq. (3.7) takes the form
(DiLj), 0+ (c7*Ly), s+ (c%* La), p+ - - -

CQOE D,;’A.

Il

0,
(3.8

In other words, if we satisfy everywhere the field equa-
tions L,, then the remaining field equations, L;, satisfy
a set of # first-order linear and homogeneous equations.
It is then sufficient to satisfy the L; on one space-like
hypersurface to assure that they will be satisfied every-
where else. It is again essential for this result that the
determinant of the D;? does not vanish.

We can draw this conclusion: If in the original action
principle we introduce the new field variables V'™, if
we then set the » variables D7 equal to zero, and if we
vary only with respect to the remaining (NV—n) field
variables 7%, then the new field equations will be equiva-
lent to the original field equations if we satisfy the
field equations L; on one space-like hypersurface. All
that is left of the variables we have “killed” is a set of
# initial conditions.

We shall now go over to the canonical formalism. If
we operate with all NV field variables Y, we obtain
from the Lagrangian (3.2) the Hamiltonian

H =myYM—L(YMYM VY Y—1a,DiDi. (3.9)

If we are to satisfy the conditions D7, then not only the
D7 but their time derivatives as well must vanish.
From previous investigations® it is known that the
Hamiltonian (3.9) is not a unique function of the canoni-
cal field variables in the absence of conditions, because
under the most general circumstances the Y are not
unique functions of the canonical field variables, either.
In the presence of the conditions D7, however, we shall

8 Bergmann, Penfield, Schiller, and Zatzkis, Phys. Rev. 80, 81
(1950).
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be able to resolve this lack of uniqueness. The algebraic
relationships between the canonical field variables that
we have previously called the primary constraints are
of the form

gi=cMry—K;

= D¢f7rj+c“,~°7ra— K,=0.

(3.10)

They can be solved with respect to the » variables ;.
Suppose now we wish to choose the Hamiltonian so that
the time derivatives of the conditions D7 vanish. This
requirement is equivalent to requiring that the Hamil-
tonian should be free of the canonical momentum
densities ;. All that needs to be done is to obtain some
expression for the Hamiltonian density (3.9) that is
free of velocities, and then to eliminate the 7; wherever
they may occur by means of the constraints (3.10).
This procedure leads to a unique expression, no matter
which particular expression for the Hamiltonian density
is chosen as the point of departure. The resulting
Hamiltonian density then is free of the ;; hence the
D7 are constants of the motion. If they are set zero on
one space-like hypersurface they will remain zero
permanently.

There is, of course, some difference between the
Hamiltonian density obtained from L', Eq. (3.1), and
that obtained from the original Lagrangian L, even
when in both expressions the ; have been eliminated.
That difference is the last term, —%a;;D:D7. Its effect
is zero if the D7 have been set zero; otherwise this
additional term will appear in the equations for the
time dependence of the 7; and in the equations for
those 7, whose conjugate 7 occur in the a;;. At any
rate, if the D’ are satisfied, then there is only one
Hamiltonian density, the x; occur nowhere in the
system of the canonical field equations, and the total
number of canonical field variables has been reduced by
2n. As the result of this amputation, the primary con-
straints have disappeared from the theory.

The transformation law of the D7 is

8Di=§y404Di= D+ - -. (3.11)
Hence, if the D7 are satisfied, then there exists a well-
defined transformation group that maintains them.
The descriptors of the infinitesimal group satisfy #
first-order differential equations, which can be solved
with respect to their time derivatives; the members of
the infinitesimal group may be characterized by the
initial values of the descriptors £ at one space-like
hypersurface, i.e., by a set of » arbitrary functions of
the three spatial coordinates. On the other hand, we
also have a set of # secondary constraints to satisfy,
again on one hypersurface.

4. TRUE OBSERVABLES

We call true observables of a classical (i.e., non-
quantum) theory those quantities that are in principle
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measurable within the theory. For instance, in electro-
statics the (scalar) electric potential at a given point
in space and time with respect to infinity is observable,
whereas in electrodynamics it is not, because of the
freedom of gauge transformations. In order to make the
concept of measurability more precise, let us say that
the value of a true observable at a time ¢ can be pre-
dicted (at least in principle) from a sufficient set of
data at an earlier time £,.° Otherwise a quantity whose
behavior is completely unpredictable within the frame-
work of the theory is nevertheless measurable; but
then one would search for a more complete theory, in
- which the quantity in question would also be predictable.

A quantity can fail to be a true observable only
within the framework of a theory possessing a group
of invariant transformations which depend on arbitrary
functions of the time. We shall now demonstrate that
those quantities which are not themselves invariant
under this group of transformations are not true ob-
servables: Assume that at a time £, we have a sufficient
set of data to enable us, by use of the field equations,
to predict the future behavior of some quantity 4. Let
us perform an invariant transformation leaving the
initial data unchanged, a procedure which is always
possible because of the arbitrary time depencence of the
functions on which the transformation depends. The
field equations will also remain unchanged under this
transformation, for that is what is meant by an in-
variant transformation. If 4 is not invariant under this
transformation, there will be some time / at which the
values of 4 before and after the transformation are not
the same. But, since neither the field equations nor the
initial data at the time #, change, the value predicted
for 4 at the time ¢ cannot change. Hence, if 4 is not
invariant it cannot be a true observable.

Let us now consider a quantity 4 which is a true
observable. We have seen that if we are given a suffi-
cient set of data at one time, /o, we can predict the
development of 4 in the course of time. In other words,
we may solve the field equations and their derivatives
for all those time derivatives of 4 which are not deter-
mined by the initial data. Accordingly, we can con-
struct a constant of the motion whose value is equal to
the value of 4 at the time /; if we restrict ourselves to
consideration of only those quantities which are con-
stants of the motion, we lose no information about the
true observables.

Let us now specify that the field equations are to be
derived from an action principle, so that it is possible
to speak of the generator of a transformation.® Then
the constants of the motion generate the group of all
the invariant transformations!® of the theory, which

¢ In quantum theory the same statement holds for the expecta-
tion value of a true observable; moreover, the uncertainty of this
expectation value can be reduced below any fixed finite bound
by a suitable selection of the data available at the time £,.

10 Here, and in what follows, we mean infinitesimal transforma-
tions, thus ruling out discontinuous transformations such as
parity, time reversal, etc. However, in quantum theory it is
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include not only the transformations depending on
arbitrary functions, which we have been discussing up
to now, and which are, in fact, generated by zero gen-
erators (at least, zero modulo the field equations), but
also all the other invariant transformations generated
by nonzero true observables. It may be shown* that
the transformations generated by zero generators form
a normal subgroup of all the invariant transformations,
so that in order to obtain a relization of the true ob-
servables we go to the generators of the factor group
formed by using this subgroup as a normal divisor.

5. TRUE OBSERVABLES IN THE PRESENCE
OF COORDINATE CONDITIONS

Before we show how to identify the true observables
when the theory is modified by coordinate conditions,
let us give a mathematical formulation to the ideas
presented in the previous section. In what follows, we
shall gain simplicity of notation by restricting ourselves
to a particle theory with a finite number of degrees of
freedom, rather than a field theory, and we shall con-
sider Lagrangians which are at most quadratic in the
velocities.

We shall denote by £ the group of all the invariant
transformations of the Lagrangian, L. The group £
may be defined as consisting of those transformations
under which the change in the value of the Lagrangian
(for a given physical state) and the change in the form
of the Lagrangian (as a function of the arguments
gx, Gr) are given by

SL=Q, &L=0, (5.1)
respectively, where Q is an arbitrary function of the
gr and ¢x. In order to relate the requirements (5.1)
to a condition on the transformation quantities 3g; we
use the general relation between 6F and &F for an
arbitrary function F(gx,qz):

8'F=5§F— 9 F5q,— 0% Fidy,

(5.2)

The requirements (5.1) imply then that the generator
C of such a transformation is related to the transforma-
tion quantities 6¢g; by the equation®

C+L*5g;=0, (5.3)
where L* stands for the left-hand sides of the equations
of motion:

d
LIt —— (9" L), (5.4)
¢

The subgroup of £ consisting of those transforma-
tions which are generated by zero generators we shall

meaningful to speak of an infinitesimal parity transformation, for
example, as the transformation which takes ¢ (x,f) into ¥ (x,t)
+ep(—x, ). Such infinitesimal transformations have no classical
analogs.
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call €. If we form the factor group £/@, the zero gen-
erators merge into the identity element; the generators
of the remaining elements are the true observables of
the theory; and the relationship between the elements
of £/€ and the true observables is reversibly unique.

The existence of nontrivial transformations in the
subgroup € (that is, the existence of a group of invariant
transformations depending on arbitrary functions of
the time) implies that the equations of motion cannot
be solved for all of the accelerations (see Sec. 2) unless
one is willing to introduce coordinate conditions. As in
Secs. 2 and 3, we introduce a modified Lagrangian L'
which is quadratic in the coordinate conditions:

LI=L+%G(T‘9)D(T)D(S). (55)
We shall use D¢, to stand for either Lorentz-type or
algebraic conditions; in the former case the D¢, are
to be linear in the velocities g, in the latter case they
are to be independent of the ¢;. In either case the g
shall depend only on the undifferentiated coordinates
¢x (and possibly the time coordinate £).

We determine the group of transformations that is
to be considered within the framework of the modified
theory as follows. First, if we are to maintain our co-
ordinate conditions, the transformations must leave
them invariant:

8Dy=0, §'D=0. (5.6)
Such transformations have been discussed in the closing
paragraphs of Secs. 2 and 3.

In the absence of coordinate conditions, one ordi-
narily requires that the total change in the value of a
Lagrangian be a time derivative @, so that the varia-
tion of the action integral may lead to the same physical
results. But in the presence of coordinate conditions, to
require that 6L’ be a total time derivative would be too
severe, as the Lagrangian L’ will correspond to physical
reality only when the coordinate conditions are satisfied ;
that is, L’ is the Lagrangian only modulo the equations

D(T)———O. (57)
The appropriate requirement is then that part of L’
which corresponds to the actual physical situation trans-
form by a total time derivative. Considering the first
Eq. (5.6), we have for the total change in the value of
L’ the expression

L' =Q+38a"2D D, (5.8)

We have seen in Sec. 4 that we lose no information
about the true observables if we restrict ourselves to
invariant transformations of the Lagrangian, since the
invariant transformations are generated by constants
of the motion, and a constant of the motion can be

constructed corresponding to every true observable. If

our coordinate conditions are of the Lorentz type, the
Lagrangian L’ is chosen in such a manner that the
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modified equations of motion can be solved explicitly
for all of the accelerations; hence it is possible to con-
struct a constant of the motion corresponding to any
arbitrary function of the ¢; and ¢,. If the coordinate
conditions are algebraic, we use them to reduce the
number of coordinates in such a manner that the re-
maining accelerations are determined by the modified
equations of motion; as for the coordinates that have
been eliminated, we shall see in the discussion at the
end of this section that they carry no information about
the true observables. Hence there is no loss in generality
if we restrict ourselves to invariant transformations of
the Lagrangian L':

§'L'=0. (5.9)

One might wonder, in view of the fact that §L’ is not a
total time derivative, whether it is still true that in-
variant transformations are generated by constants
of the motion. We shall see in Egs. (5.12) that this
relationship still holds.

We shall use the notation £’ for the group of trans-
formations defined by Egs. (5.6), (5.8), and (5.9).

We shall now demonstrate that the group £’ is
homomorphic to £/€, the factor group which we have
used to define the true observables. This homomorphism
implies' that there is a factor group of £/, say £/,
which is isomorphic to £/@, where & denotes the trans-
formations in £ which map into the identity element
of &£/C.

We shall begin by showing that £’ is a subgroup of
£. We see from the definition (5.5) of the Lagrangian
L', together with the requirements (5.6), (5.8), and
(5.9), which define the group £’, that under a trans-
formation in £’ the original Lagrangian L transforms
according to the equations

5L= Q, §'L= —%5’(1,(73)D(T)D(s). (510)
If we fix the transformation properties of a("*) by re-
quiring that §’¢9=0, then we see that Egs. (5.10)
reduce to Egs. (5.1), the defining equations for £.

We define a mapping of £’ onto £/€ as follows: We
note that each element of the factor group £/€ is a set
of elements of £ which differ from one another by co-
ordinate transformations, and each element of £
appears in one and only one such set. Since £’ is a sub-
group of £, we may define the mapping by associating
with each element of £ that element of £/@ in which it
appears. The law of group multiplication is obviously
preserved under this mapping; so all that remains to be
shown is that each element of £/@ has at least one
counter image in £’. To this end we choose an arbitrary
element of £/@, and from the set of elements of £
which comprise it we choose an arbitrary transforma-
tion. If this transformation leaves the coordinate condi-
tions invariant, then it is a member of £/, and we have
found a counter image. If it does not, i.e., if as a result

1 See, for example, L. Pontrjagin, Topological Groups (Princeton
University Press, Princeton, 1946), p. 11.
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of the chosen transformation the D) change their
values, then we shall multiply our first transformation
by a coordinate transformation taking us into such a
frame that the D¢, resume their original set of values.
The product of the two transformations will belong to
£’; inasmuch as the original transformation differs
from our product only by a coordinate transformation,
the two belong to the same element of £/€, and the
proof is complete.!?

It remains to discuss the problem of finding the
generators of the transformations in £’. From Egs.
(5.8) and (5.9), which specify the way the Lagrangian
L’ is to transform under a transformation in £’, we have

akL’éqk—}—E)"‘L'éq'k:Q—I—%aka(”)équ(,)D(s). (511)

Differentiation by parts of the second term on the left-
hand side of Eq. (5.11) yields

C'+M*éq,=0,
C, = Q+<§V‘L'Sgk,

(5.12a)
(5.12b)

where
and

d
Mr=gtL/ —— (9% L) —10%a "Dy Dysy.  (5.12¢)
dt

We may consider the equations M*=0 as an alternative
form of the equations of motion. When the coordinate
conditions are satisfied, we have M*=L*=L"* Eqs.
(2.12), (3.3).
In the following discussion, it will be convenient to
treat the two types of coordinate conditions separately.
(A) Loreniz-type conditions—In this case, one may
solve the modified equations of motion for all of the
accelerations. Hence, given an arbitrary function of the
qx and ¢z, say F(gw,Gr), we can construct a C’(gx,gx,t),
satisfying Eq. (5.12a), which reduces to F(gx,gs) at a
specified time t,. However, the transformations appear-
ing in Egs. (5.12) are not necessarily members of £’
unless we also impose the requirements (5.6), which
express the invariance of the coordinate conditions
under a transformation in £’. If Eqgs. (5.6) are satisfied
as well, then we should expect to find a connection
between the generator C’ appearing in Egs. (5.12) and
the generator C appearing in Eq. (5.3). In fact, we can
obtain this connection by noting that Egs. (5.1) and
(5.3) imply that
C=—Q+0* Lég. (5.13)

Comparison of Eq. (5.13) with Eq. (5.12b) shows that
C=C’—d(TS)D(,-)ak'D<S)5qk. (514-)

Because not all the transformations satisfying Egs.
(5.12) satisfy the requirements (5.6), we must find

12 Tt could, of course, happen that more than one transformation
in £’ maps into each element of £/€. For example, in electro-
magnetic theory with the Fermi form of the Lagrangian there
are gauge transformations within the Lorentz gauge, and two
transformations in &’ differing only by such a gauge change would
map into the same element of £/€.
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those linear combinations which do. We may obtain
equations for the generators of these combinations as
follows.

Suppose we have found a complete set of modified
constants of the motion, satisfying Eqgs. (5.12) (e.g.,
the constants of the motion corresponding to all the
gr and ¢;). Let us label the members of this set by a
subscript, as C’4. Any function of the C’4, say F(C’4),
is also a modified constant of the motion, since its time
derivative is given by

oF oF

C"A=— MkéAqk,
aC’ 4 aC’ 4

F= (5.15)

where 64q; is the transformation generated by C’4.

Hence
oF

dC’ 4

Srqn= 84qk, (5.16)

where brq; is the transformation generated by F. If
we require that F generate a transformation in £’, then
drqr, must satisfy Egs. (5.6), which may be rewritten
in the form _ .

akD(T)éqk—!-ak'D(,)qu:O. (517)
Finally, by substituting Eq. (5.16) into Eq. (5.17) and
rearranging terms, we obtain the partial differential
equation for F':

_ _ oF
(05D (216 491 +0% D ()0 4g1)
AC’ 4
5D oy M8 .4g:8 o (5.18)
=0%D»M'64q108q: . .18
OC’A CIB

(B) Algebraic conditions—As in Sec. 3, we may
introduce a new set of coordinates such that the D,
are among the new coordinates. We may then set the
coordinates which are equal to the D, equal to zero,
and consider only the remaining coordinates and the
equations of motion obtained by varying with respect
to them, provided that we impose certain initial condi-
tions. These initial conditions are obtained from the
equations of motion corresponding to the “zero” co-
ordinates by simply setting these latter coordinates
identically equal to zero, and requiring that what is
left be satisfied at a particular time. We shall denote
these conditions by D).

Since the transformations in £’ leave the coordinate
conditions invariant, it is clear that these transforma-
tions preserve the separation of the coordinates into
the “zero” coordinates and the remaining ones; that is,
under a transformation in £’, the “zero” coordinates
are unchanged and the remaining coordinates trans-
form among themselves. Furthermore, since these
transformations also leave the form of the equations
of motion unchanged, the D, will be left invariant.
Hence, the group £ may be characterized as those
invariant transformations of the “reduced” Lagrangian
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(i.e., the Lagrangian obtained by setting the prescribed
number of coordinates equal to zero) which leave the
initial conditions D, invariant.

We may now proceed along lines analogous to the
discussion given for Lorentz-type conditions. As in
that case, we may construct constants of the motion
corresponding to any arbitrary function of the g, and
Gx, where now % runs over the reduced number of
variables, since the “reduced” equations of motion can
be solved for all of the remaining accelerations. We may
also confirm that this process of reduction does not lose
any information about the true observables: If for
some C’ Eq. (5.12a) were to involve an M? belonging
to one of the “zero” coordinates, then C’ would generate
a transformation in which 5q,~ had a nonzero value, in
violation of the conditions (5.6); hence the transforma-
tion would not belong to £’, and C’ would not be a
true observable.

Again, if we have found a complete (reduced) set of
constants of the motion, we may proceed to deduce the
requirements to be imposed in order to preserve the
conditions D(,y. We shall again be led to equations of
the form (5.18), where now we have D, instead of
D), and the sums run only over the reduced variables.

6. AN EXAMPLE

One of the simplest Lagrangians exhibiting invari-
ance under a group of transformations depending on an
arbitrary function is

L=3[(¢k+dA/dt)*— (kX A)7],

which is essentially the Lagrangian for the electro-
magnetic field in k space. It is clearly invariant under
the gauge transformation

sA=Gk,

(6.1)

So=—dG/d, (6.2)

where G is an arbitrary function of the time. The
equations of motion are

Le=Ro+k- (dA/dt) =0,

1A= (k- M k—#A— (do/dk—ah/a=0. O

It is well known that the true observables for this
problem (that is, the gauge-invariant quantities) are
the transverse parts of A and dA/di. The combination
ko+dA./dt, where A, is the longitudinal part of A, is
also gauge invariant, but it is clearly zero modulo the
equations of motion. By way of illustration, let us
obtain these true observables by the methods of Sec. 5.

To illustrate the Lorentz-type coordinate condition,
we use the Lorentz gauge itself, which is given by

D=dy/dt—k-A=0. (6.4)
We then write the modified (Fermi) Lagrangian as

IL'=L—3iD". (6.5)
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We see that the modified equations of motion are
| Me=kp4-d*p/d?=0,
MAr=—kA—d?A/dr=0.
As the first step in finding the true observables, we
construct a complete set of modified constants of the

motion. The constant of the motion corresponding to
¢ is given by

(6.6)

1
Clo=0—( w/dt)t~%k2<p12+5k2(d<p/dt)t3+ -e-. (6.7)
We see that )
dC',/dt=—M*5 ¢, (6.8)
where
1
5¢¢=t~g—'k2t3+ e (6.9)

We obtain similar results for the modified constants of
the motion corresponding to de/df, the three com-
ponents of A, and the three components of dA/dt, giving
a total of eight such constants with their corresponding
transformations.

We must now find those generators which generate
transformations leaving the gauge condition (6.4)
invariant; that is, the transformations must satisfy
the equation

8(dp/dt)—k-5A=0. (6.10)

It is easily found that the following six combinations
of the generators such as (6.7) generate transformations
satisfying Eq. (6.10):

(a) RC',4C'aay/ae,
(b) C'gpra—kC’ 43, (e) (4,
(c) (4, (f)  Claagyac.

We shall show that the first two generate transforma-
tions which map into the identity element of the factor
group £/C, whereas the last four serve to identify the
true observables of the theory.

In order to show that the generators (6.11a) and
(6.11b) generate transformations which map into the
identity element of £/€, it is sufficient to show that
under the correspondence indicated in Eq. (5.14) we
obtain a quantity that is zero modulo the original
equations of motion. In terms of the present example,
Eq. (5.14) becomes

C=C"+(dp/di~k-A)bep. (6.12)

If we put in for C’ in Eq. (6.12) the generator (6.11a),
we obtain

(d) C’dagat,
(6.11)

C=Le(k'—ke+--). (6.13)

We obtain a similar expression corresponding to the
generator (6.11b).

We find that for the remaining four generators the
correspondence (6.12) reduces to C=C’. The four
generators we thus obtain are simply the constants of
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the motion corresponding to the transverse parts of A
and dA/dt, the true observables of the theory.

As an illustration of algebraic coordinate conditions,
we may use the Coulomb gauge, which is given by

D= =0. (6.14)
The “reduced” Lagrangian is then
L'=%[ (dA/dt)*— (kX A)*], (6.15)
and the corresponding equations of motion are
MA=(k-A)k—EA—d?A/di?=0. (6.16)

The initial condition which must be satisfied is seen to be
D=k-(dA/dt)=0. 6.17)

In analogy to our treatment of the Lorentz-type con-
dition, we construct the modified constants of the
motion corresponding to the three components of A
and the three components of dA/di. If we then require
that the condition D be left invariant, we see that the
transformations must satisfy the equation

k-5(dA/dt)=0. (6.18)

We find that the requirement (6.18) rules out only the
one generator C’4;. Of the remaining five generators,
it is seen that C’daay/at is zero modulo the condition
(6.17), which implies that the corresponding trans-
formation maps into the identity element of £/€. Once
again we are left with the transverse parts of A and
dA/dt as the true observables.

7. CONCLUSION

The use of coordinate conditions leads to a suitable
definition of true observables, but not to an actual
prescription for obtaining them in a given theory.
What we have done, in essence, is to replace one
problem by another. Without coordinate conditions it
is difficult to find constants of the motion; with co-
ordinate conditions the construction of (modified)
constants of the motion is almost trivial, but among
them we must find those constants of the motion whose
corresponding transformations leave the coordinate
conditions invariant. In the example of the last section,
we obtained these generators with little difficulty. How-
ever, in a theory of greater formal complexity, such as
general relativity, it would be necessary to solve Egs.
(5.18) by approximate means in order to obtain ex-
pressions for the true observables.

One possible approach might be to use an approxima-
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tion method analogous to that used by Newman and
Bergmann.®® They have shown how an approach
analogous to that of Einstein, Infeld, and Hoffmann'
(EIH) can be used to obtain the true observables in the
canonical formalism. The original EIH method was
designed to obtain the equations of motion for point
singularities from the field equations of general rela-
tivity. At each order of the expansion conditions on the
singularities arise out of the solution for the previous
order. Similarly, Newmann and Bergmann expand the
Lagrangian in such a manner that the problem may be
completely solved for the zeroth-order case. Then the
true observables at each order are found from those of
the previous order by a specified procedure. If the
theory contains M true observables, for example, then
at the pth order one would obtain Mp true observables,
corresponding to the p terms in the expansion of each
true observable to that order. If this scheme were to
be applied to the formalism of the present paper, then
it is a direct result of certain theorems proven by
Newman and Bergmann that of the M (p41) observ-
ables at the (p+1) order, Mp of them are precisely
those of the pth order. We are thus left with the problem
of finding M new observables at each order. Since at
each order the new variables enter only linearly, it is an
easier task to find the observables in this stepwise
fashion than to attempt to find the M exact observables
all at once.!

In closing, we should like to mention one other
approach to the problem of true observables, which is
due to Komar'® and Géhéniau and Debever.!” This
method is based specifically on the properties of metric
spaces. The essence of their approach is to label points
in the space by the values of four independent scalars
instead of the four conventional coordinates. If we
then consider any other scalar as a function of the first
four, it would be an invariant under transformations of
the conventional coordinates. The systematic recon-
struction of general relativity in terms of these ob-
servables is being actively pursued at this time.
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