
EXISTENCE OF POSI TRON IUM IN SOLI DS 1063

tions" involving secondary electrons from the target,
since this effect—if present at all—can be easily
quenched by a uniform electric field.

and from Compton scattering from one detecting crystal to
another (see Pond's thesis, p. 55) ~
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The anisotropy energy in MnF2 is calculated by a spin-wave method. The magnetic dipole interactions
and the interactions of individual ions with their surrounding crystalline 6elds give the anisotropy energy
of —4.9X10' erg/cc at O'K. The experimental value extrapolated to O'K by Foner is —5.0X10' erg/cc.
The temperature dependence of the anisotropy energy is obtained as E, (T)/E, (0) =Pl(7')/M'(0)]",
where E, (7), M (T) are the anisotropy energy and the magnetization of the sublattice at T'K, respectively,
and E, (0), bf'(0) are the corresponding values at O'K.

I. INTRODUCTION

~'~HKORETICAI studies of the temperature de-
pendence of ferromagnetic anisotropy energy in

a cubic crystal have been given by Van Vleck, ' Zener, '
KeGer, ' and Kasuya. ' Keffer, especially, explains the
relationship between the nearest-neighbor quadrupole-
quadrupole coupling theory of Van Vleck and that of
Zener by means of the spin-wave approximation.

In an antiferromagnetic substance, the situation is
similar to that of ferromagnetic substances in the
classical theory. But in the quantum-mechanical
treatment, there is some difference between ferro-
magnetism and antiferromagnetism. This makes the
temperature dependence of the antiferromagnetic
anisotropy energy differ from that of the ferromagnetic
anisotropy energy. Recently the anisotropy energy has
been observed in several antiferromagnetic substances.
In this paper, the anisotropy energy at O'K will be
calculated and the temperature dependence of the
anisotropy energy in MnF2 will be discussed by the
spin-wave method.

II. ANISOTROPY ENERGY IN MnF2

MnF2 is a typical antiferromagnetic substance with
a Neel temperature of 68'K. The magnetic anisotropy
energy in MnF2 is evaluated from measurements of the
magnetic susceptibility' and the antiferromagnetic
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resonance. ' According to Keffer, ' the major part of
the measured anisotropy in the susceptibility above the
Neel point in MnF2 can be accounted for by magnetic
dipole interactions, and the remainder is possibly due
to the interactions of individual paramagnetic ions
with their surrounding crystalline fields. Further,
Keffer suggests that the temperature dependence of
the anisotropy energy in MnF2 is proportional to the
square of the sublattice magnetization below the Neel
point. His theory is based on molecular field theory;
on the other hand, we shall consider the temperature
dependence of the anisotropy energy in MnF2 by means
of the spin-wave approximation.

The crystal structure of MnF2 is of the rutile type.
The unit cell of Mn++ ions may conveniently be pic-
tured as a body-centered cube compressed along tI.e s
(or c) axis. Lattice parameters, as determined from
x-ray diGraction, are c=3.3103 A and a=4.8734 A.'
Below the Neel point the spins at the corners of the
compressed cube are all pointing one way along the s
axis, while the spins at the centers are pointing the
opposite way. "

A strong antiferromagnetic exchange interaction
exists between a center spin and a corner spin, and there
may be a weak antiferromagnetic exchange interaction
between two nearest neighbor center spins (or corner
spins); but, for the sake of simplicity, we shall neglect
the latter.

The Hamiltonian of the exchange interaction is

&. =
) Jfgishl S,"Ss, (1)
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where J/2 is the exchange integral, S is the spin
operator, and P(~', a& is taken over pairs between a spin

j on one sublattice and its nearest neighbors k on the
other sublattice.

The second part of the Hamiltonian is the dipole-
dipole interaction. This is written as

Be;,=P;, i, 4p'R, i,-'(R, i,'S; Si,—3S; R, i,Si, R;„)

+Pi,, i, '2y'~» '(&a~'Si, Sa
—3Si, R» Si, Ri, i,.), (2)

where p is the Bohr magneton, E.;~ is the distance
between spins j and k, and P;,p' (or P&, & ') are taken
over pairs between a spin j (or k) and its neighbors j'
(or k') on the same sublattice, and P; i, is taken over
pairs to neighbors k on the other sublattice.

Although the orbital angular momentum is quenched
in the Mn++ ion, Abragam and Pryce" derive an
anisotropy energy due to coupling of the (3d)' '5
ground state with the (3d)'(4s) 'D state via the com-
bined action of the crystalline potential and the
magnetic spin-spin interaction between pairs of elec-
trons in an ion. The Hamiltonian of this type of the
anisotropy energy can be written as"

obtain the eigenvalue of H +He;~ in the spin-wave
representation as Ziman" did, we shall neglect some
terms in (2) which vanish by crystalline symmetry as
far as the zero-wave-number spin waves are concerned
and as a result do not contribute to the anisotropy
energy in the approximation which we will use later. We
introduce the Fourier transforms of a, , u,* and b~, bj,*.

e~= (2/&)'*Xi ei,e '"', be= (2/&)' Zi, b~e'"',

a,*= (2/1V)'* Qi, ai,*e'"& by* ——(2/Ã)-: P„bi,*e-'» (5)

where A, is the wave number which refers to the re-
ciprocal lattice of the sublattice, so that A., and A.„take
(iV/2)' values from —vr/a to rr/a, respectively, and X,
also takes (1V/2)' values from —~/c to m/c.

In order to eliminate the interactions between X and
—

A, , we de6ne the new operators as follows:

and similarly for a~q* and b+),*. For X=0, we must
define as ns ——and be=Ps. These transformations are
delned only for the positive half-space of X, i.e.,—m/a&A. &~m/a, —m/a&Ay&~~/a, 0&~X,&~m/c. Fur-
thermore, we introduce real operators as follows,

II,=D P;(5;*)'+DPi, (Sz')',
iri, = s[qi,+ri,+i(pi, +si,)7,

ni *———,
'

[q),+ri, —i(pi, +si )7,

pi ——-', [qi,—rg+i(pi, —si,)7,
pa*= s [q~ —r~ —i(pi —ei)7.

where D is a constant and its numerical value is ap-
proximately —0.0j.2 cm ' as estimated by Keffer. '
Recently it has been reported" that the Mn++ ion is
not completely quenched because of a partial electron
transfer to the Mn++ ions from nearest F ions. The
contribution to the anisotropy energy from this effect
is not known, but it is a possibility that (3) contains it,
because the numerical value of D was obtained semi-
empirically.

Following Kubo, '4 we define

Thus the Hamiltonian can be written as

a= —-'X.lzlS(5+1) (1+0+c )+-"ljlS
&& Pi, ([layg+ 0'+4'+4'),+'a (+i+&—+i,+*)7qi'
+[1~v~+8+c'++~'~(+ '"—+ ')7p '
+ [1+pi,+0+4"++8'~ (+i+"—+i+ )7ri.'
+ [1mpi+ 0+C '+'Pi, +'w (%'i+"—4'g+ )7si,'}, (8)

Si+= (25) 'bi"fs,

Sg = (25)'*fA

Si,'= 5+bs*bi„—
fi = (1—bed*bi/25)'*

S~+= (25) **fa;,

5,-= (25) 'a, *f;,
S,'=S—a;*a;,

f;= (1—a*a/2S)'*, c"=—(4~'/ l~l)[Z ' & ' '(& "—3z ")
—Q~ &;i '(&,~'—3Z,7')7,

@i,+'———(2y'/sl Jl)[g, R '—'(R "—3Z ')e'""i~'

&QsE s '(R i,
s 3Z s)e'"~~"7—

o= —(2D)/( l~l)
P)1,=COSg GX~ COS2GXy COS2CXzp

where a;* and bI,
* are creation operators and a; and b~

are destruction operators of spin deviations. We
substitute (4) into (1), (2), and (3) and then expand
in descending powers of S; and, at first, we consider

all terms to order S.This is equivalent to neglecting the
terms of third order or higher in the spin deviation

operators, a;, a;*, b~, and bI,*." Although we could and similarly for 4, C ~, 4q+, and 4),+&. The ~ or ~
signs in (8) mean that the upper signs are used for the
positive half-space of X and the lower signs are used for
the negative half-space of X.

Finally we introduce the following operators, Az, Az*,

nA. Ahragam and M. H. Pryce, Proc. Roy. Soc. (London)
A205, 135 I'195&).

"K.Yosida, Progr. Theoret. Phys. (Kyoto) 6, 691 (1951)."R. G. Shnlman and V. Jaccarino, Phys. Rev. 103, 1126 (1956).
"R.Kubo, Phys. Rev. 87, 568 (1952).
'5 Since 5 is equal to ~, this expansion is a good approximation. "J.M. Ziman, Proc. Roy. Soc. (London) 65, 346 (],932).

(4) where s is the number of the nearest neighbors and
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B~, and B~*, dered by: and jV,„0) can be written

1~v),+O+@'++2'~%,+*" t
gx�-

(=A�y+�A�),

~2 -1+vt, +O+@'*++"+'~%,+*"

1+v~+ 8+@"+%,"'~+"+ "
ZPX- (A), —A),*),

~~ -1~v.+8+@*++2'~+2"

(14)

where by (vz) we mean average over X, and

z,„&»=—-',X.IGNIS(Sy1) (0++ —c-)

8 &"= zI JIS(vg)gg(1 —yg')

+2sI JISvo Pq(1 —yq'+2eo) &nq, (15)

1~v"+O+@'+%,+'w+"+ " '
(%+K*),

~2-1~v~+ 8+@"++a+*~+),+ "-

(10) 2N~=2O+2@*+ (+)+*++), *)+yx(+), *—+~+')

2vy ——2O+2C *—2C *+0~+'+0 —0 „+ —4„-.
—v~(+~+' —+~ ' —+a+ +%, ) (16)

1~vx+ 8+@'++"+*++"+*"'
ZSy =— (K—K*),

~2 1+v~+ O+@'++"+'~+"+'"

where

and has the property tha t lim) 0%') + "=0 by the

crystalline symmetry. The diagonalization leads to the
eigenvalues

Z= —-',XsIZIS(S+1)(1+0++ )y-;sIZIS
XPx(L1—v~'+2O+2@*+ (+"+'++" ')

+ (+a+ "—+x ")+Vs(+x ' —+a+')
—y), (+)+ "++a ")]'(2~"+1)+[1—'y"'+2o
+2+ + (+.+ ++.-') —(+"+*"—+" ")

+7.(+. +.+')+"/" (+.—+ —"++" *")j'
X (2e"'+1)), (12)

3E(T)=M(0)+AM,

M(0) =Ey(S+-', )—p Qy(1 —y)P)

&M= —2p P~ N~(1 —y~'+2&o)

(1'/)

(18)

(19)

E,„&2) is the diagonal terms of order S', because they
will be useful later, "but we do not write the detailed
form. Since O~, C, and @q+ are of the order of 10 ' we

neglected terms involving their squares in the derivation
of (15); also in the erst term of (15), 2Ny in the de-
nominator was neglected and v)I in the numerator was
replaced by its average, (vq), since both of them are
much smaller than 1 and the term X=0 does not con-

tribute to the summation. In the second term, I) and v~

were replaced by No and vo, respectively, because this

term contains eq so that the major contribu tion to the
summation comes from X—0.

The magnetization of the sublattice is, in the same

way,

where nq=A~*Ax and eq'=B&,*Bq are the number of Fquation (19) can also be written as,"
antiferromagnetic spin waves.

Fr™(2) and (3), the part of the Hamiltonian which ~~= L4&i &T(2No)*/~'sI~IS3

contains only the anisotropy energy is written as

H, =H &ol+H,„~"+H, &@, (13)
X Q Kt(es

I
J

I
S(2lo) l/kT)/e, (20)

where H, &ol does not con.tain the operators (10) (the
terms of order S'), while H, &" contains the quadratic

terms of the operators (10) (the terms of order S).In the

spin wave representation the diagonal terms of II,„("

where Et is a Hankel function. Using (14) to (19), we

can eliminate the term Pq nq(1 yq'+2m—o) &, obtaining
the following formula (in this formula, we include all

terms of order S and S'):

{2voLS+s—& ' Qz(1 —yy') lj —A)L1 —M(T)/M(0) j
1—Z, (T)/Z, (0)=-

(S+1)(0+4'*—@")—2( )& ' & (1—~ ')
(21)

we can replace the summation over the wave numbers

in (21) by an integration over X, namely, '4
where the term A is of the order of S' and is composed
of many terms which come from E,„&'&. Equation (21)
gives the dependence of the anisotropy energy on the
magnetization and should be valid at low temperatures. In deriving E, ( ), we used the Taylor expansion

III. NUMERICAL EVALUATION AND COMPARISON f» (1— I2/)S&=1 n/4S-
WITH THE EXPERIMENTS If we put'4 f=Z~ o'cue", we oh=tain f=1 0 146m+0 093N—' ~. .

n order to get the numerical value of the coe~clent The di6eren~e between these two exPansions is not of serious

of I
1—~(T)/M(0)$ on the right-hand side of (21), "J.A. Eisele and F. Keffer, Phys, Rev, 96, 929 (1934),
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(6/N)ps R,s '(Z, /,
' X-/') = ——4 85

(6/N)ZP RB '(ZD' X8 ')=—925

Thus we obtain the following values,

C'*—C'*=1.45X10 ' (ex)=1.61X10 '
0~=0.11X10 ' ss ——2.28X10 '

2=0.64Xf0 '

(23)

(24)

Substituting (22) and (24) into (21), we get

1—E.„(T)/E,„(0)=2.9[1—M(T)/M'(0)], (25)

or approximately,

E. (T)/E. (0)=[M(T)/M(0)]". (26)

If we tentatively assume that 5 is infinite and that the
Hamiltonian of the anisotropy energy does not contain
cross terms in the spin operator, as H, in (3) does not,
then the numerical value of the coefficient in (25) will

be 2 instead of 2.9. This is the limiting classical case
of no correlation between neighboring spins (molecular
field approximation). On the other han. d, if we assume
that 5 is infinite and that the Hamiltonian of the
anisotropy energy is only the dipole-dipole interaction
H~;n in (2), then the numerical coefficient in (25) will
be 3. This is the classical case of complete correlation
between all spins, because the major contribution to
the excitation energy comes from the spin wave of X=0.

From (14) and (15), we can obtain the anisotropy
energy at O'K as follows:

E-(0)= —(N/2) I
J

I
5'9'+1) (o'+C"—C'*)

+'I J
I S(s,)g„(1—~„)-t

= —4.9X10' erg/cc. (27)

According to the molecula'r field theory, s E,„(0) is
—5.2X10' erg/cc. The close agreement between the
spin-wave theory and the classical theory is caused by
the fact that the increase of the absolute value of the
first term in (27) as compared with the classical theory
is almost canceled by the second term which comes
from the zero-point energy of the spin wave.

Antiferromagnetic resonance in MnF2 has been
observed by Johnson and Nethercots and by Foner, '

» H. Bizette and B. Tsai, Compt. rend. 238, 1575 (1954).

Z(1—vxs) '
~ 2f./a ~ 7r/a ~ 9i /c

= (2z.) s~ (1—[cos(a)i,/2)
—a/a —a./a~ —a/a

Xcos(a)t„/2) cos(c)c,/2)]'} 'd)i, d)c„d)t,

= (2z-) ' —
~l

~' (1—[cos()c,/2)2J.) J.
Xcos()ts/2) cos(X,/2)]'} 'd)~id)t&d)is

= (N/2) 1.15. (22)

The exchange integral is evaluated as s
I
J

I
=4.24 X10 "

erg from the perpendicular susceptibility X&=24.4X f0 '
per mole. "The lattice sums in C have been calculated
by Keffer'

TAsx, E I.

ToK
1 —M (T)/M (0)

Jaccarino-Shulman Eisele-Keffera

4.22
10.2
13,95
16.0
17.0
20.4

0.000063
0.00216
0.00735
0.0107
0.0122
0.0243

0.00010
0.00285
0.0073
0.0105
0.0123
0.0200
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approximation for the magnetization. However, the M~ curve
disagrees with the magnetization curve observed by Jaccarino
and Shulman. aa We do not know the reason why carr a(T)/carr p(0)
is in good agreement with Mz (T)/Mz (0) over a wide temperature
region.

as V. Jaccarino and R. G. Shulman, Phys. Rev. 107, 1196 (1957).
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and the anisotropy energy at O'K is given by Foner
using the theory of Eever and Kittel. 20 His experimental
value is

E, (0) = —5.0X10s erg/cc. (28)

This lies midway between the values obtained by the
spin-wave theory and the classical theory.

In addition, Foner~ gives the temperature dependence
of the anisotropy energy in the same experiment. The
experimental values are in good agreement with the
molecular field theory over a wide temperature region. "
On the other hand, Jaccarino and Shulman" obtained
the temperature dependence of the magnetization of
the sublattice by observing the nuclear magnetic
resonance of a fluorine ion. Their result is in reasonable
(though not detailed) agreement with the result of the
spin wave theory" at low temperatures, as shown in
Table I.

Any attempt, at present, to get from experiment a
value of the exponent in E,„(T)/E,„(0)= [M (T)/
M(0)]" is not too meaningful, because of the large
random scattered values of E, (T). However, a value
of e)2 seems required by Foner's data, because his
observed values of co//=s (T)/cd// s (0), which corre-
sponds to (E, (T)/E,„(0)}'*or to {M(T)/M(0)}"/',

are smaller than M(T)/M(0) obtained by Jaccarino
and Shulman. Until more accurate measurements of
E,„(T) are available, we cannot get a correct value of
fs to be compared with the theoretical formula (26).


