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The construction of a complete set of quantities in general relativity, whose functional form is invariant
under coordinate transformations, is indicated. The set obtained is highly redundant. The Cauchy problem
for obtaining an independent complete set of such quantities ("observables") is therefore discussed. ft is
also pointed out that the observables obtained may alternatively be viewed as the metric tensor in a special
"gauge" (i.e., with a special coordinate condition). This latter viewpoint may facilitate the quantization
of general relativity.

1. INTRODUCTION

'HE well-known and most conspicuous property
of the general theory of relativity, the general

covariance of its laws under arbitrary nonsingular
coordinate transformations, has as a necessary conse-

quence the unobservability of the coordinates by which

we identify points in space-time. For clearly, by an

appropriate coordinate transformation, a given world

point can be given arbitrary coordinates relative to any
other set of world points. A further, and perhaps more
serious, consequence of the general covariance is that
the metric tensor, the potentials of the gravitational
field, as a function of these coordinates, is also not
observable. This circumstance can be rejected, for
example, in two alternative ways: (1) Given two metric
tensor fields, one cannot readily tell whether they
represent two distinct physical situations or whether

they represent the same physical situation but in two
different coordinate systems (the so-called equivalence
problem). (2) Given the metric tensor and its first
normal derivative on a space-like hypersurface, its
continuation in time is not uniquely determined by the
field equations of the theory, for we are evidently free
to perform coordinate transformations which do not
alter the coordinates and Cauchy data on the initial
hypersurface.

Observables in classical gravitation theory are
analogous to gauge-invariant quantities in classical
electromagnetic theory. They are uniquely determined

by the physical situation under consideration. Further-
more, if one has a consp/etc set of such observables, they
will uniquely determine or characterize the physical
situation, totally removing the ambiguity engendered

by general covariance. Apart. from the obvious interest
that such observables possess for the classical theory of
gravitation, the efforts toward quantization of general
relativity indicate the necessity for having only such
quantities correspond to operators in the Hilbert space
of physical states. '

* Supported in part by the National Science Foundation and
the Air Force Once of Scienti6c Research.

' For further and more thorough discussions of these questions
see P. G. Bergmann, Nuovo cimento 3, 1177 (1956);E. Newmann
and P. G. Bergmann, Revs. Modern Phys. 29, 443 (1957) and the
references found in this latter paper. See also P. A. M. Dirac,

The purpose of this paper is to indicate a general
procedure for the construction of a complete set of
observables in gravitation theory. We shall construct
those observables in Sec. 2 and shall indicate the limits
of validity of the procedure. In the third section of this
paper we shall digress slightly to present a somewhat
unconventional but straightforward version of the
Cauchy problem in general relativity. We shall employ
this approach in Sec.4 to attack the problem of ending
a complete set of independent observables, that is, those
observables whose values or functional forms can be
arbitrarily assigned, so that each distinct assignment
will lead uniquely to a physically distinct solution of
the field equations of the theory.

2. CONSTRUCTION OF TRUE OBSERVABLES

The coordinates of world points are evidently not
observables, but a world point may be identified in-
variantly by different methods. Clearly, the scalars
which one is able to construct by combining the metric
tensor, the Riemann tensor, and its covariant de-
rivative, will in general have different values at different
world points. Since scalars do not alter their values
under coordinate transformations, these numerical
values can serve to identify world points in an intrinsic
fashion, thus giving a first means for the construction
of observables. In particular, for spaces which do not
admit a symmetry group of isometrics we know that
some set of four of these curvature scalars may be
found which is functionally independent. ' Such a set
of scalars can then serve to identify world points
uniquely. For the remainder of this paper we shall
limit our attention to the consideration of such non-
symmetric spaces. The nonsymmetric spaces clearly
comprise the vast majority of those spaces which
satisfy the gravitational field equations. In addition,
a lack of symmetry corresponds to our most immediate
and direct observations and impressions of the universe.
Unfortunately, in obtaining all our known solutions of
the gravitational field equations, for simplicity some
form of symmetry had to be assumed. These solutions

Quantum Mechanics (Clarendon Press, Oxford, 1947), third
edition, p. 286.

2 A. Komar, Proc. Natl. Acad. Sci. U. S. 41, 758 (1955).
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are thereby included in the "set of zero measure" we
are choosing not to consider.

Although it will not be essential for the considerations
of this article, there is good reason, for the case of empty
space-times, to impose an additional limitation. We
can require that the four functionally independent
scalars, whose existence we are assuming, be the four
independent real scalars which are determined by the
eigenvalue problem'

(E.,; „—;;„„)V""=0,

where R.;;~~ is the Riemann Tensor, g&7I &=g'I g&v
—g'ig71 &

and V~' is an antisymmetric tensor. The requirement
that these four scalars be functionally independent is a
much stronger condition, which is satisfied only in the
most asymmetric of spaces and which corresponds to
the exclusion of Pirani's .type II and III spaces of pure
radiation, in addition to excluding symmetric type I
spaces. At this stage of our exposition, the principal
motivating factors in imposing this additional limi-

tation are twofold: (1) apart from scalars constructed
trivially by taking algebraic functions of these four
scalars, they are the only nontrivial scalars which are
of least possible order in derivatives of the metric, thus
making them the simplest and most natural choice;
(2) since they stem from an eigenvalue problem, their
structure will be much simpler to analyze than other
possible choices of scalars.

Throughout this paper we shall adhere to the con-
vention that Latin indices run from 1 to 4, and Greek
indices run from 1 to 3. Let 3' be the four functionally
independent curvature scalars (i.e., four speci6c and
distinguishable scalar functions constructed from the
metric tensor and its derivatives). To emphasize that
these four functions uniquely and intrinsically identify
world points, let us go to the new coordinate system de-
termined by the A':

(2 1)x'= A'(x)

If we inquire into what the metric tensor looks like
in this new coordinate system we 6nd the usual
expression:

BA'BA7
g

717 gms

Bx 8$
(2.2)

However, we now note that since A' is a scalar, the
BA'/Bx is a covariant vector and therefore g" is

component by component a well defined scalar con-
structed from the metric tensor and its derivatives. If
we consider two metric tensor fields and ask whether
they represent the same physical situation, di6ering
perhaps by being viewed in diferent coordinate systems,
we now have a ready criterion for determining the
answer. Clearly, at corresponding points in any identi-
6cation of the two spaces, the values of all scalars must

3 F. A. E. Pirarri, Phys. Rev. 105, 1089 (1957). See also J.
Geheniau and R. Debever, Helv. Phys. Arta. Suppl. IV, 101
(1956).

R;,=0. (2.3)

Since the ten scalars of Eq. (2.2) are also components
of the metric tensor in. the coordinate system deter-
mined by Eq. (2.1), they must therefore satisfy the
ten Eqs. (2.3) as functions of these coordinates. In
addition, the A' may be considered as four (nonlinear)
diGerential operators acting on the metric tensor.
These operators, via Eq. (2.1), must yield back the
coordinates, to insure that we are in fact in the intrinsic
coordinate system. We thus obtain four additional
conditions

A'(g„„)=x'. (2.4)

We should mention in this connection that although
the observables are defined as ten scalar functions of
four other scalars, heuristically it is much easier to
consider the quantities as the metric tensor with a
particular coordinate condition given by Eq. (2.4)—
even though this viewpoint obscures the observable
character of the quantities to some extent.

3. THE USUAL CAUCHY PROBLEM

In order to determine a nonredundant complete set
of observables, we are led to consider the initial-value
problem on a space-like hypersurface for the combined
set of Eqs. (2.3) and (2.4). Customarily one selects the
coordinate system in such a way that this space-like
hypersurface has the equation x4=const. However in
view of Eq. (2.4) we no longer have this freedom. This
section is therefore devoted to indicating briefly the
form of the initial-value „problem in an arbitrary
coordinate system.

The initial space-like hypersurface may be specified
in two equivalent ways. We can specify that it have the

agree if the spaces are to be equivalent. We are therefore
compelled to identify points in the two spaces which
have the same "intrinsic" coordinates defined by Eq.
(2.1). Furthermore at these corresponding points it is
necessary that the ten scalars g" deiined by Eq. (2.2)
have the same values in the two spaces. However, since
in this coordinate system the 10 scalars g" are also the
components of the metric tensor, we see immediately
that these conditions are not only necessary but also
sufficient for the solution of the equivalence problem.
Thus we find that the functional form of the 10 scalars
g" as functions of the four scalars A' (a) is uniquely
determined by the metric space independently of any
choice of coordinate system, and furthermore (b)
uniquely characterizes the space. Part (a) of this
statement implies that the g'7' as functions of A' are
"invariants" or "observables" of the space; and part
(b) implies that this set of observables is a complete
set. However, we have clearly a highly redundant set
of observables.

We will consider in the remainder of this paper those
spaces which are solutions of the Einstein field equa-
tions
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equation
$(x') =0 (3 1)

or, alternatively, we can give the equation of the surface
in parametric form:

x"'=X'(U") . (3.2)

The parameters U" may be considered as a coordinate
system which specihes points on the hypersurface.
Using these parameters, we determine the initial-value
problem for the field equations (2.3) by specifying

g'=g'(U ), (3.3)

~g&&'

gm —Q. (Un)
Bx

(3 4)

where g' is the unit normal to the initial surface. We
shall call these 20 functions of 3 parameters the Cauchy
data, and shall indicate how they determine a solution
of the field equations (2.3).

Since P is the unit normal to 5, it satisfies the
equations

g'& =X' X& —$'P. (3.12)

For we may first make an x-space transformation in
such a manner that g"= —84' and $'=84'. This is
obtained by taking the surfaces geodesically parallel
to S to have the equation x4= const. , where the
constant is the geodesic distance of the surface from S.
We then perform a U-space transformation so that
U =x . Now, in view of Eq. (3.11), Eq. (3.12)
becomes a trivial identity. However, since it is a co-
variant relationship it remains true in arbitrary co-
ordinate systems both in x-space and U-space.

By a similar argument it is readily seen that on S we
can replace the field Eqs. (2.3) by the equivalent set

transformations, and as a covariant vector under U-
space transformations. Such behavior will be true in
general, namely, Latin indices will behave as tensor
indices under x-space transformations and as scalar
indices (or enumerators) under U-space transforma-
tions, whereas we have the opposite behavior for Greek
indices. With this in mind it becomes trivial to deduce
the important relationship

( cjX
X

BUn
(3.5)

G,=g (g.m ig.mg) 0

I'
p

—=X, X",pR „=0.
(3.13a)

(3.13b)

gmgn— (3.6)

Thus from Eqs. (3.2) and (3.3) we can determine $' as
a function of the U . We shall indicate this by writing

(3 7)

where throughout the remainder of this section f(U)
shall denote a generic function Lor set of functions, as
in Eq. (3.7)g completely determined by a knowledge
of the Cauchy data and/or the equation of the surface
S.

Differentiating Eq. (3.3) with respect to U we obtain

The reason for decomposing the field equations in
this manner becomes evident by observing that Eq.
(3.13a) depends purely on the Cauchy data, and in fact
represents a set of four constraints which limit our
freedom to assign the data arbitrarily. This is readily
con6rmed as follows:

qadi&'~= qg PC' (gmq, ya+gya, mq gyq, mi

gmk, yq) 4 g (gmy, nq gmn, yq)$+ f(U) ~ (3 ~ 1'1)

Employing (3.12) and (3.6), we find

G'= 2X"-X—"'(Pg,-.'+4k"6',g-. -)+f(U) (3 15)

X"', g;;,„=f(U).
Since the rank of the matrix

is four, we deduce from Eqs. (3.4) and (3.8) that

(3.8)

(3.9)

Therefore, again employing (3.6), we have

PG-=f(U)
Furthermore if we observe that via, Eq. (3.10)

~g'~, I
X . -gv, ~-= =f(U),

BU

(3.16)

(3.17)

g*';.= f(U) (3.10)

It is easy to see that the metric of Eq. (3.3) uniquely
determines the metric of the hypersurface, p p, via

v-e=X"'-X",eg =f(,U) (3 11)

We shall use this metric to raise and lower Greek
indices in the usual fashion. Note that under trans-
formations in x-space the y p behave as a set of 6
scalars, while under transformations in U space it
transforms like a symmetric tensor. Similarly X,„
behaves as a contravariant vector under x-space

and that we have the orthogonality relationship (3.5),
we readily obtain from (3.15)

Xm, G = f(U). (3.18)

Combining Eqs. (3.16) and (3.18), with due con-
sideration of (3.9), we easily obtain

G'= f(U). (3.19)

Moreover, it is readily confirmed, by making use of
(3.12) and the well known identity

(3.20)
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that if (3.13) is satisfied on S, then the first derivative
of (3.13a) also vanishes on S. Thus the field equations
on S insure the propagation of the constraining relations
(3.13a) away from S. We therefore turn our attention
to Eq. (3.13b) to determine how the metric propagates
from S. By direct computation, again making use of
(3.12) and (3.17), we find

&-s=X, -X",sk'k'g-, .e+f(U) (3 21)

By repeated use of (3.17) and (3.9) it is then easy to
deduce from (3.13b) on S that

X", X",pg „,,i,= f(U) (3.22)

A. Lichnerowicz, Theories Relativistes de lc Gravitation et de
/'Electromcgnetisme (Masson et C", Paris, 1955},Chap. II.

However at this stage this is as far as we can go by
relying just on the held equations. But what we are
after is to show that we can obtain g,,; I„-~ as a function
of the Cauchy data. The difficulty in accomplishing
this is clearly a reQection of the fact that the solutions
of the field equations are not uniquely determined by
the Cauchy data. For we are free to perform coordinate
transformations which alter neither the equations of
the initial surface Snor the Cauchy data on the surface.
Such a transformation has the form

x'= x+S'(x)@'(~) (3.23)

where S(x) is given by the equation of S, (3.1), and
P'(x) is an arbitrary nonsingular function. It is easy
to verify that the @'(x) may be chosen so that
P('$'g;„, ,„can have any preassigned behavior on S.
In particular we may take p' so that

(3.24)

In fact, by appropriately choosing @' it can be
arranged that

(3.25)

One may also check directly that the coordinate
transformation (3.23) does not alter Eq. (3.22), as we
should expect by the fact that it does not alter the
Cauchy data on S. If we now consider simultaneously
the set of equations (3.22) and (3.24), by repeated
application of (3.9) and (3.17) we find

(3.26)

In a similar fashion, by considering higher derivatives
of the field equations, and taking into account the
coordinate conditions (3.25), we can obtain a unique
expression for all the higher derivatives of the metric
as a function of the Cauchy data. Thus we have re-
established the well known result' that if the Cauchy
data are assigned on an initial space-like hypersurface,
arbitrarily modulo four constraints (3.13a), then the
solution of the Einstein 6eld equations (2.3) is uniquely
determined modllo an arbitrary coordinate trans-
formation which does not alter both the equation of

the initial surface and the Cauchy data on the surface.
The purpose of repeating these well-known results in
such detail was to present them in a form and notation
which can now be directly applied to the Cauchy
problem of the combined set of Eqs. (2.3) and (2.4).

3'=x'+S'y'. (4.1)

Thus we readily obtain a set of necessary conditions
on the Cauchy data on S:

gmpng i —
O

(4.2a)

(4.2b)

(4.2c)

More a,ccurately stated, Eqs. (4.2) become conditions
on the Cauchy data when all derivatives of the metric
higher than the erst which occur in the expressions
(4.2) are replaced by the Cauchy data which determine
them through the field equations (2.3) and our assumed
initial choice of coordinate conditions (3.24) and (3.25).
Furthermore, we shall state without proof that it is
easy to verify that Eqs. (4.2) are sufficient conditions
for the scalars A' to have the form (4.1). Thus Eqs.
(4.2) are the sought-for additional requirements on
the Cauchy data which insure that the coordinate
transformation to the intrinsic coordinate system will

4. CAUCHY PROBLEM FOR INDEPENDENT
OBSERVABLES

As we can observe from Eq. (3.22), the field Eqs.
(2.3) only determine the propagation of the "trans-
verse" components of the metric tensor from the initial
surface. The coordinate conditions (2.4) will determine
the propagation of the remaining four components of
the metric. However, if we attempt to consider Eqs.
(2.3) and (2.4) simultaneously, there will be involved
conditions of integrability occurring between them.
For this reason it is much easier to build upon the
structure which we have established in the previous
section.

If we have a solution of the field equations (2.3) with
a sufhcient lack of symmetry, we can always perform
a coordinate transformation to obtain (2.4). We there-
fore pose the following problem: given a solution of the
field equations (2.3) determined by Cauchy data on an
initial space-like hypersurface and a particular choice
of coordinate conditions, say that of Eqs. (3.24) and
(3.25), what additional conditions (other than (3.13a)j
must the Cauchy data satisfy in order to insure that
it may be continued in an intrinsic coordinate system

I i.e., one that satisfies Eq. (2.4)jP
When phrased in this fashion, the solution of the

Cauchy problem becomes transparent. Clearly, the
four scalars 3' must have such a form that when we
perform the coordinate transformation, in our given
solution, to the intrinsic frame, the Cauchy data remain
unaltered; that is, A' must have the form of Eqs.
(3.23),
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not alter the Cauchy data on the initial hypersurface
(3.1).

The conditions (4.2) are clearly independent of each
other and of (3.13a), for any one of them may be
violated in an arbitrary fashion purely by a choice of
coordinate transformations. We are therefore in a
position to state that if, on an initial hypersurface, the
20 functions of 3 coordinates, (3.3) and (3.4), which
comprise the Cauchy data, are assigned in conformity
with the 16 independent constraining relations (3.13a)
and (4.2), then this is necessary and sufhcient to insure
that the metric may be continued o6 the initial surface
in a unique fashion such that the combined set of Kqs.
(2.3) and (2.4) are satisfied. The independent complete
set of observables would then be the 4 functions of 3
coordinates (if such four functions in fact exist) which
could be arbitrarily assigned such that the 16 Kqs.
(3.13a) and (4.2) are automatically satisfied. To find
such four functions requires a closer investigation of
these constraining relations which is now being carried
out. The character of the independent complete set of
observables deduced above, namely that they consist
of 4 functions of 3 coordinates, agrees precisely with
what has been determined by general considerations
of the canonical formalism of general relativity. ~ This
agreement in numerology gives added encouragernent
that precisely four such functions may be found.

We have indicated that the constraining relations
(4.2) on the Cauchy data are necessary and t taken
together with (3.13a)] suflicient relations to insure the
determination of the problem of the independent
observable s. However, in deriving these relations
explicit use was seemingly made of the initial coordinate
conditions (3.24) and (3.25). One might naturally
question whether the form of the relations (4.2) as
functions of the Cauchy data would be drastically
altered if other coordinate conditions were initially used
to fix the propagation of the four "normal" components
of the metric tensor. In point of fact this does not
happen —the form of Eqs. (4.2) as functions of the
Cauchy data is independent of any assumed initial
coordinate conditions. For Eq. (4.2a) this statement is
evident: the value of a scalar at any world point is
independent of the choice of coordinate conditions. In
general, the independence of the form of Eqs. (4.2) on
the choice of initial coordinate conditions stems from
the invariance of the form of Eq. (4.1) under the group.
of all transformations which leave the Cauchy data
unaltered, namely all transformations of the form
(3.23). The explicit demonstration of this fact is
straightforward and need not be carried out here.

S. CONCLUSION

The basic method for constructing observables in
general relativity is quite simple, and in fact appre-

I P. G. Hergmann, Helv. Phys, Acta Suppl, IV, 79 (1956) (par-
ticuularly the middle of p. 91).

ciably more general than we have thus far indicated.
Namely, if the space admits four functionally inde-
pendent scalars, we may use these scalars to replace
the coordinates occurring in any other scalar. The
resulting functional form of the scalar function of
scalars is an observable. 0 the space admits only three
functionally independent scalars, it necessarily admits
a Killing vector field' and therefore all scalars can be
written as functions of three coordinates, which can
then be replaced by the three functionally independent
scalars. The resulting functional forms are again ob-
servables. Similarly, when a space admits less than
three functionally independent scalars, observable s
can be constructed, but the construction becomes
increasingly difficult since one must then take into
specific consideration the structure constants of the
group of isometrics which the space admits.

The principal reason why we, in this paper, neglected
to discuss the observables of spaces with groups of
motions was not so much the difficulty in constructing
observables, but rather the difFiculty in finding a com-
plete set of observables. In general, the particular
scalars which one has to consider in order to obtain a
complete set divers from space to space according to
the group of motions which the space admits. That, in
general, there exists a complete set of observables, is
assured us by an existence theorem on the equivalence
problem in terms of scalars. '

When we turn to the problem of the quantization of
general relativity, we find a very important reason for
selecting the four scalars determined by the eigenvalue
equation at the beginning of Sec. 2 as the scalars
employed in condition (2.4). Apart from trivial alge-
braic combinations, these four scalars are the only
nontrivial scalars which can be constructed purely from
the Riemann tensor' (i.e., without having to go to
higher derivatives). Due to the well-known symmetries
of the Riemann tensor, only the "transverse" corn-
ponents of the metric tensor occur differentiated twice
in the "time" (i.e., normal) direction. However these
are precisely the terms which are determined via the
field equations (2.3) in terms of quantities which are
of at most first order in time. The intrinsic coordinate
conditions (2.4) can therefore be put into a form which

are of 6rst order in "time. " Should it prove to be
impossibly difficult to extract the independent observ-
ables from Eqs. (3.13a) and (4.2), we now have recourse
to considering Eq. (2.4) as a conventional coordinate
condition and employing the entire established ma-

chinery for the canonical quantization. ' The usual

argument, that employing coordinate conditions may
destroy the general covariance of the resulting quantum

theory, does not apply in this case. For considering (2.4)
as a coordinate condition is only a heuristic device to
make it easier to visualize how to manipulate the

~ A. Komar, Phys. Rev. 99, 662(A) (1955).
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quantities with which we are dealing. In point of fact,
we know how to interpret these quantities as true
observables. (An apt analog in electromagnetic theory
may clarify this point of view. The transverse com-
ponents of the vector potential may be considered as
the gauge-invariant true observables; or they may be
considered as the components of the vector potential
in a particular gauge, namely the radiation gauge. ) An
investigation of the quantization of general relativity

from the point of view of considering (2.4) as a con-
ventional coordinate condition is now in progress.
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Spectral Representations in Perturbation Theory. I. Yertex Function*
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The vertex operator is examined in lowest order perturbation theory. It is found that, as a function of the
invariant momentum transfer q'= q' —qo', it is analytic in a cut plane with the branch point on the negative
real axis. A spectral representation (dispersion relation) may therefore be inferred. The threshold of the
spectrum depends on the masses of all fields involved unless certain inequalities hold between the masses of
the incident and outgoing particles on one hand and the particles in intermediate states on the other; in
that case the threshold depends only on the intermediate masses.

P~ISPERSION relations and spectral represen. ta-
tions in terms of physically accessible inter-

mediate states have recently supplemented perturba-
tion expansions as a theoretical tool in the study of
elementary-particle interactions. ' It has been possible
to derive them as general consequences of a causal,
Lorentz-invariant field theory, but only with the im-

position of rather curious restrictions on the masses
of the interacting particles. We have in mind par-
ticularly the nucleon electromagnetic form factor and
the nucleon-nucleon scattering amplitude, both as
determined by coupling to the pion field, for which
dispersion relations hold only if

m ) (V2 —1)Msr,

where nz and M~ are the pion and nucleon masses,
respectively. Unfortunately, the observed masses do
not satisfy this inequality; the question, whether the
quantities mentioned have the desired spectral repre-
sentations, therefore remains unanswered.

* This work was supported in part by a grant from the National
Science Foundation.

f National Science Foundation Post-Doctoral Fellow.
' Some references on the use of dispersion relations are Gold-

berger, Federbush, and Treiman (to be published); M. L. Gold-
berger and S. B. Treiman, Phys. Rev. 110, 1178 (1958); J. Bern-
stein and M. L. Goldberger, Revs. Modern Phys. BO, 465 (1958);
Chew, Karplus, Gasiorowicz, and Zachariasen, Phys. Rev. 110,
265 (1958);and Chew, Low, Goldberger, and Nambu, Phys. Rev.
106, 1337 (1957).

'Bogoliubov, Medvedev, and Polivanov, Uspekhi Mat. Nauk
(to be published); Bremermann, Oehme, and Taylor, Phys. Rev.
109, 2178 (1958); R. Jost and H. I.ehmann, Nuovo cimento 5,
1598 (1957); F. Dyson, Phys. Rev. 110, 1460 (1958).

As a guide in this matter we may appeal to perturba-
tion theory'; and it is easily established that at least
the low-order contributions calculated from pseudo-
scalar meson theory indeed have the analyticity prop-
erties from which the dispersion relations can be
obtained. This result has given rise to speculation that
the exact solution to the field-theoretical problem may
have properties quite different from those of the per-
turbation series taken term by term. 4

We believe that the explanation is far simpler: the
perturbation expansion contains implicitly information
about the interacting system that has not been used in
the derivation of the dispersion relations. While the
general discussions are based on selection rules deriv-
able from invariance principles and the stability cri-
terion that the rest mass of all intermediate states to
which a single particle is coupled must exceed the rest
mass of that particle, the perturbation expansions con-
tain explicit lower limits on the mass of each particle
in each intermediate state. For example, in the calcula-
tion of the nucleon form factor, each intermediate state
coupled to the nucleon contains at least one particle
with a mass equal to or greater than the nucleon mass
(nucleon conservation). This is the decisive element
which results in the validity of the perturbation-
theoretical dispersion relations for the form factor and
nucleon-nucleon scattering. We may point out here
that nucleon conservation does not have such strong

' Y. Nambu, Nuovo cimento 6, 1064 (1.957).
See, for instance, Proceedings of the Seventh Annua/ Rochester

Conference on IIigh-Energy Nuclear Physics, 1957 (Interscience
Publishers, Inc. , Nev York, 1957), Session IV.


