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for I'(P, e) to find its value for a large e and compared
it with the value predicted by recursion.

Almost all matrices encountered were symmetric.
This property was used as a check in the initial phases
of each machine computation.

The most powerful check was the following. We

chose f, (r sot) = cosh(iso t), took cr =0, and Picked P;, q;, r;
so that we had functions suitable for the ground state.
By setting 0-= 0 in our programs we tabulated functions,
integrals, and matrices for this state. All energy correc-
tions were then calculated and compared with published
results.
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O= ions exist in solids but not in a free state. Analytic Hartree-Pock solutions have been obtained for
the 'S state of 0 which can be applied to work in solids. The solutions utilize stabilizing potential wells
of positive charge and the results are compared with other published work.

INTRODUCTION

N UMBER of the oxide crystals are of interest
because of their magnetic properties. They are

ionic in nature, their oxygens having double negative
charges. Because of this, it seemed desirable to obtain
'S(1s) (2s)'(2p) 0= wave functions of a form which
might be useful in discussions of the properties of the
solids. No one has experimentally observed free 0=
ions. It is doubtful that a Hartree-Pock solution, which
is a single determinant s.c.f. (self-consistent field)
calculation, would converge to a state with all ten
electrons bound for a free 0=. Crystalline 0= ions are
stabilized by their environment and because of this it
is reasonable both to talk of 0= ions in crystals and to
hope to get meaningful single determinant 0= solutions
for further work in solids. It was decided to do analytic
Hartree-Fock calculations using stabilizing potential
wells which are described below.

PROCEDURE

The technique used was the Roothaan procedure' as
modified by Nesbet' for use on the Whirlwind digital

TAsLK I. Parameters of the basis functions (q s).

Zs

7.700
1.490
2.803
1.776
0.714
3.412
1,384

t The research reported in this document was supported
jointly by the Army, Navy, and Air Force under contract with
Massachusetts Institute of Technology.' C. C. J. Roothaan, Revs. Modern Phys. 25, 69 (1951).

'R, K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).

computer at M.I.T. In this method, one starts with a
set of one-electron basis functions of the form

~ ($ ~) rAr+l& zrrPm(g y)— '

An s.c.f. calculation is then done, subject to the
limitations imposed by the choice of the set of q; s.
A final set of orthonormal one-electron functions
results with each function having the form

P, (l,m) =Q; C,,rl, (inc),

where the summation is over all q s with the l and m
values of the f, in question. The computer programs
had the facility for adding potentials due to charged
environments other than and in addition to the nuclear
potential. In the calculations described here, a sphere
of uniform positive charge was added. Such a sphere
causes a discontinuity in electric field rather than in
potential at the sphere radius giving us a "shouldered"
instead of square-well potential.

At first, a set of wells was used whose radii were
equal to the nearest-neighbor distances in several of
the oxides and whose charge gave the wells a depth
equal to the Madelung potential. Such a choice was
not at all satisfactory since it did not include the
nearest-neighbor electronic repulsion. Professor Slater

TABLE II. Analytic form of the wave functions.

+1 Well solution

f(1s)=42.30203g1+0.19342g2+0.85427g3 —0.47313g4
f(2s) = 10.38130g1+0.13332g2+6.21035q3+2.94794g4
p(2„)=0.11617qg+8.74998g6+1.49205q7

+2 Well solution

P(1,) ——42.30129g1+0.19240q2+0.85365' 3
—0.47105q4

4(2s) = —10.24975q1+0.16271q2+5.97706rjg+2.97325',
p(2„)=0.07800gg+8. 51793g6+1.66494';
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suggested another well based on the following argu-
ment: consider the potential energy that one electron
sees due to the nuclear charge of +8 and the other
nine electrons. At the nucleus the potential energy has
gone to —~ and as the electron moves out radially,
the potential energy increases, goes through a maximum
and then drops off slowly due to the net charge of —1

of the rest of the ion. A sphere of charge +1 at the
maximum would destroy the repulsion for large r
while leaving the "correct" potential for the interior.
In many atomic calculations, there is included a tabu-
lation of the total charge within a radius r as a function
of r. Hartree' has published this for Cl and it can be
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' D. R. Hartree, Proc. Roy. Soc. (London) A141, 282 (1933).

seen that the neutral-charge radius comes at about the
commonly tabulated ionic radius. It was decided to use
the 0= ionic radius for the sphere of charge. There is
some disagreement as to what its value is. In this work,
the most common value of 1.40 A or 2.66 au (atomic
units) was chosen.

Argument for using a stabilizing well of +2 charge
can be made since the net charge produced by the
remainder of a crystal would be just that. The results
presented in this paper describe the +1 well calculation
fully but also give the wave functions resulting from a
+2 well calculation, with the same radius, involving
the same q, 's.

TABLE III. One-electron energies, well potential energies, and
nuclear potential plus kinetic energies for the +1 well solution.
Values in Rydbergs.

One-electron energies
(including well

potential)

XIs= —40.315872
BC2s= —1.573926
X'2„=—0.160166

Well potential
energies

VI, = —0.763908
V2s = —0.761838
V2„=—0.736926

Nuclear potential
plus kinetic

energies

E'I s = 63.832428
&2s= —13.516988
E2„=—10.887736

RESULTS

TABLE IV. Two-electron F~ and G~ integrals for the
+1 well solution, in Rydbergs.

P'(1s, 1s)=9.494122
P'(2s, 2s) = 1.490274

A(2p, 2p) = 1.153652
A(2p, 2P) =0.478903
G'(1s,2s) =0.147794

G'(1s,21)=0.139619
G'(2s, 2p) =0.755039
P'(1s,2s) =2.158288
P'(1s,21)=1.792862
W(2s, 2p) = 1.300147

' J. Yamaahita and M. Kojima, J. Phys. Soc. (Japan) 7, 261
(1952).

~E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1953), in
particular, p. 177.

Table I gives the values of the q; parameters for the
reported calculations. One g; was supplied for the 1s
function (/=A, =o) and this was also used for the
inner loop of the 2s function. Three g s were supplied
for the outer loop of the 2s function (l=O, A;=1) and
three were also used for the 2p function (/= 1, A;=1).
A series of calculations was done varying the Z s in
order to obtain a best set. A number of applications of
the method of steepest descents were made. The
criterion was the minimization of the total ionic energy
(including the well). The number of parameters and
their interdependent effects on the energy made system-
atic parameter variation very difficult and as a result
there is some uncertainty as to how close the results
are to the best possible energy for seven q, 's. The
author believes that the energy differs from such a
best possible energy by no more than 0.02 Rydberg or
slightly more than 0.01% of the total energy. Energy
can be improved by adding more q s and in fact a
calculation was done with an extra 2Pt7 giving an
improvement of 0.024 Rydberg. Adding q s is unde-
sirable since it makes the final function more cumber-
some for use in solid-state work.

Table II gives the wave functions for the two wells
in their analytic form and the 2s and 2p functions are
plotted in Fig. 1 along with the results of Yamashita
and Kojima. ' The one-electron energies (3C), the well

potential energies (V), and the nuclear potential plus
kinetic energies (E) are presented in Table III for the
+1 well solution. The one-electron energies include the
well potentials. In Table IV the two-electron integrals
for the +1 well are given in the form of G" and Ii~

integrals as defined by Condon and Shortley. ' Table V
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TABLE V. Energy relations.

X» =K»+ V»+F' (1s,1s)+2F' (1s,2s)
—G'(1s,2s) +6P'(1s,2p) —G'(1s,2p)

X),» Km +V» +2F'(1s,2s) —G'(1s,2s)
+F'(2s,2s)+6F'(2s, 2p) —G'(2s, 2p)

Xs„K2„+U——s„+2F'(1s)2p)—-', G'(ls)2p)+2FO(2s)2p)
—ssG' (2s,2P) +SFO (2P,2P) —s2F2 (2P,2P)

all electrons
Total energy= Z; s (V;+K)+X;)

=2E Is+2E2s+6IC2&+2 P Is+2 V2s+6V2p
+F0(ts, 1s)+F0(2s,2s)+15FO(2p, 2p)
—(6/5)Fs(2P, 2P)+4FD(1s,2s)
—2G" (1s,2s)+12F~(1s,2p)+12Fo(2s, 2p)

—2G'(1s, 2p) —2G'(2s, 2p)

expresses the BC's in terms of the other integrals and
gives the expression for the total energy. The total
ionic energy (including well energy) was —156.1194
Rydbergs for the +1 well and —163.4968 Rydbergs
for the +2 well.

Yamashita and Kojima took is and 2s functions
from an existing Hartree-Fock solution for 0 and
calculated an analytic 2p function variationally. They
used two 2p s) s and their stabilizing environment con-
sisted of six Mg++ ions at the Mg0 nearest-neighbor

s Hartree, Hartree, and Swirles, Trans. Roy. Soc. (London))
238, 229 (1939).

distance. Gaspar and Csavinszky' also have obtained
0= solutions but they used a single exponential for the
2p function and the author believes that this is a severe
limitation.

Wave functions outside of the radii of the spheres of
charge (= ionic radius) are of little interest since this
is just the region in a solid where the atomic description
of 0= breaks down. In the "inner" region, the +1 and
+2 well solutions have the same general form. The
author obtained solutions for other and violently
diferent wells and was impressed by how insensitive
the "inner" part of the functions are to environment.
There is greater difference between the author's and
Yamashita and Kojima's results. The maxima of the
author's 2p functions lie inside and the 2s outside of
theirs. The way the 2s and 2p functions shift to com-
pensate each other suggests that the diGerence in
results is primarily due to their not obtaining a 2s
function variationally.
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