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Hence this is a solution to first order in e„and is a good
approximation for p«2je„. To determine A and 8 we
make use of the fact that 20 given by (A-2) must ap-
proach the value given in Eq. (17) as p—ro. Using the

limiting forms of the Bessel functions as p—4, we find
thatfor agreernentitisnecessarythatA= —(zri2) cotzrv„
and B = —zr/2. Hence to first order in e, ttr„(p) has the
form given in Eq. (47).
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With a 12-parameter Hylleraas-type wave function contairiing only positive powers, a new calculation has
been carried out for the 2 'S state of helium by the Ritz variational principle. The energy was minimized by a
descent process. A nonrelativistic energy of —1.0876088 Hylleraas units was reached as compared with the
best previously published value of —1..0876015 Hylleraas units from a 6-parameter function. When mass-
polarization and n R„corrections are included, the 12-parameter function gives an ionization potential 2.52
cm ' less than the experimental value of 38 454.64 cm '. The electron density at the nucleus is also calculated
and compared with the experimental hyper6ne-spectrum value. All numerical work was carried out on an
I.B.M. 650 computer.

I. INTRODUCTION

LONG series of calculations have been made of

~ ~

~

the energy of the ground state of helium, '
culminating in the 38-parameter calculation of Kino-
shita. ' When relativistic and mass-polarization correc-
tions are made, the resulting comparison with the
experimental values of the ionization energy must be
considered as very satisfactory.

The six-parameter variational calculations of
Hylleraas' and Huang represent the inost accurate
previously published wave functions of the 2 '5 state. '
They diRer from the ground-state function with respect
to symmetry and also in that two different exponential
functions must be included, corresponding to 1s and 2s
orbits. No calculation of the relativistic corrections has
hitherto been made for the 2 'S state. The mass-polariza-
tion term was calculated by Stone' with a six-parameter
function.

In this paper are presented the results of a twelve-
parameter variational calculation of the 2 '5 non-
relativistic energy together with relativistic and mass-
polarization corrections. Compared with the elaborate
character of the wave functions employed in some
recent work, " the 12-parameter function employed

*Work supported by the National Science Foundation.
t Watson Laboratory Fellow, IBM.
'H. A. Bethe and E. E. Salpeter, Handbook of Plzyszcs (Aca-

demic Press, Inc. , New York, 1957),Vol. 35, Atoms I, pp. 204-278.' T. Kinoshita, Phys. Rev. I05, 1490 (1957).' E. Hylleraas, Z. Physik 54, 347 (1929);65, 209 (1930).
4 Su-chu Huang, Astrophys. J. 108, 354 (1948).
~ Hylleraas gave 0.08761X4RH, 4hc for the nonrelativistic ioniza-

tion potential of the 2 3S state of helium. This calculation was in
error and was later corrected by Hylleraas' to 0.0876015)&4RH, 4hc.
Huang employed a wave function which is formally identical
with that of Hylleraas but obtained a value of 0.087600X4RH,4'
due, it must be supposed, to incomplete minimization.' A. P. Stone, Proc. Phys. Soc. (London) A68, 1152 (1955).

z Tycko, Thomas, and King, Phys. Rev, 1(l9, 369 .(1958).

here may be regarded as of intermediate complexity.
In spite of this fact the total energy seems to converge
very well, and indeed the agreement of our calculated
value with experiment seems to be as good as was ob-
tained by Chandrasekhar and Herzberg' for the ground
state with an 18-parameter function. This is un-
doubtedly related to the fact that the independent-
particle hydrogenic wave function, to which the
Hylleraas trial function with few parameters reduces,
is a much better approximation for a state with one
electron excited than it is for the ground state with both
electrons in the same orbit. (See also the discussion of
mass polarization below. )

An additional quantity of interest which can be
compared with experiment is the total charge density
at the nucleus which enters as a factor in the hyperfine
interaction. '

The rather lengthy calculations of the relativistic
corrections have not previously been done for the ex-
cited states. It has appeared worthwhile to give an
account of the methods employed in these calculations.

II. NONRELATIVISTIC INFINITE NUCLEAR
MASS PROBLEM

A. Mathematical Preliminaries

The nonrelativistic Schrodinger equation for the
helium atom is

( Zes Ze e2 p
(V12PV22)lb+

~
Z+ + ~lb=0, (1)2' rl F2 r12r

'S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
(1955).

9W. B. Teutsch and V. W. Hughes, Phys. Rev. IOB, 1461
(1954).
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where r~ and r2 are the radial coordinates of the elec-
trons with the 6xed nucleus as origin and r&2 is the
interelectronic distance. We choose the following units

pr (s,t,u):ter(KS, Kt)Ku) .

P; (s,t,u) =e &*'s—&'t"u"'f, (-,'o t),
(2) whereao/4 = 1; 4Ech= 1,

sinh (-,'o.t)
f'(l~t) =

cosh (-,'o t)
where co is the radius of the 6rst Bohr orbit and E is
the "Rydberg for infinite mass. " (2) fixes the units of
length and implies

tent'/Sort= 1 e'= 2

For this choice of units, (1) becomes

(3)

iE 1 1 1
(~'+~')p+( + + IN=0.

r, r, 2rto&
(4)

We note that there are two nonlinear parameters o-, ~,
while for the ground state only one such parameter is
used. Our trial function is a generalization of an anti-
symmetrized product of two hydrogen-like wave
functions.

Equation (7) becomes

The following "elliptic coordinates" are introduced:

s=ri+ro, t= rr+ro', —u=rio.

The Schrodinger equation becomes

X= (~'M IrL)/1V. — (12)

M, . I., X become quadratic forms in the c;, for our
choice of 1t, with matrix coeKcients functions of o only.

sa tC uu

4s 4t 2
6+—4"

$2 p s2 P g

2s(u' —t') 2t (s' —u')0.+
u(s' —t') u(s' —to)

(E 1~+ I

—+ ——lp=o, (6)
t. 8 s' —to 4u~

M—= Q c;c;M;,(o),

3f
L= Qc;c,I.;,(—o), . (13)

where the subscripts indicate di6'erentiation.
Following Hylleraas we replace (6) by the varia-

tional formulation

where

X= (M L)/JtI, — (7)

)g8 pQ

ds du I dtku(s t )(f o+k~o+0 )

+2s(u' t')P f„+—2t(s' uo)P, P„g, (8)—

ds du dtL2su —
o (s' —t') jPJ, J, (9)

(10)ds du dt iPou(s' to). —
'Jo ~o o

g= P c;to;(s,t,u).

The limits of integration come from the following con-
siderations. Triangle inequalities imply —I~& t ~& I~& s
&~~. Since the integrands in (8), (9), (10) are even
functions of t, we can restrict 3 to positive values and
double the volume element.

We choose as trial functions

In series (11) we restricted ourselves to P, , q;, r;)~0.
It has been pointed out" that such a series cannot
satisfy the Schrodinger equation formally. Kinoshita
removed this restriction, replacing it by the require-
ment that his function obey Kato's boundary condi-
tions. "The question as to how closely a series with our
restriction can approximate an eigenfunction has not
been decided. Since we achieved a very definite improve-
ment over the six-parameter result, we have limited
ourselves to positive powers in this investigation. It
should be pointed out that introduction of negative
powers would complicate formulas for the matrix
elements, but would otherwise cause no new difhculties.

To calculate the expectation values of the various
operators encountered in this paper, three types of
integrals were needed. To establish notation we list
them all below:

pS ptC

U(p, q,r,d) = ' ds du dt e 's"t'u"

sinh'(-,'o t)

X' sinh(-,'o.t) cosh(-,'et) ~, (14)

-cosh'(-', o-t)

' Bartlett, Gibbons, and Dunn, Phys. Rev. 47, 67'9 (1935).
» T.Kato, Trans. Am. Math. Soc. ?0& 195) 212 (1951)j Commun.

Pure Appl. Math. 10, No. 2, 151 (1957).
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W(p, q, r,d) =
Jo

stu"
ds

I
du dte '--

J,
sinh'(-',at)

sinh(-,'et) cosh(-,'o-t), (16)

-cosh'(-',p t)

when p&0, q&0, r& —1,

where

corresponds to sinh'( —,'et),

corresponds to sinh( —,o.t) cosh( —',o.t),

d= —1 corresponds to cosh'(pot).

B. Calculation of L, M, N

Any of our f; can be represented by a four-tuple of
numbers (p, , q, , r, , e,), where

8,= —', if f;(-',p.t) =sinh (-,'pt),

8;=—-', if f;(-',o.t) = cosh(-', et).

Note that multiplication of 0, by —1 is equivalent to
interchange of sinh(~pot) and cosh(~~et) That. is, —1

operating on 8, is equivalent to (2/a)(d/dt) operating
on, (-,'o t).

TABLE I. Summary of nonrelativistic values.

when p&&0, q&&0, r&&—2,

f f f'" s"$'u"
U(p, q,r,d) = ' ds du ~ dt e—'

s+t
'sinh'(-', o t)

X sinh( —',et) cosh( —,'et), (15)

-cosh'(-,'O.t)

when p &&0, q & 0, r & —1,

&(P,+P+a, q;+q+b, r,+r;+c, d)=u, , (a,b,c,d), (17)

then

L,, =2u;, (1, 0, 1, 8;+8;)+-,'[u, , (0, 2, 0, 8,+8,)
—u, , (2, 0, 0, 8~+8;)], (18)

P,P,[u,, (0, 0, 1, 8~+8;)

—l(p'+p, )[ ';(1, o, 1, 8+8,)
—u, , (—1, 2, 1, 8,+8,)]
+4[u;, (2, 0, 1, 8,+8,)—u, ;(0, 2, 1, 8;+8;)]
+q,q, [u;, (2, —2, 1, 8,+8,)
—u, , (0, 0, 1, 8,+8,)]

—u, , (O, 1, 1, 8,—8,)]
+-', q;[u, ;(2, —1, 1, —8;+8;)
—u, , (0, 1, 1, —8,+8,)]
+-; 2[u,, (2, O, 1, —e,—e,)

+r r, [u,;(2, 0, —1, 8~+8;)
—u, , (0, 2, —1, 8;+8,)]
+(p,r,+p, r,)[u,, (0, 0, 1, 8~+8;)
—u, , (O, 2, —1, e,ye, )]
—-', (r,+r;)[u„,(1, 0, 1, 8,+8;)
—u, , (1, 2, —1, 8,+8,)]
+(q,r, +q, r,)[u,, (2, O, —1, 8;ye;)
—u;, (0, 0, 1, 8,+8,)]

—u;, (O, 1, 1, e,—8,)]
+-',o.r, [u,, (2, 1, —1, —e,ae;)

—u;, (0, 1, 1, —8;+8,)],
N,;= p[u;;(2, 0, 1, 8;+8;) u;, (0, 2, 1, 8;+—8,)]. (20)

C. Minimization

2
3
4
5
6
7
8
9

10
11
12

(0, 0, 0, —;)
(1, 0, 0, —,')
(0, 1, 0, ——;)
(0,'0,'1,' —)
(1, 0, 1, —;)

(0, 0, 2, —;)
(1~ 0) » 4)

(2 00 ~x)

(0, 2, 0, —,')
(1, 1, 0, —&)

6-Par.
10»+&&+"&c;

12-Par.

1.0000000—2.8596935—2.7618353—0.9133951—0.8072628
1.1314343
0.2711045

—0.0019456—0.0981906
0.3274611—0.0331554
0.0369968

1.0000000—2.9048000—2.8390000—0,8218000—0.6630000
1.1300000

X= 'L'/M1V. —-
Equivalently, we maximize

f(o.p, c) =L'/MN; c=cg, , c„

by an iterative procedure'

ef
c 1+1—c 1+b (~ el)

.8C;

(21)

(22)

Let us consider o held constant. Then minimize (12)
as follows. First we minimize explicitly with respect to
x by the condition N/8~=0 Thus one para. meter is
determined by ~=L/2M and (12) becomes

0.67504
0.55000

304.61561
225.62677
94.53310—1.0876015

0.66444
0.55000

250.08928
188.19418
76.392594—1.0876088

i=1, , e, (23)
1~This procedure is based on ideas of T. Kinoshita (private

communication).
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fi'
p(V~ V2)g«r.

3fH, ~
(27)

8f (2L M' 1V
=2fl (24)

Integrating by parts and introducing Hylleraas units,
we have

where b is a suitably chosen scalar which will be dis- energy by
cussed later. By differentiating (22) we see

82f 1(8f)2 2
~
+2f —(LL;;—2L;2)

8o' f &8c;l L'
Sm

V 10 ' V 2fd&)
MH, ~

(2g)

where (29)V'1$ ' V 2lpdr)
Mn~ J

L;= PL;,c, ;
j=l

M;= QM, ,c, ;
j=l p8 Q

ds du dt Vg/i Vgtpu(s p)—
&o Jo

I'=—
JoBy using the same 8'f/8e, s for a large number of

iterations, the machine time per iteration becomes small
since only Bf/8c, need be calculated at each step.
After iterating a few hundred times, we extrapolate the
c, for a few hundred iterations and then start iterating
again with these new c;. We choose b so that there is
little oscillation in the c, and Bf/Bc; This d.escent
method has the advantage that round-off error cannot
build up.

To minimize the energy with respect to o, we select
a value of o. (from a lower order calculation, for ex-
ample) and calculate I-... M... E,;.For this value of o

we can determine ~, c, P by the process discussed above.
We repeat this procedure for a number of values of o-.

We thus obtain a set of pairs (o„X;).By interpolation
or extrapolation we can determine the value of 0. corre-
sponding to the best value of ) and use this 0- to make a
final choice of the remaining parameters and of ).

The numerical values of the wave-function param-
eters and the energy at minimization for the 6- and 12-
parameter functions are listed in Table I.

ds ' du dt[u(s'+P —2u') g '—g~')
f t"

J,
u(s' P)—P ' —2—s(u' —P)P lt

—2t(s' —u')P f~j (30)
Note that

00 S

P= —M+2 ~ ds I du
J,

(s~—u~)$, 2—u(P —zP)$,2j (31)
0

where M was defined by (8), and is known for a given
value of cr. Therefore we can shorten our calculations
considerably by calculating the integral expression on
the right side of (31).For our functions

R=— Q c,cR,,=P+M,

1 1
(MM;; 2M 2—) (N—7—. —21V ') (25)

3P Ã'
SSIP

III. CORRECTION FOR NUCLEAR MOTION
AND RELATIVITY

A. Nuclear Motion

In a coordinate system with respect to the center of
mass of the atom, the Schrodinger equation becomes'

52
——(&P+&2')+ &—

2p
V& V2 /=ED, (26)

3EH,

where MH, is the mass of the helium nucleus and
p = rptMH, /(m+MH. ).

Motion of the nucleus has modihed the Schrodinger
equation in two ways.

(1) The actual mass has been replaced by the re-
duced mass of the electron. This can be dealt with by
replacing the Rydberg for infinite nuclear mass E„by
R„(1—m/MH, ) when we express our energy in wave
numbers.

(2) A perturbing term is added which changes the

R,;=2p;p, $p,;(0, 0, 1, 8,+8;)—u, , (—2, 0, 3, 8.+8 )]
—(p,+p;)[u,,(1,0, 1,8;+8;) u,;( —1,0, 3,—8,+8,)j
+-', [u;, (2, 0, 1, 8;+8,)—u;;(0, 0, 3, 8;+8;)]
—2q,q, [u,;(0, 0, 1, 8,+8,)—u;;(0, —2, 3, 8,+8;)g

o.q,[u,;(0, 1,—1, 8,+8,) u;;(—0, —1, 3,——8,+8,))

(32)
Results of Mass Polarisatiort C-alculatiols

6-parameter 12-parameter

5.27&(10 'Hylleraas units 5.13)&10 ' Hylleraas units
0.232 cm ' 0.225 cm '

We note that the mass-polarization term, which is a
measure of the electron correlation, is only 1/20 of the
value 4.79 cm ' calculated for the ground state. ' This
seems to be a rather striking evidence of the independent
character of the motion of the two electrons in this state.
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Z HA=&4,
s=0

52
Ho= &— (Vis+Vss).

2m

(33)

(34)

3. Relativistic Corrections

The Breit equation in Pauli approximation in position
space is'

Note
Visit (s, t, u) = —Vs'(s, t,—u), (42)

where the minus sign is due to the antisymmetric char-
acter of our wave functions. Since the operators V~2 and
V22 are not even functions of t, we cannot restrict our-
selves to positive powers of t. Instead we note that

(V P) dr= ds I du dt(V &P)&u(s& —ts)

Ho is the Hamiltonian for the nonrelativistic equation. " "o o

H, = (V, + V,').
Sm'C2

(35)

00

ds I du dt(V 'P)'n(s' t')—
J,

H4= (Vi &i+Vs &s).
(2mc)'

(37)

H4 is a relativistic term characteristic of the Dirac
theory.

H~ is the relativistic correction due to variation of mass
with velocity.

e'lit' 1 t' n (n vr)vii-! vi vs+
2(mc)' u E u'

H2 corresponds to the classical relativistic correction to
the electromagnetic interaction between electrons.

(Ho) =0 for all 5 states.

r'
+ ' ds I du, ' dt(Voop)u(s' t')—(43)J, J, J,

With these limits of integration we can make use of the
integrals defined in (14)—(16). Note that

((V +)')=((V V)')

We shall carry out in some detail the calculation of the
first integral on the right side of (43). The second in-
tegral can be done similarly.

If we try to express this integral in terms of U, V, 8'
[(14), (15), (16)] integrals we would arrive at an ex-
pression which has on the order of 1000 terms. We show
how to avoid such a formula. I et

(Hs) =0 since it is proportional to (P (u)), and (Hs) =0.

(A) Calculatiort of (Hi)
where

V is/ =A gP+Bif/(s t), —

((V")+(V")),
Sm'C2

(V'i4) = PV,4/dr.4

(38)

(39)

Apl'= p„2p, i+/—«+p—„„+(2/u)lt „, (45)

B 4'—=4Q.—4')+2L( —»+u')l/u](4 . ll ). (46)—
Then

p8
ds du ' dt(Arp)'u(s' —t')

J,
VrV(s t u) =4'*. 24' i+4'«+ (k—. 6)+I'—

s—t p8

+2 ' ds du ' dt(Aig)(B, &)u(s+t)J,2 t' —st+u'i
+ 4-+2! I

-(&- 4-4), (40)—
u ( u(s —t) u(s+t)

+ ds du, dt(Bitt)' . (47)
~o o Jo s—t4

VoV (s,t,u) =4-+4"~+Ai+ (4.+Pi)+4..
s

The first two integrals on the right side of (47) require
only integrals of type U(p, q, r,d). The last integral
requires type W(p, q,r,d). We separate our calculation
into three parts because of the limited storage capacity
of our machine.

2 t' st+u' $+-%+2! 1(ll-+0- ). (41)
u 4u(s+t))

"I.Sncher and H. M. Foley, Phys. Rev. 95, 966 (1954).

ds du dt(V 'll)'u(s' —t')

It has been pointed out" that using this integral leads
to difFiculties which can be avoided by using the form
J'(ViV)'dr,
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We note again that the f; can be represented by a In Eq. (53)
four-tuple of numbers (p;,q;,r;,8,) L.et

G;;(a, b, c, d) = (P,+P,+a, q;+q,+b, r;+r;+c, d).

then

G, (a, b, c, &8;)—= (p;+a, q;+b, r,+c, &8~), (48)
Let

u(s+t)
ds ~ du ' dt(Bgg)0 =BR,

J0 &0 s—t

Bgg, =go F;S(o)G;(a~,b&,c~,d~8;);

where d~= &i.

(51)

Agp;=~0(1+a )G;(0, 0, 0, 8;)
+r;(r;+1)G;(0,0, —2, 8;)

+q;G; (0, —1, 0, 8;)

+q;(q;—1)G;(0, —2, 0 8;)
—p G;(—1, 0, 0, 8,)
—2p;q;G;( —1, —1,0, 8~)

+p;(p;—1)G, (—2, 0, 0, 8~)

+ ', oG;(0-, 0, 0, —8~)

+oq,G;(0, —1, 0, —8~)
—op G, (—1, 0, 0, —8~).

Bgf;=r,G;(1, 1, —2, 8;)
+2r,q,G, (1, 0, —2, 8,)
—2p,r;G;(0, 1, —2, 8,)
—(r~+2)G;(0, 0, 0, 8;)
—(4q;+2r, q;)G;(0, —1, 0, 8~)

+ (4p;+2p, r;)G;( 1, 0, 0, 8;)—
—0-(r;+2)G(0, 0, 0, —8;)

+cr,G;(1, 1, —2, -8;). (50)

To illustrate the calculation of (47) we consider in
detail

W(p;+p;+a, q;+q;+b, r,+r;+c, d)

=ro;, (a, b, c, d), (54)

where W was defined by (16). Then

B~'P= Zu, .F"(~)F '(~)
Xkvoe(a~+a~+1, b~+b', c~+c&+1,d~8,+d&8;)
+ro;;(a~+a&, b~+b&+1, c~+c&+1 d~8~+d&8;) j.

To enable us to calculate these matrix elements,
we have to load into the rnachine the tabulated
integrals, the four-tuples (p;,q, ,r;,8,) and the four-tuples
G, (a&,bO, c&,d~). The machine can then be programed
to form all matrix elements.

Results for (H,).—
6-parameter 12-parameter

—5.22976a' Hylleraas units —5.22052n0 Hylleraas units
—122.225 cm ' —122.009 cm '

(B) Calculation of (B0)
e't't'

t fVq V0 u (u Vi)V0)
~Pdr. (55)

2(mc)' J u' )

Let x;; be the jth coordinate of the ith electron rela-
tive to the nucleus.

Vl ' V2 u' (u' V 1)V0

where

lip dS

Bl = QcicqBy;—

u(s+t)
du dt(BoP,) (Big,)

"o

1 3 CP 1

I i-1 g+yi~&2i

X P P (*0;—»;)(*00—»0) —, (56)
Bsy;(92@

f S

ds du
0

f
=Et &FAN(~)F. P(~)

u(s+t)
dt G (a~ b~ c~ d~8;)G; (a,b c" d 8t)

t'Vi V2 u. (u Vi)V0)D=— y~ + — )Pdr
u I

=Ra.F"(~)FP(a) ds du dt
' 0 0

st
s0+t0+ 3u0

)u' )

X LG,,(a~+a&+1, b~+b&, c~+c'+1, d~8;+d'8g)

+G;,(a~+a&, bs+b&+1, c~+c~+1,d~8;+d~8, ))

x . (53)
$—3

4$ 4$
X (P.. P„)+ (t' zPg, —+ ('—s')P—, — —

2—2(s' —t')P (s' P)f (57)—— —
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D—=~8 P ccD;,,
i, j=l

p.(r ) —e tn—r2ui+4'+tif, (2or2)

Q;;= ,'(p;+-p;+q, +q,+r,+r;+2).
(64)

Results for (H2).—
6-parameter

—8.46X10 4~'

Hylleraas units
—1.98X10 ' cm '

12-parameter

—7.99X10 4~'

Hylleraas units
—1.87X10 2 cm '

D;;=,'(1—-o')u, ;(2, 2, —2, 84+8 )
+-,'(1—')u, , (2, O, O, e,+8,)

$2r—,+4r;q, +q, (q, 1)+—2r, (r; 1)$—
Xu;;(2, 0, —2, 8,+8;)
—q;(q, —1)u,,(2, —2, 0, 8;+8;)
—(P;+2r;)u, ,(1, 2, —2, 8~+8,)
—(P,—2r;)u, , (1, 0, 0, 8;+8;)
+42(1—0')u;, (0, 2, 0, 8;+8,)
+$2r,+4p,r, +p; (p; —1)+2r;(r,—1)j
Xu;, (0, 2, —2, 8;+8,)—4 (1—a )u;;(0, 0, 2, 8;+8;)
+[4r,q; 4r,p;+p-, (p;-1) q, (q, 1-)j-
Xu;;(0, 0, 0, 8,+8,)+3q,(q, 1)u;,(0—, —2, 2, 8;+8~)
—P,u;;(—1, 2, 0, 8;+8;)+3P,u;;(—1, 0, 2, 8;+8;)
+p;(p, —1)u,;(—2, 2, 0, 8,+8,)
—3p;(p;—1)u;;(—2, 0, 2, 8;+8,)
—o (q, +2r,)u;;(2, 1, —2, 8, 8;)—
—0 (q;—2r;)u;;(0, 1, 0, 8;—8;)

+3a.q,u;;(0, —1, 2, 8,—8;). (58)

6-parameter

4.1481o,' Hylleraas units
96.945 cm '

12-parameter

4.1435cP Hylleraas units
96.838 cm '

IV. CALCULATION OF D(0)

(0)—=42rao
~
P(r2, 0)

~

'dr2+
~
It (O, r2) ('dr2, (66)

t] t2

where It (r2r2) is the normalized two-electron wave
function and ao is the radius of the 6rst Bohr orbit of
hydrogen. We summarize our results.

D(o)

6-parameter 12-parameter

33.18456 33.14/95

ExperimentaP4

33.18388+0.00023

V. RESULTS AND DISCUSSION

It is instructive to compare the results of the present
calculations, Table II, with those made for the ground
state of helium with various numbers of variational
parameters as presented by Kinoshita. ' Referring to
the nonrelativistic energies obtained directly from the
variational calculations, we note that the increase in

TAm, E II. Summary.

XA„...„(o,P;+P,+q,+q,+r;+r;+3). (65)

(See Appendix A.)

Results for (FI4).

(C) Calculatio22 of (B4)

eh
+4 (V 1' Sl+V2' S2)y

(2222c)'
(59) &Ho) —1.0876088 Hyl. units—477 339.61 cm '

—1.0876015 Hyl. units—477336.41 cm '

e =mass polar. 5.27 &(10 'I Hyl. units
0.232 cm 1

5.13 X10 't Hyl. units
0.225 cm I

at =5.32504)(10 5; RHe4 =109722.267 cm '
Six parameters Twelve parameters

where 8;=—p';V is the Coulomb field due to the nu-
cleus plus the other electron.

—5.22976+2 Hyl. units—122.225 cm I
—5.22052cr2 Hyl. units—122.009 cm I

where

4' e'A'Z
(&)= (8'( )&

(241c)'
(60)

(Hu)

Relat1v1st1c sh1ft 1n
ionization energy
=jV;

—8.46 )(10 4n2 Hyl. units—1.98)&10 2 cm I

4.1481n2 Hyl. units
96.945 cm ~

0.08245cr2 Hyl. units
1.9267 cm ~

1.695 cm ~

-7.99 )&10 4'& Hyl. unitS—1.87)&10 2 cm ~

4.14354r2 Hyl. units
96.838 cm I

0.07784n2 Hyl. units
1.8192 cm ~

1.594 cm I

6 parameters 12 parameters Experimental

Let

P(r2) r2'«2= Pc;c,Q4,)— (62)
Ionization energy shift

(experimental-
theoretical)

3 00
Ionization 0.0876054 Hyl. units

P(r )r 2dr (61) ener8r 38 449.08 cm '

D (0) 33.18456 33.14795

Six parameters

5.59 cm 1

33.18388~0.00023

Twelve parameters

2.52 cm '

0.0876124 Hyl. units 0.0876181 Hyl. units
38 452.12 cm 1 38 454.64 cm I b

Q'4= p;(r2)p;(r2)r2'dr2, (63)

& Constants taken from E. R. Cohen and J. W. M. Dumond: Handuch
der Physik (Springer-verlag, Berlin, 1956), Vol. 35.

b F. Paschen and R. Gotze, Seriengesetze der LiniensPektren (1922).

R. Novick and E. Commins (private communication).
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number of parameters from 6 to 12 in the 2 'S calcula-
tions resulted in a lowering of the nonrelativistic energy
by only 3 cm '. This is approximately the amount by
which the energy was lowered in the ground state work
on increasing the number of parameters from 14 to 18.
This apparent convergence of the 2 'S calculation for a
moderate number of parameters is presumably an
indication that hydrogenic single-particle wave func-
tions are a much better approximation in excited states
than in the ground state. The marked reduction in the
electron correlation, measured by the mass-polarization
term, as compared with the ground-state value is con-
sistent with this interpretation.

The evaluation of the expectation values of the rela-
tivistic and other operators is u priori much less ac-
curate than that of the nonrelativistic Hamiltonian by
the variational method. The fact that our net rela-
tivistic correction diGers by only 0.1 cm ' between the
6- and 12-parameter functions is perhaps sufhcient
justi6cation for the belief that these corrections can be
applied, and a comparison of the total energy with the
experimental ionization energy can be made which is
signi6cant.

We note that the 6nal theoretical value for the
ionization energy is only 2.52 cm ' below the present
experimental value. This is a very satisfactory result in
view of the moderate number of variational parameters
employed and is consistent with the remarks in the 6rst
paragraph of this section. We note that the greater
experimental accuracy for the 2'S state as compared
with the ground state, makes it a better state in which
to compare theory, including higher order electro-
dynamic corrections, with experiment.

The comparison of the electron charge density at the
nucleus with the experimental value derived from the
hyper6ne splitting has been discussed by Teutsch and
Hughes. ' The "experimental value" D(0) is derived with

neglect of nuclear structure effects. We note that while

a six-parameter wave function yields a value of D(0)
which agrees almost exactly with the experimental value,
the value which we obtain with our 12-parameter func-
tion differs by 1 part in 10' from the experimental value
deduced by Teutsch and Hughes. The following rough
argument indicates that no better agreement can really
be expected with the wave function available. From the
apparent rate of convergence of the variational energy
value together with the degree of agreement with the
experimental ionization energy one cannot argue that
the variational energy (nonrelativistic) is closer than
1 part in 10' to the energy of the 2 'S state. Because of
the minimal property of this energy value, the wave
function, on the average, is not better determined that
1 part in 10'. The observed accuracy of our 12-param-
eter value of D(0) is consistent with this estimate, and
the closer agreement with experiment found with 6-
parameters must be regarded as accidental.

For e an integer:

For P&1,

V(P,n) = e@t Ei(t)dt, (A1)

where

For PAO,

goo e—x

Ei(t)= ' dx.

V(P,n) = (—1)-+ ln(1 —P)
p @+1

p+(—1)"2 (—1)'i
i=1 &1—P) i

F (O,n) =n!/n+1.

Recursion:

For P/0
(n —1)!

F(P,.)= —( /P) &(P, —1)+(1/P)
(1-P)"

For e an integer:

For P&2,

Recursion:

(A2)

L(P,n) = —(n/P)L(P, n —1)+(2/P) Y(P—1, n —1),

7r2 2 - (—1)~
L(p 0) = +-2, (1——p)'

6p p ~ i j'
In particular we need

L (1.55, 0) = 1.90403182,

L (0.45, 0) = 1.48382912,

L(1, 0) =m /6.

t "e 'lnx
eeet"dt

Jo x—1
(A3)
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APPENDIX A

To evaluate the numerous integrals encountered in
this investigation, we de6ne the following functions.
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For P)-,',
n! —(Inp)'

H(P, n) = — +lnP ln(1 —P)
(1 p) m+1

1 (P—1)' n 1
I
—ln(1 —P) Q-

;-iy( p ) i=i j
(P-11' ~ '—'1 (P—ip' ~

xl I + ~ 2 —.
I( p ) '=o i=i ij ( p

To tabulate these functions for the required values of
p we sum the following infinite series.

~ (—1)'(0.45) '
I

= —0.69310353,j' E0.55)

1 (0.55
0.39257179.

~=& j'&1.55

For P(-', , and P/0,
e! m'

a(p, n) = —+-,'pin(1 —p) j'
(1 P) n+1

- ( P &'1 n 1
+ Z I I —,-»(1-p) a-

=i &p —1) j' p'=1 g

(P iqi „;i 1 (P 1~~i-
XI I+PP —

I

p ) '=o i=iij ( p

1)
a(o,n)=n!I —P- I,

4 6 '=i i')

Rather than the functions (A1, A2, A3, A4) defined
above we actually need certain linear combinations of
these functions. For any C(P,n) we define:

c„(p( ), )=—CLP( ), )+CLP(—), )
—

2CLP (0),nj,

The symbols C„,„„(p,n) which occur in the follow-
ing formulas should be interpreted as follows. For
sinh'-,'et integrals use C„(p,n), for sinh-', et cosh-', ot in-
tegrals use C„(P,n), for cosh'-', ot integrals use C„(P,n).

A(Pn)=I
hi-P)

c-(p( ), )=CLP( ), j—CLP(—), 3, (A5)
(A4)

C-(P(~) n) —=CLP(~) n3+Crp( —~) n)
+2CI:P(0),nl.

For p&~0, q~&0, r~&0,
sinh

p8 ptC 1
U(p, q,r,d) =

I ds
~

dot —dte 'seto+' sinh-', ot coshioot »=~i

.cosh'-,'o.]

~+ (q+j) ~ (q+.+1+j)~

X (P+r+1)! Q A„„„,(o, q+ j+1)—P!g A„..., „(e,q+r+2+ j) . (A6)
j=p

For p~&0, q&~0,
s&nh'-,'rt

U(p, q,
—1, d)=— ds ' dot

~

dte ' sinh-', et cosh-', et ~

~Jp dp alp

~cosh gert

s (q+to) 1

=-', p! p g A„,„...(o, q+k+1)+p!I'... ., .,(o,q) . (A7)
i=o ~=o k!(j+1)

For p&~1, q&~1,
sinh'-,'0-t

~8 I»tC seto
U(p, q, —2, d)= ds —dot dt e ' sinh-', ot coshioot »

"0 "0 ~P
.cosh'-', 0-t

' (P—j)(q+j—1) 1

=-' (p —1)l 2 A-, -.-(~ q+j) (Ag)
j=p Jl

For q)~1,
-sinh'-'crt

00 g tC g St@

U(0, q,
—2, d) = ds ~ dl dt — » sinh-,'ot cosh-', ot »=-„'L(q—1)!A„,„...(o,q)

—I'„,„,„(o.,q) j.
o o o .cosh'-', 0-t

(A9)
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For p&~0, r~&0,

V(p, q, r,d)= —ds dm dt e '
"o "o "o

'sinh2 —0't
s"t'I"

~ sinh-', o.t cosh-', 0-t

S+t .cosh'-', 0-t

1 n+~ ~' (—1)&+"+&j!(p+'q+r+to j)!—
A„„„(o,P+q+r+1+k —j)

r+1 ~=o o=o

~» ( 1)""—'i l(P+q+r+t j)'—
+ZZ A„,„,„,, (a, P+q+r+1+k —j)

q'=0 k=o

(—1)"L(—1)'"'—l3
V„..., ..L-;( +1),p+q+.+1j . (A10)

2@+q+t'+2

For p&~0, q&&0,

'slnh gOt

N(s+t)

e,s
V(p, q,

—1, d)—= ' ds dot dt
0 "0 "0

sinh —'0 t cosh-'O. t

.cosh2~0. t

' -' " ( 1)"""'i—l(P+q+t j 1)!——
=-' ZZZ A„..., „(o., P+q+t —j)

j=0 k=0 l=0 (0+1)t!

j=0

For p&~0, q&~0, r~&0,
sinh'-', o-t

s't'I"
W(p, q, r,d)=

~

ds du dte '
"o "o ~o s t—~ sinh-,'0-t cosh-,'O.t

&cosh2&~ 0 t

1 -~ ~ 2'!~(p+q+r+Io 2)—
A„,„,„(o., P+q+r+1+to j)—

r+1 i=o o=o P!
~ (p+q+ +~ ~)-—ZE A...„,„(0,P+q+r+1+to j) . (A12)—

j=0 Is=0

For p~&0, q&&0,

s1nh'~o. t
e 's"t~

lV(p, q,
—1, d)=— ds ' dl dt- s sinh-', ot cosh-', ot i

"o "o "o m(s —t)
,cosh'-', 0-t

~'-~ "i'(P+q+t j 1)'——
=l FEZ A„..., ..(o, p+q+t —j)

t!(&+1)j=0 k=0 L=O

y—1 (—1)'
+ P (—1)" ++'j!V„„„(oP+q —j—1)+ 1... ,....(1+o, P+q) . (A11)

2

+»'V-. -.-(-, p+q ~ »+~........(-, p+-q) (A»)
j=0

APPENDIX B

All computations were done on an IBM. 650 com-
puter, a medium-size machine with 2000 storage loca-
tions. First all functions such as V„(P,e) were tabulated
and used in computation of the integrals. There were
some 600 integrals of each type. Next the matrices

associated with each operator were found, and finally
we computed the expectation values of these operators.

For a computation of this size many checks are neces-
sary. A typical example is the following. The fastest
way to generate the V(P,e) is by the recursion formula.
In addition, however, we employed the explicit formula
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for I'(P, e) to find its value for a large e and compared
it with the value predicted by recursion.

Almost all matrices encountered were symmetric.
This property was used as a check in the initial phases
of each machine computation.

The most powerful check was the following. We

chose f, (r sot) = cosh(iso t), took cr =0, and Picked P;, q;, r;
so that we had functions suitable for the ground state.
By setting 0-= 0 in our programs we tabulated functions,
integrals, and matrices for this state. All energy correc-
tions were then calculated and compared with published
results.

PH YSI CAL REVIEW V(3LUME 111, NUMBER 4 AUGUST 15, 1958

Analytic Hartree-Fock Solutions for O=t
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O= ions exist in solids but not in a free state. Analytic Hartree-Pock solutions have been obtained for
the 'S state of 0 which can be applied to work in solids. The solutions utilize stabilizing potential wells
of positive charge and the results are compared with other published work.

INTRODUCTION

N UMBER of the oxide crystals are of interest
because of their magnetic properties. They are

ionic in nature, their oxygens having double negative
charges. Because of this, it seemed desirable to obtain
'S(1s) (2s)'(2p) 0= wave functions of a form which
might be useful in discussions of the properties of the
solids. No one has experimentally observed free 0=
ions. It is doubtful that a Hartree-Pock solution, which
is a single determinant s.c.f. (self-consistent field)
calculation, would converge to a state with all ten
electrons bound for a free 0=. Crystalline 0= ions are
stabilized by their environment and because of this it
is reasonable both to talk of 0= ions in crystals and to
hope to get meaningful single determinant 0= solutions
for further work in solids. It was decided to do analytic
Hartree-Fock calculations using stabilizing potential
wells which are described below.

PROCEDURE

The technique used was the Roothaan procedure' as
modified by Nesbet' for use on the Whirlwind digital

TAsLK I. Parameters of the basis functions (q s).

Zs

7.700
1.490
2.803
1.776
0.714
3.412
1,384

t The research reported in this document was supported
jointly by the Army, Navy, and Air Force under contract with
Massachusetts Institute of Technology.' C. C. J. Roothaan, Revs. Modern Phys. 25, 69 (1951).

'R, K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).

computer at M.I.T. In this method, one starts with a
set of one-electron basis functions of the form

~ ($ ~) rAr+l& zrrPm(g y)— '

An s.c.f. calculation is then done, subject to the
limitations imposed by the choice of the set of q; s.
A final set of orthonormal one-electron functions
results with each function having the form

P, (l,m) =Q; C,,rl, (inc),

where the summation is over all q s with the l and m
values of the f, in question. The computer programs
had the facility for adding potentials due to charged
environments other than and in addition to the nuclear
potential. In the calculations described here, a sphere
of uniform positive charge was added. Such a sphere
causes a discontinuity in electric field rather than in
potential at the sphere radius giving us a "shouldered"
instead of square-well potential.

At first, a set of wells was used whose radii were
equal to the nearest-neighbor distances in several of
the oxides and whose charge gave the wells a depth
equal to the Madelung potential. Such a choice was
not at all satisfactory since it did not include the
nearest-neighbor electronic repulsion. Professor Slater

TABLE II. Analytic form of the wave functions.

+1 Well solution

f(1s)=42.30203g1+0.19342g2+0.85427g3 —0.47313g4
f(2s) = 10.38130g1+0.13332g2+6.21035q3+2.94794g4
p(2„)=0.11617qg+8.74998g6+1.49205q7

+2 Well solution

P(1,) ——42.30129g1+0.19240q2+0.85365' 3
—0.47105q4

4(2s) = —10.24975q1+0.16271q2+5.97706rjg+2.97325',
p(2„)=0.07800gg+8. 51793g6+1.66494';


