APPENDIX

Lindhard and Scharff applied Eq. (3) to the statistical Thomas-Fermi (TF) model of the atom. This leads directly to Bloch's relation $I = KZ$. It is of interest to consider $I(Z)$ for the Thomas-Fermi-Dirac (TFD) model, which includes the exchange interaction between electrons.⁸ However, the TFD density distribution is not an explicit function of Z and hence not suited for the present purpose. A sufficiently accurate approximation is the TFX distribution, which follows from the TF distribution by a simple coordinate contraction $r_{\text{TFX}} = \lambda^{-1} r_{\text{TF}}$. The scaling parameter λ can be determined by the variational condition

$$
\frac{\partial E}{\partial \lambda} = \frac{\partial}{\partial \lambda} [\lambda^2 E_{\text{kin}} + \lambda (E_{\text{pot}} + E_{\text{exch}})] = 0.
$$

Introducing the proper expressions²¹ for the E in terms of the solution φ_0 of the TF equation $\varphi_0'' = \varphi_0^3 x^{-\frac{1}{2}}$, with $x=\mu^{-1}r$, one finds

$$
\lambda_0 = 1 + \left(\frac{\pi}{2}\right)^{\frac{1}{3}} \frac{\kappa_a'}{\kappa_b} \frac{\mu}{Z^{\frac{1}{3}}} \int_0^\infty \varphi_0^2 dx \bigg/ \int_0^\infty \varphi_0^{\frac{5}{3}} x^{-\frac{1}{2}} dx
$$

= 1 + 0.16Z⁻³

The coefficient 0.16 is a lower limit for the $Z^{-\frac{2}{3}}$ de-

²¹ P. Gombás, Die statistische Theorie des Atoms und ihre Anwendungen (Springer-Verlag, Wien, 1949). See pp. 390-392.

PHYSICAL REVIEW

pendence of λ . Inserting $\rho_{\text{TFX}} = (Z\lambda_0^3/4\pi\mu^3)(\varphi_0/x)^{\frac{3}{2}}$ in Eq. (3) yields

$$
I_0=0.451\bar{\chi}_0\lambda_0^3Z\text{ ry}.
$$

For the evaluation of the constant \bar{x}_0 , one may use the fact that in the statistical model ω_0 and ω_p depend linearly on Z . If

 $\omega_0^2 = -\left(\frac{e}{mr}\right)\left(\frac{dP}{dr}\right)$

$$
P\!=\!(Ze/r)\!-\!(1\!-\!1/Z)\int_0^\infty\!e\rho_{\rm TF}(\xi)\,|\,\xi\!-\!r\,|^{-1}\!d^3\xi,
$$

one finds for $Z \gg 1$ and with the abbreviation

$$
q_0{=}\,\varphi_0{-}\,x\varphi_0
$$

$$
\ln \bar{X}_{0} \sim \frac{1}{2} \int_{0}^{\infty} \varphi_{0}^{\frac{3}{2}} x^{\frac{1}{2}} dx \ln(1 + q_{0}/x^{\frac{3}{2}} \varphi_{0}^{\frac{3}{2}}) = \ln 1.78.
$$

Hence,

that

with

$$
I_0 = 0.802 \lambda_0^3 Z
$$
 ry $\approx 10.9(1+0.25Z^{-3})Z(\text{ev}).$

In essence, this result confirms an earlier estimate by Jensen²² for a highly simplified atomic model, and agrees with experimental observations.^{8,23} It approaches Bloch's relation for large Z .

AUGUST 15, 1958

²² H. Jensen, Z. Physik 106, 620 (1937).

²³ W. Brandt (to be published).

Crystal Structure and Ferrimagnetism in $NiMnO_3$ and $CoMnO_3$

VOLUME 111, NUMBER 4

W. H. CLOUD

Central Research Department, Experimental Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware (Received April 21, 1958)

X-ray diffraction studies of individual crystals of NiMnO₃ and CoMnO₃ show that these compounds have the structure of ilmenite (space group $R\overline{3}$). The crystals have a plate-like crystal habit with the threefold symmetry axis perpendicular to the faces of the platelet. Positions of atoms within the unit cell have been determined by comparing calculated structure factors with those obtained from x-ray powder patterns. There are two Ni-O-Mn configurations that appear to be favorable to a magnetic superchange interaction, and these are sufficient to extend magnetic ordering in three dimensions.

I. INTRODUCTION

CUPEREXCHANGE interactions in rhombohedral \sum sesquioxides with particular reference to Cr₂O₃, α -Fe₂O₃ and their solid solutions have been discussed by Li.¹ The discussion can now be extended to include ferrimagnetism in the compounds NiMnO_3 and CoMnO_3 which have the same structure as the mineral ilmenite (FeTiO₃).²⁻⁴ This ABX_3 structure is related

¹ Y. Y. Li, Phys. Rev. 102, 1015 (1956).

to that of Cr_2O_3 , where both A and B are Cr atoms. The metal atoms of ilmenites are arranged in alternate layers between oxygen layers and are ordered in the sequence $AB-BA-AB-BA$ along the body diagonal of the rhombohedron.

The principal geometric parameters for qualitative understanding of superexchange interactions are the metal-to-oxygen distances and the metal-oxygen-metal angles. In order to consider such interactions in NiMnO₃ and CoMnO₃, the exact positions of the individual atoms must be determined. Proof of ordering of the metals into the $AB-BA-AB$ sequence was obtained from x-ray diffraction studies of individual crystals. Positions of atoms within the unit cell were determined

The synthesis and bulk magnetic properties of these compounds have been discussed by Swoboda, Vaughan, and Toole³ and Bozorth and Walsh.⁴

³ Swoboda, Vaughan, and Toole, J. Phys. Chem. Solids (to be

published).

4 R. M. Bozorth and D. E. Walsh, J. Phys. Chem. Solids (to be published).

from an analysis of the line intensities of x-ray powder patterns. From these data, metal-oxygen distances and metal-oxygen-metal angles were obtained.

TABLE II. Observed x-ray diffraction lines.

II. X-RAY DIFFRACTION BY CRYSTALS

Small plate-like crystals of $NIMnO₃$ or $CoMnO₃$ are obtained from acidic aqueous media. The crystal platelets are hexagonal in shape, approximately 0.75 mm in diameter, and 10—50 microns thick. The threefold symmetry axis is perpendicular to the faces of the platelet. X-ray diffraction patterns of these crystals, obtained with a Buerger precession camera, were analyzed by use of a hexagonal system of reference.

Comparison of the upper level $(l\neq 0)$ diffraction patterns of crystals of $NiMnO₃$ and $CoMnO₃$ shows clearly that the symmetry is rhombohedral. However, the first upper level photograph shows symmetry $3m$ and not the 3 symmetry present in the analogous pattern of an ilmenite single crystal. Cone-axis photographs, which reveal the symmetry of all upper levels, show that the only diffraction symmetry common to all levels is 3. It was therefore concluded that the symmetry 3m of the first upper level was caused by twinning normal to the threefold symmetry axis. A crystal containing a mixture of right- and left-handed threefold screw axes would give the observed diffraction pattern. The crystal platelets were so thin that x-ray patterns from different sections along the c axis could not be obtained. Thus, it is not known whether the crystals contain only one twin boundary or whether there is multiple twinning.

Alternatively, metal atoms arranged at random could also give a first level diffraction pattern with symmetry $3m$. If this were the case the diffraction pattern of NiMnO_3 would be similar to that of a compound M_2O_3 where the scattering factor of M is the average of the scattering factors of Ni and Mn. It is apparent from Table I, which compares the reflections observed from $NiMnO₃$ and $CoMnO₃$ crystals with those observed from single crystals of corundum

TABLE I. First upper level x-ray reflections of rhombohedral crystals.

Corundum Al ₂ O ₃	Ilmenite FeTiO ₃	NiMnO ₃ or CoMnOs
Absent	201	201 021
Absent	021	021 $\bar{2}01$
Absent	$\overline{2}\overline{2}1$	$\overline{2}\overline{2}1$ 221
$1\overline{2}1$	Absent	Absent
$\overline{2}11$	$\overline{2}11$	$\bar{2}$ 11 121
$\overline{311}$	Absent	Absent
$\overline{131}$	$\overline{131}$	$\overline{1}\overline{3}1$ 311
231	Absent	Absent
321	321	321

 $(Al₂O₃)$ and natural ilmenite, that $NiMnO₃$ and CoMnO₃ do not have the M_2O_3 structure. Therefore, it is concluded that these compounds have the symmetry $R\overline{3}$ (C_{3i}^2) of ilmenite.

III. ANALYSIS OF POWDER DATA

Diffraction patterns of $NiMnO₃$ and $CoMnO₃$ powders were taken using cobalt K_{α} radiation. The observed structure factors were obtained from line intensities using the methods outlined in the international tables.⁵ Since the measurements were made with a Norelco diffractometer, the absorption factor could be taken as a constant independent of the Bragg angle. ' Interplanar spacings listed in Table II were calculated using the cell dimensions given by Swoboda, Vaughan, and Toole³: $a=4.905\pm0.001$ A, $c=13.59$ ± 0.01 A for NiMnO₃ and $a=4.933\pm 0.001$ A, $c=13.71$ ± 0.01 A for CoMnO₃. Since intensity calculations are simpler for the rhombohedral cell than for the hexagonal cell, a rhombohedral indexing is used in Table II. The rhombohedral cell constants are $a_r = 5.343$ A, $\alpha = 54^{\circ}39'$ for NiMnO₃ and $a_r = 5.385$ A, $\alpha = 54^{\circ}31'$ for CoMnO₃.

The best fit between observed and calculated structure factors was obtained for the lines of Table II by minimizing the reliability factor

as is common practice. Values of atomic scattering factors and equations for structure factors for the space group $R\overline{3}$ were obtained from the International Tables⁵ (see Table III). Corrections to the atomic scattering factors due to dispersion by the K electrons were obtained from tables given by James. '

The positions in the rhombohedral cell for compounds

⁵ International Tabellen zur bestimmung von Kristallstruktur
(Borntraeger, Berlin, 1935), Vols. I and II.

⁶ H. P. Klug and L. E. Alexander, *X-Ray Diffraction Procedures* (John Wiley and Sons, Inc., New York, 1954), pp. 376–7.
⁷ R. W. James, *The Optical Principles of the Diffraction of X-Rays* (G. Bell and Sons, London, 1

					COMNU3:
	NiMnO ₃		CoMnO ₃		
	obs	calc	obs	calc	(1) $A_1 - 0 - B_1$
110	4.0	3.4	3.8	3.2	qq
211	7.2	7.5	8.5	8.5	
$1\overline{1}0$	7.4	7.1	7.4	7.4	
$\binom{210}{120}$	4.8	4.7	5.1	5.0	(2) $A_2 - O - B_4$
					$B_4 - O - A_3$
220	6.6	6.9	7.5	7.4	qp
$\frac{321}{231}$	10	10	10	10	
					(3) $B_2 - O - B_4$
$\binom{310}{130}$	7.4	8.2	7.8	8.9	$A_4 - O - A_3$
$\overline{2}11$	8.0	9.1	8.8	9.8	qþ
					\cdots \sim \sim 1

of the ilmenite structure are as follows'.

metals: $\pm u, u, u; v, v, v;$

$$
oxygens: \pm (xyz, zxy, yzx).
$$

A Patterson series⁸ along the $\lceil 111 \rceil$ diagonal was used to select a range of trial values for the metal positions. In order to limit the number of trial values for the oxygen positions, the condition $x+y=2z$ was imposed. This condition, which is required by symmetry for compounds of the corundum structure, is found to hold for ilmenite⁹ and most ilmenite-type titanates.¹⁰ The best over-all fit to the data was obtained for the following positions¹¹:

As would be expected, the calculated structure factors were not very sensitive to oxygen positions because of the low atomic scattering factor of oxygen. The reliability factor was 6% for both NiMnO₃ and CoMnO₃.

IV. EXCHANGE INTERACTIONS IN NiMn03 AND COMn03

A discussion of the superexchange interaction between two metal atoms and the intervening oxygen atom has been given by Li' for the rhombohedral oxides Cr_2O_3 , $\alpha - Fe_2O_3$, and FeTiO₃. In this discussion, he makes use of Anderson's¹² conclusions that the most favorable metal-oxygen-metal angle is 180'. The possible configurations listed by Li for Cr_2O_3 and

TABLE III. Observed and calculated values of $|F_{hkl}|$. $\alpha - Fe_2O_3$ have the following analogs in NiMnO₃ and $CoMnO₃$:

(1) $A_1 - 0 - B_1$ qq	NiMnO_3 $q = 2.06 \text{ A}$ $\beta = 84^{\circ}42'$	CoMnO ₃ $q = 2.13 \text{ A}$ $\beta = 84^{\circ}11'$
(2) $A_2 - O - B_4$	$q = 2.06 \text{ A}$	$q = 2.13 \text{ A}$
$B_4 - O - A_3$	$p=1.91 \text{ A}$	$p = 1.89$ A
$q\ddot{p}$	β = 132°14′	$\beta = 131^{\circ}03'$
(3) $B_2 - O - B_4$	$q = 2.06 \text{ A}$	$q = 2.13 \text{ A}$
A_4 –O– A_3	$p = 1.91 A$	$p = 1.89$ A
$q\ddot{p}$	$\beta = 92^{\circ}52'$	$\beta = 92^{\circ}27'.$

A diagram of the unit cell is shown in Fig. 1 where the large open circles and the large cross-hatched circles represent the two diferent metals and the small circles represent the oxygen atoms. This figure is similar to that presented by Li for equivalent metals.

Li assumed that configuration (3) would produce a very weak interaction because the near 90' angle is most unfavorable for a superexchange interaction. He assumed that the magnetic lattice was extended in three dimensions by combination of interactions (1) and (2). Interaction (2) should be favorable for exchange because of the obtuse angle. The acute angle of configuration (1) makes it seem unfavorable for a superexchange interaction. However, there are three equivalent oxygen atoms in this configuration. Li concluded that a stong interaction could be expected because of an appreciable overlap between the π orbitals of the group of three equivalent oxygen ions and the $3d\pi$ orbitals of the metal ions. It should be noted, however, that Li assumed that this interaction was necessary in order to extend the magnetic lattice in three dimensions. This assumption is not necessary. As pointed out by Iida, " there is ^a fourth interaction which Li did not discuss,

(4)
$$
B_2-O-A_3
$$
 NiMnO₂ CoMnO₃
\n $p \rightarrow p = 1.91 \text{ A}$ $p = 1.89 \text{ A}$
\n $\beta = 122^{\circ}18'$ $\beta = 123^{\circ}47'$.

This fourth interaction has an obtuse angle and also smaller average metal-oxygen distances than configuration (2). If (2) is considered to be one of the principal interactions, then (4) cannot be neglected, and a combination of (2) and (4) is sufficient to extend the magnetic lattice in three dimensions. These two interactions should be considered as the principal magnetic interactions in the rhombohedral oxides of the corundum or ilmenite structure.

The sign of interactions (2) and (4) determines the nature of the magnetic ordering. Obviously if both are positive, a ferromagnetic oxide results. No rhombohedral ferromagnetic oxide is known. The magnetic lattice of $Cr_2O_3^{\,14}$ in which the spins of the chromium

See, for example, H. S. Lipson and W. Cochron, The Determina

tion of Crystal Structures (G. Bell and Sons, London, 1953).

⁹ R. G. Wyckoff, *Crystal Structures* (Interscience Publishers, Inc., New York, 1948), Vol. I.

¹⁰ E. Posniak and J. F. W. Barth, Z. Krist. 88, 271 (1934)

that gave a brief discussion of ferrimagnetism and crystal structure of NiMnO₃. The metal positions given do not agree with value reported here. This recent paper is discussed briefly in the appendix.
 12 P. W. Anderson, Phys. Rev. 79, 350 (1950).

¹³ S. Iida, J. Phys. Soc. Japan 12, 222 (1957).
¹⁴ B. N. Brockhouse, J. Chem. Phys. 21, 961 (1953).

ions are arranged in $+ - + -$ sequence along the [111] diagonal is established if (2) is positive and (4) is negative. The $+ - - +$ sequence for $\alpha - Fe_2O_3^{15}$ is achieved if both (2) and (4) are negative. The fourth possibility, $a + + -$ sequence, results from (2) being negative and (4) being positive. It can be seen from Fig. 1 that the $+ - - +$ sequence of $\alpha - Fe_2O_3$ is the only one of these four possibilities which will. atoms. Cross-hatched circles repgive rise to ferrimagnetism in a compound ABX_3 of give rise to ierrimagnetism in a compound ABX_3 or represent 0 atoms.
the ilmenite structure. The sequences $+-+-$ or $++--$ result in cancellation of magnetic moments within the individual A and B lattices. Thus, if a compound of the ilmenite structure is ferrimagnetic, interactions (2) and (4) must both be negative.

Ilmenite, itself, is antiferromagnetic below approxi-Ilmenite, itself, is antiferromagnetic below approximately 68°K.¹⁶ Li concluded that this antiferromagnetic ordering arose because the titanium ion is not purely $Ti⁺⁴$ but has some $Ti⁺³$ character. He pointed out that limenite must then have a Cr_2O_3 type magnetic lattice rather than the α -Fe₂O₃ magnetic lattice. the assistance of K. R. Babcock and E. P. Moore in However, antiferromagnetic ordering only within the the x-ray diffraction studies.
iron layers by means of the we could give parallel and perpendicular susceptibilities of **APPENDIX. RECENT PUBLICATION ON NIMIO**₃ the form reported for ilmenite.¹⁶

mately 0.7 Bohr magneton/molecule for NiMnO₃ and manganese positions as $u=0.363$ and $v=0.153$.
CeMnO ⁴ indicates that these sempounds are formically and the structure factors calculated from their values of u and $CoMnO₃⁴$ indicates that these compounds are ferrimagnetic, and must therefore have the α —Fe₂O₃ v do not give good agreement with our experimental magnetic lattice. All metal ions in a given nickel (or cobalt) layer have parallel moments that are Their reliability factor is in the order of 18% which i

The work of Bozorth and Walsh⁴ suggests that there is considerable orbital contribution to the magnetic The discussion of Bertaut and Forrat suggests that moments of the metal ions in NiMnO₃ and CoMnO₃. the principal magnetic interaction is between Ni and moments of the metal ions in NiMnO₃ and CoMnO₃. The principal magnetic interaction is between N and Other measur Other measurements¹⁷ show that $NiMnO₃$ has a large negative anisotropy, i.e., the direction of easy magnetization is in the basal plane perpendicular to the $[111]$ smaller Ni —Mn distance (2.9 A) is weak. However, axis. In this connection, $N\acute{\epsilon}el^{18}$ has shown that the the discussion presented here shows that two N α —0—
magnetic moments of the Es⁺³ ions in α EeO, are Mn superexchange interactions are necessary to magnetic moments of the Fe⁺³ ions in α -Fe₂O₃ are Mn superexchange interactions are necessary to
also exiented perpendicular to the [111] axis above propagate the magnetic lattice. Crystal parameters also oriented perpendicular to the $[111]$ axis above propagate the magnetic lattice. Crystal parameters approximately 260° K but parallel to the $[111]$ existences presented here give Ni-Mn distances of 3.63 and approximately 260° K, but parallel to the [111] axis presented here 260° K. In Gr O 19 and Eq. 3.64 be magnetic 3.38 A. below 260 \textdegree K. In Cr₂O₃¹⁹ and FeTiO₃¹⁶ the magnetic 3.38 A.
memories of the matel jong appear to be exiented. The work of Bozorth and Walsh⁴ gives a value of moments of the metal ions appear to be oriented The work of Bozorth and Walsh^{*} gives a value of
normalel to the [111] axis. Any comprehensive treat 0.61 Bohr magnetons per molecule for the magnetizaparallel to the [111] axis. Any comprehensive treat-
montrion of NiMnO₃ compared to the higher value of 0.76 ment of exchange phenomena in transition metal tion of NiMnO₃ compared to the higher value of 0.76
cyrides of the corundum or ilmenite structure must. Bohr magnetons per molecule given by Bertaut and oxides of the corundum or ilmenite structure must account for the manner in which the magnetic moments Forrat. Measurements made in this laboratory gave a
account for the magnetic moments of the interest of t of the ions are coupled to the crystal lattice. Since value in better agreemental data on the antiferromagnetic compounds Bozorth and Walsh. experimental data on the antiferromagnetic compounds Cr_2O_3 , $\alpha - Fe_2O_3$, and Ferrat do not mention how their
Cr2 α , $\alpha - Fe_3O_3$, and α is an now be augmented α . NiMnO₃ was prepared and present no chemical analysis with data on the ferrimagnetic compounds $NiMnO₃$ and CoMnO₃, these rhombohedral oxides offer an

ACKNOWLEDGMENTS

The author wishes to thank Professor M. J. Buerger for his advice on crystal structure and to acknowledge

The observed saturation magnetization of approxi-
The paper of Bertaut and Forrat²⁰ gives the nickel data regardless of what oxygen positions are chosen. (or cobalt) layer have parallel moments that are
antiparallel to those of the adjacent manganese layers. to be compared with 6% when the values $u=0.352$
The work of Bozorth and Walsh⁴ suggests that there and $v=0.148$

mately 3.5 A and that the interaction involving a smaller Ni-Mn distance (2.9 A) is weak. However,

or x-ray data. For complete information about methods and COMNO₃, these rhombonedral oxides of and of preparation and chemical analysis of NiMnO₃ and
interesting system for theoretical study.
In Shull Strauser and Wollan Phys Pey 83, 333 (1051) also to U.S. Patent No. 2 $\frac{15 \text{ Shull, Strauser, and Wollan, Phys. Rev. 83, 333 (1951).}}{16 \text{ H. Bizette and B. Tsai, Compt. rend. 242, 2124 (1956).}}$ also to U. S. Patent No. 2 770 523, November 13, 1956 $(R. C. Toole), which dis closes NiMnO₃ and CoMnO$ ¹⁷ H. S. Jarrett and R. K. Waring, Phys. Rev. (to be published). and methods of preparation.
¹⁸ Louis Néel, Revs. Modern Phys. 25, 58 (1953). **2006** and methods of preparation.
¹⁹ McGuire, Scott, and Grannis, Phys. R and methods of preparation.