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quantities with which we are dealing. In point of fact,
we know how to interpret these quantities as true
observables. (An apt analog in electromagnetic theory
may clarify this point of view. The transverse com-
ponents of the vector potential may be considered as
the gauge-invariant true observables; or they may be
considered as the components of the vector potential
in a particular gauge, namely the radiation gauge. ) An
investigation of the quantization of general relativity

from the point of view of considering (2.4) as a con-
ventional coordinate condition is now in progress.

ACKNOWLEDGMENTS

I would like to acknowledge helpful discussions with
Dr. P. G. Bergmann and Dr. R. Sachs concerning the
significance of the problem of constructing observables
in general relativity in relation to the problem of
quantizing the theory.

PH YSI CAL REVIEW VOLUM E 111, NUM B ER 4 AUGUST 15, 1958

Spectral Representations in Perturbation Theory. I. Yertex Function*
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The vertex operator is examined in lowest order perturbation theory. It is found that, as a function of the
invariant momentum transfer q'= q' —qo', it is analytic in a cut plane with the branch point on the negative
real axis. A spectral representation (dispersion relation) may therefore be inferred. The threshold of the
spectrum depends on the masses of all fields involved unless certain inequalities hold between the masses of
the incident and outgoing particles on one hand and the particles in intermediate states on the other; in
that case the threshold depends only on the intermediate masses.

P~ISPERSION relations and spectral represen. ta-
tions in terms of physically accessible inter-

mediate states have recently supplemented perturba-
tion expansions as a theoretical tool in the study of
elementary-particle interactions. ' It has been possible
to derive them as general consequences of a causal,
Lorentz-invariant field theory, but only with the im-

position of rather curious restrictions on the masses
of the interacting particles. We have in mind par-
ticularly the nucleon electromagnetic form factor and
the nucleon-nucleon scattering amplitude, both as
determined by coupling to the pion field, for which
dispersion relations hold only if

m ) (V2 —1)Msr,

where nz and M~ are the pion and nucleon masses,
respectively. Unfortunately, the observed masses do
not satisfy this inequality; the question, whether the
quantities mentioned have the desired spectral repre-
sentations, therefore remains unanswered.
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As a guide in this matter we may appeal to perturba-
tion theory'; and it is easily established that at least
the low-order contributions calculated from pseudo-
scalar meson theory indeed have the analyticity prop-
erties from which the dispersion relations can be
obtained. This result has given rise to speculation that
the exact solution to the field-theoretical problem may
have properties quite different from those of the per-
turbation series taken term by term. 4

We believe that the explanation is far simpler: the
perturbation expansion contains implicitly information
about the interacting system that has not been used in
the derivation of the dispersion relations. While the
general discussions are based on selection rules deriv-
able from invariance principles and the stability cri-
terion that the rest mass of all intermediate states to
which a single particle is coupled must exceed the rest
mass of that particle, the perturbation expansions con-
tain explicit lower limits on the mass of each particle
in each intermediate state. For example, in the calcula-
tion of the nucleon form factor, each intermediate state
coupled to the nucleon contains at least one particle
with a mass equal to or greater than the nucleon mass
(nucleon conservation). This is the decisive element
which results in the validity of the perturbation-
theoretical dispersion relations for the form factor and
nucleon-nucleon scattering. We may point out here
that nucleon conservation does not have such strong

' Y. Nambu, Nuovo cimento 6, 1064 (1.957).
See, for instance, Proceedings of the Seventh Annua/ Rochester

Conference on IIigh-Energy Nuclear Physics, 1957 (Interscience
Publishers, Inc. , Nev York, 1957), Session IV.
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FIG. 1. Feynman diagram for
vertex operator.

while in the former it is complex, and complex conjugate
values are obtained on approaching the real axis from
the upper and lower half-planes. The range in qp' over
which F (qp') is complex is determined by the conditions

implications for the heavier baryons'; in some cases
the perturbation formulas have spectral representations,
but with a modified threshold, different from the one
obtained in the general arguments.

In the discussion of dispersion relations it is necessary
to decompose the amplitudes into irreducible covariants
multiplied by scalar functions of the momenta. Since
the derivations, from this point, depend on the prop-
erties of these scalar functions only, we may restrict
our investigation to scalar field theories without loss
of generality.

Accordingly, we introduce the scalar three-point
function (vertex operator) calculated from the Feynman
diagram' (Fig. 1). It describes three scalar fields @i, Qp,

and pp coupled to three intermediary fields p„pb, and

@„asfollows:

& in t = g 14 Aibk t+ g24 pg ak t+ g P4'P4'a4 b (2)

We have in mind the conversion of a particle of field

P, (mass M&) to one of field Pp (mass M p) by a virtual
quantum of the field p&, with invariant momentum
transfer q'=q' —qp'. The masses of the intermediate
fields g„ tfib, and p, are m„mb, and m„respectively.
For the nucleon form factor, for instance, m, =&2
=M~= j/I~, m~ ——m, =m„. Stability of the field is in-

sured by the requirements

M X &A.+no. , M p &nz.+mb. (3)

Except for a constant factor, the vertex operator as
a function of complex q' is

F(q')
GO

2+i~„2 ' '+

F (—nz'+ip) —F(—m' —ip)
d(ns')

m'+ q'

=—lim
(."Im[F( —m' —ip)]

d(m').
m'+q'

(6)

The expectation is that. the branch point occurs at

q'= —p'= —(nsb+ m,)'

because that is the threshold for the production by the
quantum Pi, of a real intermediate state, of particles
pb and p. to which it is coupled. It is easy to verify
that this is indeed the largest value of q' as obtained
from Eq. (5):

~.'tXp+nb'Pp+ m, 'yp+qp'Ppyp

MP—opv p Mp—'oipP p=0 (5)

for some np, Pp, and yp such that

0&txp,' 0&pp,' 0&Vp', txp+pp+pp=1.

The function F(q') is therefore analytic in the cut q'

plane. The cut extends along the real axis from q'= —~
to the branch point q'= —p'&0, beyond which it is no
longer possible to satisfy Eq. (5) with the stated condi-
tions on np, Pp, and yp. The branch point is therefore
the largest value of qpP allowed by Eq. (5). It may be a
true maximum or it may occur at the end of the range
of one of the parameters. In either case, F(q') has the
spectral representation

1 1 pl
F(q') = "do. d~

I
d&

~p "p "p

8 (1—n —P—y)

gp
=—

PpV p

Xpm, 'np+mb'Pp+m pp M (xpp+p M txppPp] (8)

(4) when txp ——0, at the end point of its range, and
$m 'n+ mb'P+m. 'p+ q'Py Mp'ny —MpPnP]—

P mp,/(mb+m, ,), y p
——mb/(mb+ m„,).

It is clear that F(q') will be regular for complex q'

because the denominator can then not vanish in the
region of integration. One can infer the same about
positive real q from the stability condition (3), and,
further, that F(q') is real there. ' As q' approaches a
negative real q'p', however, the denominator may vanish
or may not vanish. In the latter case, F(qp') is real,

~ Dr. Nambu has described similar conclusions in a recent letter
to us (to be published).

6 For a description of perturbation methods, see J. M. Jauch
and F. Rohrlich, The Theory of Photons and E/ectrons (Addison
9'esley Press, Cambridge, 1955), Chap. 8.

'Actually, we are here choosing one branch of the function
P(g') which we may call the physical branch.

mbM pP+m, ,M pP

mb+m,
)m, '+nsbm, .

The quite complicated general formula for its value is
given in the appendix. Here we shall only state the

The location of this branch point is of course inde-
pendent of iV~ and M3.

We must still investigate the possibility that q' in

Eq. (8) has a maximum when all three parameters are
in the region of integration. It is straightforward to
verify that such a maximum does indeed occur when
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result for the most interesting case

iV2 ——3fg
——M; mg ——m, =m().

Then the inequality (10) becomes

M'&m '+m '

and the branch point is located at'
(12) FIG. 2. I& eynman dia-

gram for vertex operator;
nonphysical region.

q' = —p' = — [(ms+ a,)'—M'j
ma 2

X [M'—(mo —m,)'$& —4mo'. (13)

We may observe that Eqs. (13) and (7) give the same
value,

p, '=4mp',
when

M' = res, '+ rise'.

We find, therefore, that the lower limit in the repre-
sentation (6) depends on the value of Ms and Ms,

0 (l~'= m' ——'p'

particles are given in the coordinate system in which
(14) the virtual quantum of the field pi is at rest. If we now

require that the intermediate particles, as well as the
(15) final particles, be on the mass shell, we obtain the

equations

4~ 2. Ms(~ 2+~ 2
0 &k'= 3P—4p',

(x—k) '= res.',
(17)

1
p'= [(ms+ad. )'—M'][M' —(rise —m )'j.

ma 2

M'~m '+m '

(16)

Does the branchpoint Eq. (13) correspond to a
"physical" threshold as did Eq. (7)? Since these phe-
nomena occur in the so-called nonphysical region, in
which momentum and energy can be conserved only
for reactions between particles with complex momenta,
it is not possible to present a completely convincing
intuitive argument. Consider the Feynman diagram
Fig. 2, where the energy-momentum vectors of the

Nambu has suggested that these considerations be applied
to weakly bound two-particie systems (e.g., the deuteron) whose
binding energy (it=c=1),

e =m~+n2p —3II)

is small compared to the masses, i.e., the nonrelativistic case.
By Fourier transformation one may define a coordinate-space

particle density p(rp) as function of rp, the particle distance from
the center of mass. The exponent governing its asymptotic be-
havior for large rp is

i (ro)-e ""'

It may be verified from Eq. I'13) that this result is the same as
obtained from the wave functions P describing the bound state,

i (ro) = lk(r) I'-e '"',

where r=re(vle+rso)/me is the interparticle spacing and

AS pS2~
6.

/N p+ma

To obtain the particle density associated with an inelastic ampli-
tude that causes the composite particle to make a transition from
the state with wave function it r(r) and binding energy e& to that
with L'$2(r), e2$, we may use the formulas in the Appendix to
shov that

p(re) = I ps*(r)pq(r)
~

e "'+'e "
svhere

fg ptÃg
Ki

N2p+82~

for the complex vectors k and x, which can be satished
only if ix' is greater than the value given in Eq. (13).
In this sense does the imposition of the free particle
energy-momentum relation, i.e., the vanishing of energy
denominators, give rise to a threshold.

We may note that the deduction leading from Eq.
(17) to Eq. (13) can be carried out even if the inequality
(12) on M is not satisfied, but it is then misleading. For
in that case the branch point does not occur in the
physical branch of the multivalued function F (q'), but
only in the other branches. This may be shown by
explicit construction of F(q') or by reference to Eq. (8)
from which np(0 is obtained.

The general derivations of dispersion relations' ' are
based on a study of Eq. (6) as a function of Ms. The
relation is first derived for values of this mass that do
not lead to a "nonphysical" region. An analytic con-
tinuation with respect to M2 is then employed to give
Eq. (6) with the desired mass. It is clear that the be-
havior of p, Eq. (16), permits this continuation only in
a limited range, a range which leads to conditions such
as Eq. (1).

We shall now show that Eq. (16) is equivalent to
Eq. (1) for the nucleon form factor when one only
imposes the condition that the lowest mass state
coupled to the photon is the two-pion state, and the
lowest mass state coupled to the nucleon is the meson-
nucleon state:

m +ms &Mir+ris; m )ms(1.8)

From Eq. (16) we see that the region to which the
representation (6) may be extended as a function of M
is limited by

Mss(nz '+mps.
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Fio. 3. Feynman diagram
for Z-particle form factor con-
tribution.

Similar results are obtained when one considers the
form factors of A, Z, and ™brought about by the strong
coupling terms pqpvp„, p~p~p„, and p-.p2p„. In other
words, nucleon conservation is a selection rule that
should permit the extension of the general derivati:on
of spectral representations, but it will not permit all
cases to be treated.

The most restrictive inequality is obtained when ns,
and mp are equal,

m. =mb ———2, (M~+m. ), (20)

m &MN or mp&M~, (21)

which leads directly to Eq. (1) when inserted into Eq.
(19). It is true that assumption (20) seems rather arti-
ficial; but one must realize that in the general theory
the intermediary fields will have a mass spectrum, and
that Eq. (18) contains the only conditions on this
spectrum.

Since the usual perturbation-theory calculations
recognize nucleon conservation, which implies

APPENDIX

With arbitrary mass values, the threshold p,
' of the

spectral representation is

@2= (mb+m, )' when

mbM22+m, M22

mb+ my

(m, '+mbm„(A-1)
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(A-2)

mbM22+m, M22 -2

&= —m.'(mb+m, )'+ —(m.'+mbm, )
mb+m,

M=Mg, nz &Sf', ynp&yn, (22)

Eq. (19) is satisfied trivially and there are no conditions and is the larger root of the quadratic equation
imposed on the meson mass.

There are some theories, however, in which the
where

complications of Eq. (16) manifest themselves. Con-
sider, for instance, the form factor of the 2 particle g =m &

resulting from the coupling term PgfqP (Fig. 3). The
mass parameters have the values

which satisfy the inequality

M22) Mg2+m '

The threshold of the spectrum therefore is

(A-3)
(mb+m, )'

(23)
C= (M22mb' —M 'm ') (M22 M'+mb' —m ')—

m 2(M 2 M 2)(mb2 m 2)
when

(Mr' M22 m2) '— —
@2=4m ' 1—

~
~

(4m '. (24)
23'pm

mbM22+m, M22
)m, +mbm, .

mb+m,
(A-4)


