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Fermi-Segre Formula*
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Case Iristitute of T'echnology, Cleveland, Ohio

(Received April 14, 1958)

A derivation of the nonrelativistic Fermi-Segrh formula for the probability of finding a valence s-electron
at the nucleus of an atom in terms of the energy eigenvalues of the electron is presented which makes use
of the effective-range method drawn from scattering theory and a refinement of the JBWK method which
avoids problems with the Coulomb singularity of the ion core potential.

~'OR the interpretation of fine structure splittings,
hyperfine structure splittings, and isotope shifts

of spectral lines, and more recently for the interpreta-
tion of Knight shift data, it is necessary to have in-
formation concerning the probability of finding an
electron at the nucleus. In 1933 Fermi and Segre'
derived a remarkably simple formula for the square of
the wave function of a valence s-electron at the nucleus
which is a refinement of a formula due to Goudsmit. '
The Fermi-Segre formula was derived essentially by the
application of the JBWK method to an s-electron mov-
ing in an ion core potential which is Coulombic in
character both very close to the nucleus and at great
distances. The remarkable feature of the formula is
that it makes no explicit reference to the detailed
nature of the ion core potential (which generally is
unknown) but allows the calculation of the probability
density for the electron at the nucleus in terms of the
energy levels of the electron in the potential only,
quantities which are directly determinable from spectro-
scopic observation. The simplicity and elegance of the
Fermi-Segre formula so impressed the present author
that he decided to explore the problem with the object
of improving the derivation and placing limits of error
on the formula itself. Although he was able to give a
more rigorous derivation of the formula, the problem of
its accuracy appears to be an order of magnitude more
difficult and no substantial progress was achieved in this
direction. Because of recent interest in the formula4 in
connection with the Knight shift, it was decided to
publish this new derivation in the present paper.

It should be remarked that there is some question
concerning the applicability of the Fermi-Segre formula

to actual atoms because it neglects configuration inter-
action, which may be important in some cases, and also
since it assumes the existence of a local potential for the
valence electron, which in view of the effects of exchange
is not necessarily justifiable. We shall not be concerned
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with these aspects of the problem but shall address
ourselves simply to the purely mathematical problem
of the validity of the formula in the idealized case where
one does have an s-electron moving in a potential of the
type described. Furthermore, in the case of heavy
atoms relativistic effects can be important. While these
relativistic effects can be taken into account (and
Fermi and Segre do give a relativistic correction factor
in their formula) we shall deal with the entire problem
nonrelativistically in the present paper.

The Fermi-Segre formula with neglect of relativistic
corrections can be written in the notation used in this
paper as

Zs' dv„Zs' dD„
1—

m GO3v„3 dK mQ03v„3 8Ã

Here f„s(0) is the probability density for the s-electron
at the nucleus in the eth stationary state, Z is the
nuclear charge, s is the charge of the ion in the 6eld of
which the electron moves, ap ——h'/me' is the Bohr
radius, v„ is the effective quantum number of the eth
stationary state defined by the fact that the term value
in Rydberg units is given by s'/r„s, e„=1/i ', and
6 =e—v is the quantum defect of the eth state. The
derivative dh /dry is presumed to be evaluated by
smoothly interpolating the values of 6 as a function of
m and evaluating the slope at e.

Equation (1) can be rewritten as

Zs2

which is the form in which it is derived velow. As will
be seen, the problem of deriving this formula breaks
down naturally into two parts: (1) relating the value of
the radial wave function at the nucleus to its value at
large distances from the nucleus, and (2) evaluating the
normalization integral for the radial wave function.
In the derivation of Fermi and Segre, both. parts are
treated by the ordinary JBWK method. ' In our deriva-
tion, the first part of the problem is treated by a variant
of the ordinary JBWK method which avoids in a simple
and direct fashion the usual difficulties with the Cou-

' See for example, L. Schi8, Quoaram mechanics (McGraw-Hill
Book Company, Inc. , New York, 1955), second edition p. 184 ff,
and references contained therein.
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lomb singularity of the potential at the origin. The
second part is treated by a method analogous to the
effective range method' in the theory of scattering, but
is at the same time related to the so-called "quantum
defect" method' which was developed independently
of the effective range method for the treatment of solid-
state problems. The connection between these two
methods does not seem to have been noted before.
Although we feel that our derivation is more satis-
factory than that of Fermi and Segre, we are still
unable to ascertain the limits of error of the formula.

The two methods introduced for dealing with this
problem would appear to have more general applica-
tions to atomic problems. It is hoped that study of such
applications will be possible in the future. We now
proceed to the presentation of our derivation.

for the electron in the ion core potential. It is con-
venient to convert Eq. (5) by the introduction of ap-
propriate atomic units:

P= smesf/A'= sr/as,

e~=—1/v„'= 2k'—E„/s'rrie4

v(p) = —2A'V(r)/s'me4.

(7)

It will be noted that v„ is just the eJective quantuni
number of the nth state as conventionally defined.
The equation for u„ then becomes

d'u„/dp'+ [—e~+ v(p) $u~= 0,

while (6) becomes

s' f'du„q '
lf „'(0)=

4rraps ( dp ) ~p ~ p

Consider an s-electron moving in a spherically sym-
metric ion core potential V(r). If the nucleus has a
charge Ze and the ion core a charge se, then

We note that

v(p) =2Z/sp

v(p) =2/p
(p~),
(p& p.-1).

V(r)—+se'/r (r~ ~ )

—&Ze'/r (r +~)— (3) If one writes Eq. (8) for a second eigenfunction u„, then
one has immediately

The potential U(r) is close to its asymptotic value when
r is substantially greater than a radius r, which is of
the order of as/s where as ——A'/me' is the Bohr radius.

Ke designate the normalized wave function for the
eth bound stationary eigenstate of the electron by
P„(r) and introduce the radial wave function u„(r),
with a normalization to be specified later, by the
definition

GO

u (r)= 4ir
~

u„'dr nP„(r)
0

Then u satisfies

d'u /dr'+ (2m/h') [E —Vgu =0.

d2u d2u
u~ —u„- dp

dp2 dp2

du (p)
=u-(p)--

dp

du„(p)
-u-(p)

= (e.—e ), u.u„dp. (10)

We now turn our attention to the function w„(p)
defined as that solution of the equation

d'w /d p'+ [—e.+2/p]w„= 0,
The quantity of interest to us, lf „'(0) can be written as

which vanishes as p—+~ and which is normalized to

ar u„'dr,
0

(6)

where use has been made of the fact that u„vanishes
linearly with r at r=o.

We first will obtain an expression for the normaliza-
tion integral Js" u 'dr in terms of the energy levels

This method is originally due to G. Breit. See, for example,
G. Breit, Revs. Modern Phys. 23, 238 (1951). Onr treatment
follows more closely H. A. Bethe, Phys. Rev. 76, 38 (1949).
Other treatments are contained in the following apers: F. C.
Barker and R. E. Peierls, Phys. Rev. 75, 312 (1949;J. M. Blatt
and J. D. Jackson, Phys. Rev. 76, 118 (1949); Revs. Modern
Phys. 22, 77 (1950); G. F. Chew and M. L. Goldberger, Phys.
Rev. 75, 1637 (1949).

7 See, for example, F. S. Ham, in Solid State I'hysics, edited by
F. Seitz and D. Turnbull (Academic Press, Inc. , New Vork, 1955),
Vol. 1, and references contained therein.

w„(0)=1. (12)

dw-(p)
w-(p)

dp

dw-(p)—w„— =(e —c ) w„w„dp. (13)
gp

The normalization of u„ is now fixed such that

u. ( )p-~ w. ( )p, (p ~), (14)

which is possible since both functions satisfy the same
equation and the same boundary condition at infinity
for p) p.. Subtracting Eq. (10) from Eq. (11) and

We shall see shortly that except when e„ is the reciprocal
of the square of an integer, a solution with these proper-
ties exists. Again, from Eq. (11) and the corresponding
equation for m, one can derive the relation analogous
to (10):
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passing to the limit p—4, we obtain

dwm, dR ~
lim — = (c —e ) " $w„w —N„N ]dp .(15)

dp dp ~p

The limit on the left is required since dw„/dp has a
logarithmic singularity at p=0. In writing the above we
have used the fact that N„(0)=0, w„(0)=1. We now
discuss the left and right sides, respectively, of this
equation.

The change in variable p= v„x/2 reduces Eq. (11) to
Whittaker's equation' from which it follows that the
solution having the specified boundary properties can
be written

te-(p) =1"(1—v-)~ - &(2p/v ), (16)

where 8'.„,~ is the Whittaker function and F is the
gamma function. The known behavior of the Whittaker
function in the neighborhood of the origin then leads to

whence

g()- +
12v' 120v4 252v'

(24)

which is of adequate accuracy for our purposes for
v&1.5.

Thus Eq. (15) is reduced to the form

where the integral

R„„,=2 I [w„to„„u„ss„,gdp-
Jp

(26)

will be recognized as closely related to the effective range
of scattering theory. ' We now turn to an analysis of
the properties of this integral.

where f is the logarithmic derivative of the gamma
function, I"/I'. Hence

dzv~
—+—2 ln2p —2 1+/(v )+sr cotsrv„

dp ~0
1—P(1)—P(2)+ —lnv„, (18)

2vn

and the left side of (15) can be written

where

dzv dm'

=st(v ) G(v )]lim
dp

G(v) = sr cotsrv+P(v) —Inv+1/2v. (20)

It is convenient to write

where

G(v) =z- cotsrv+g(v),

g(v) =f(v) —lnv+1/2v.

(21)

(22)

We note that for numerical calculation, one can con-
veniently use the asymptotic expansion for the P func-
tion, valid when v)&1, namely

1 1 1 1
P(v) =lnv ——+

2v 12' ' 120v4 252v6
(23)

'E. T. Whittaker and G. N. Watson, Moderss Aealysss (Cam-
bridge University Press, Cambridge, 1940); H. Buchho1z, Die
Xonguente Hypergeometrische FNNktioe (Springer-Verlag, Berlin,
1953).

u„(p)~1—2p ln2p —P(v„)+z cotz.v„
p-+p

1—P(1)—P(2)+ —Inv„, (17)
2v~

The integral R can be regarded as a function of the
two discrete variables e„and e . We remark first that
the integrand essentially vanishes for r)r, since the
functions I and m„are practically equal there, so
that the principal contribution to the integral comes
from the range r &r,. It will be noted, however, that in
this range the functions N„and m „are relatively insensi-
tive to the values of e„provided the changes in the
latter are relatively small compared to unity. This is a
consequence of the fact that the potential functions
appearing in the respective equations for these functions
are both of the order of or larger than unity in this range
and that the normalization of the functions at one point
in the range is fixed by the dehning conditions on these
functions. Hence we conclude that for fixed ~„, R„ is a
relatively insensitive function of e„ for ~e„—e„~&&1,
and that the same is true for R„ for fixed e when
regarded as a function of e„.

If the energy eigenvalues of the electron in the poten-
tial U are known, then the values of ~„are likewise
itnown through (7). Thus from these values one can
compute the left side of Eq. (25) and obtain a matrix
of R„values with the exception of diagonal values.
The smooth variation of R with e„and ~ would then
allow one to interpolate to obtain the diagonal values
R„„.If the latter are known, then as we shall see, we
have the information required to obtain the normaliza-
tion integral which we are seeking. An alternative
procedure which is adequate for our purposes and
simpler in practice is the following.

It is known empirically that in many cases, the
eGective quantum numbers v can be repi"esented by a
formula of the form

v =ss 6=n n—+8,-—(8 «1, 8„—+ 0), (27)

where n is independent of e and represents the quantum
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defect for asymptotically large quantum number.
Furthermore the residuals 8 do not vary erratically
with e but can be represented quite accurately by a
polynomial expression of the form

Pi P~
& =Pi~.+P~~ '+. . = + +

2 4
(28)

If one uses the asymptotic expansion for g given in
Eq. (24) one can also write

)db„y 1 1
A„„=—m' csc'v~7r

~

(de„) 12 60v„'
(31)

The quantity db„/dv„can be evaluated by a poly-
nomial fit of the form (28) to the empirical data if
desired.

We will now assume that the values of E„„have been
determined by one of the empirical schemes already
mentioned. The desired normalization integral can be
expressed as

If one substitutes this result into Eq. (25), one has

—s-[cot(n —8„)m.—cot(n —5 )s.]+g(v ) —g(v )
= (~~—~~)&n~ (29)

Now both sides of this equation can be considered
smoothly varying functions of the variable e„—e and
hence one can divide both sides of this equation by this
quantity and pass to the limit e ~e„.The result is

(d8„) v„~ (dg(v„))E„„=—m' csc'v„s-] 4id,„)
2 db„i v„'dG(v„)

csc'v„m 1+— i
—— . (30)

v„' (de ) 4 dv„

The remainder of the problem at hand consists in
evaluating (du /dp), =0. This cannot be done at all
precisely without knowledge of the potential V(r) and
even with this knowledge would require integration of
Eq. (5) and hence would negate any value of the Fermi-
Segre formula itself. It is therefore necessary to resort
to an approximation method and some form of the
JBWK method is indicated. The usual JBWK method
is not too satisfactory here because of the difficulties
with the Coulomb singularity at the origin. The follow-
ing variant of the usual method would appear to be
most appropriate to this problem. Unfortunately it
becomes rather cumbersome unless restricted to terms
of relative order e„. This is not too unsatisfactory a
restriction and hence it will be adhered to below.

One begins with the function j(p) de6ned by

j(p) =~ji(~), ~= (8p)'*, (35)

where J~ is the Bessel function of unit order. One can
readily verify that j(p) satisfies the equation

\

We n.ow let

2—+-j=0.
dp p

(36)

Thus a knowledge of the eigenvalues of the electron in
the potential V allows us to calculate the normalization
integral, quite precisely. In fact, since I„ is identical
with m„ for r)r„w is a known function, and the
normalization integral for m„ is now determined, one
knows completely the wave function I for r) r, .

It would be of interest to explore the degree of
a.ccuracy of Eq. (24). While this is a fascinating mathe-
matical problem, it will not be gone into here. Explora-
tory investigation would suggest that it is of consider-
ably higher accuracy than we shall be able to achieve
in the calculation of (de„/dp), =0.

Nn dp= gunn+ ~ ~e dp
~o Jo

where
n (p)=HE„' lj (E„),

E„=E„(p), E„'=dE„/dp

(37)

(38)

The integral on the right can be evaluated in a manner
analogous to that which we have just employed for
E„„.Equation (13) is valid for all values of e and e„,
and not simply the eigenvalues of the original problem.
Hence in this equation we can divide by e„—e and
pass to the limit p—4, followed by e —+a„, with the
result

v„' dG(v. )
78 dp=

p 2 dp&

Then I satisfies the differential equation

-2E„'2 E„'" 3E„"2-

dp' E„2E„' 4E„"

This coincides with Eq. (8) provided

2E" E "' 3E„'"
+ — = v(p) —~-,E„2E„' 4E " (40)

Hence if we use the particular result (30), we have

2 )db„q-
I„'dp=av„' csc'v„~ 1+—

~

v.' Ed~„)

while the boundary condition u„(0)=0 is satisfied if
„(0)=0. This equation cannot be solved exactly for

(34) K„,but if in the spirit of the JBWK approximation the
terms in E„"' and E„'"are neglected, integration is
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possible:

(SE„)'=
pP

(a—e.)~dp.
4 p

(41)

while (47) becomes

~-(p) = (2~a)'[1+so-p5
Xcscsrv cos(a.—srv„—ripe pa+4rsr). (49)

Since, as p
—4, E„as determined from this equation

approaches Zp/s, the boundary condition at p=O is
satisfied.

We now consider the form of the solution (41) when

p) p„ there

pp (2 $ t's

(8E )&= (a —e.)'—I

——e„ I dp
Ep

We see that the two functions agree provided

Ao= (rs —v„)sr=sr —P r~e=A+ eQo

A =&zm' Cscxv„.
(50)

These conditions are required simply in order that V(r)
should reproduce the energy eigenvalues of the electron
in the approximation in which we are working.

Using these results we can now calculate (dl /dp), =p

from (37) to obtain

(2 )* 1
+ I

——«„ I
dp=A„+a- 1——e„p, (42)

lp
(dgop

&dp& p

4z.2Z2 csc2m v

to terms of erst order in c„.Here
Finally substituting this and the result for the normal-
ization integral given in Eq. (34) into Eq. (9), we obtain

Zs2

4'(0) =
srap v„1+ 2 v„d5„de„

where the upper limit has been made infinite since
v=2/P for P)P„and the integrand therefore vanishes which is the result discussed in the introduction as
in this range. To terms of first order in e„, being equivalent to the Fermi-Segre formula.

where

A„=A+e„Q,

(2
dp,

(p)

(44)

(45)
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APPENDIX

(pp * (1) '

E2i Et)

Substituting these results into Eq. (37) and retaining
terms of first order in e„, we then have for p) p, .

ss„(p) =A o i(1+-',e„p)[sr+A ——,', e„pa 5l

XJi(a+A. ~——,', e„psr). (46)

In the appendix it is shown that to terms of order ~„,
and for p((2/e,

satisfies Eq. (36), and in this case set

w (p)=E„' ~y(E„), (A-2)

For our development it was necessary to obtain the
expansion of the function ta (p) in powers of e correct
to first order in ~„. We were unable to find anything
more than the zeroth order term in the literature. f To
obtain the desired result we proceeded purely formally
in the following way. We note that the function

y(p) =a[AJi(o)+8¹(o)5, a.= (Sp)-'* (A-1)

ta (p) = ——sr a ' (1+p e „p)[a —i p e„pa 5*

X [cotsrv„Ji(a i p e„pa)+N—i(a i pe'„pa) 5—
By a proper choice of A. and 2, these expressions
should agree in the range p) p, . They do not, but the
reason is that (46) suffers from the JBWK approxima-
tion. However, for p)p, the arguments of the Bessel
functions are su%.ciently large that only a moderate
error is entailed in replacing the functions by the first
term in their asymptotic expansions. In this case,
Eq. (46) becomes

(A-3)K&71,=P 66~P .2

With this form for E„,one finds that (A-2) above satis-
hes the following equation exactly:

tPN„2 2e„p &n

+ ——e + — w. =O. (A-4)
dp' p 9(1——,'e p) 12(1—-', e.p)

where E„is now a di6erent function of p than in Eq.
(37). Then E„must satisfy Eq. (40) with v replaced by

(47) 2/p. Again making the JBWK approximation, this may
be solved to yield to terms of first order in e„,

ss„(p) = —2 (2o./sr) l

X[1+pre„p5 cos(sr+A —ripe„po jersr), (48)

1' Note added sss proof Dr F. S. Ham.—has .kindly informed us
that such formulas have been derived and has quoted the following
references: T. S. Kuhn, Quart. Appl. Math. 9, 1 (1951); F. S.
Ham, Quart. Appl. Math. 15, 1 (1957).
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Hence this is a solution to first order in e„and is a good
approximation for p«2je„. To determine A and 8 we
make use of the fact that 20 given by (A-2) must ap-
proach the value given in Eq. (17) as p—ro. Using the

limiting forms of the Bessel functions as p—4, we find
thatfor agreernentitisnecessarythatA= —(zri2) cotzrv„
and B = —zr/2. Hence to first order in e, ttr„(p) has the
form given in Eq. (47).
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Variational Calculations of the 2 'S State of Helium*
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With a 12-parameter Hylleraas-type wave function contairiing only positive powers, a new calculation has
been carried out for the 2 'S state of helium by the Ritz variational principle. The energy was minimized by a
descent process. A nonrelativistic energy of —1.0876088 Hylleraas units was reached as compared with the
best previously published value of —1..0876015 Hylleraas units from a 6-parameter function. When mass-
polarization and n R„corrections are included, the 12-parameter function gives an ionization potential 2.52
cm ' less than the experimental value of 38 454.64 cm '. The electron density at the nucleus is also calculated
and compared with the experimental hyper6ne-spectrum value. All numerical work was carried out on an
I.B.M. 650 computer.

I. INTRODUCTION

LONG series of calculations have been made of

~ ~

~

the energy of the ground state of helium, '
culminating in the 38-parameter calculation of Kino-
shita. ' When relativistic and mass-polarization correc-
tions are made, the resulting comparison with the
experimental values of the ionization energy must be
considered as very satisfactory.

The six-parameter variational calculations of
Hylleraas' and Huang represent the inost accurate
previously published wave functions of the 2 '5 state. '
They diRer from the ground-state function with respect
to symmetry and also in that two different exponential
functions must be included, corresponding to 1s and 2s
orbits. No calculation of the relativistic corrections has
hitherto been made for the 2 'S state. The mass-polariza-
tion term was calculated by Stone' with a six-parameter
function.

In this paper are presented the results of a twelve-
parameter variational calculation of the 2 '5 non-
relativistic energy together with relativistic and mass-
polarization corrections. Compared with the elaborate
character of the wave functions employed in some
recent work, " the 12-parameter function employed

*Work supported by the National Science Foundation.
t Watson Laboratory Fellow, IBM.
'H. A. Bethe and E. E. Salpeter, Handbook of Plzyszcs (Aca-

demic Press, Inc. , New York, 1957),Vol. 35, Atoms I, pp. 204-278.' T. Kinoshita, Phys. Rev. I05, 1490 (1957).' E. Hylleraas, Z. Physik 54, 347 (1929);65, 209 (1930).
4 Su-chu Huang, Astrophys. J. 108, 354 (1948).
~ Hylleraas gave 0.08761X4RH, 4hc for the nonrelativistic ioniza-

tion potential of the 2 3S state of helium. This calculation was in
error and was later corrected by Hylleraas' to 0.0876015)&4RH, 4hc.
Huang employed a wave function which is formally identical
with that of Hylleraas but obtained a value of 0.087600X4RH,4'
due, it must be supposed, to incomplete minimization.' A. P. Stone, Proc. Phys. Soc. (London) A68, 1152 (1955).

z Tycko, Thomas, and King, Phys. Rev, 1(l9, 369 .(1958).

here may be regarded as of intermediate complexity.
In spite of this fact the total energy seems to converge
very well, and indeed the agreement of our calculated
value with experiment seems to be as good as was ob-
tained by Chandrasekhar and Herzberg' for the ground
state with an 18-parameter function. This is un-
doubtedly related to the fact that the independent-
particle hydrogenic wave function, to which the
Hylleraas trial function with few parameters reduces,
is a much better approximation for a state with one
electron excited than it is for the ground state with both
electrons in the same orbit. (See also the discussion of
mass polarization below. )

An additional quantity of interest which can be
compared with experiment is the total charge density
at the nucleus which enters as a factor in the hyperfine
interaction. '

The rather lengthy calculations of the relativistic
corrections have not previously been done for the ex-
cited states. It has appeared worthwhile to give an
account of the methods employed in these calculations.

II. NONRELATIVISTIC INFINITE NUCLEAR
MASS PROBLEM

A. Mathematical Preliminaries

The nonrelativistic Schrodinger equation for the
helium atom is

( Zes Ze e2 p
(V12PV22)lb+

~
Z+ + ~lb=0, (1)2' rl F2 r12r

'S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
(1955).

9W. B. Teutsch and V. W. Hughes, Phys. Rev. IOB, 1461
(1954).


