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The rather unreasonable decrease in 8' with nickel con-
tent predicted by all such exchange calculations strongly
suggests the presence of some other mechanism. Large
admixtures of p and d states to the conduction band
with additions of nickel to copper could give rise to an
appreciable Van Vleck temperature-independent para-
magnetism as discussed by Kubo and Obata, "and such
admixtures do not seem unreasonable in view of the

"R.Kubo and Y. Obata, J. Phys. Soc. Japan ll, 547 (1956).

rapid changes in optical, thermal, electric, and mag-
netic properties of these alloys as the nickel content
is increased.
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The quantum theory of the electromagnetic interaction of particles and fields in dense matter predicts
that fast charged particles lose their kinetic energy to longitudinal electronic excitations influenced by
one-electron and collective effects. Both effects are to be expected in metals and insulators, but to varying
degrees. A clear identification of collective excitations in insulators is still lacking.

Lin is the best-suited crystal for predicting the one-electron and collective effects on the longitudinal
electronic excitations in an insulator, and for verifying such prediction experimentally. The characteristic
energy loss spectrum and the mean excitation potential of the LiH crystal are estimated. One finds that the
longitudinal excitations in this insulator crystal are of predominantly collective character. The results are
so significantly different from those obtained by neglecting collective effects that stopping experiments in
single as well as in multiple scattering can clearly identify the collective effects and confirm the theoretical
predictions.

1. STATEMENT OF PROBLEM

~CHARACTERISTIC energy losses of singly scat-~ tered electrons are observed in metals and
insulators. ' The quantum theory of electromagnetic
interactions of particles and fields in dense substances
attributes these energy losses to the excitation of
longitudinal oscillations with both one-electron and
collective ("plasma" ) components s' However, it has
been argued that electrons in filled bands cannot oscil-
late collectively, 4 ' and that, in any event, characteristic
energy losses can be explained entirely by one-electron
band transitions. ' ' A clear-cut experimental identifi-
cation of collective oscillations in insulators is still
lacking and would be desirable.

LiH is the insulator with the fewest electrons per
atom and with the highest ratio of valence- to core-
electrons, to which Bragg s additivity rule for stopping
powers is least applicable. It is best suited for esti-
mating theoretically the one-electron and collective
eGects on the longitudinal excitations of the valence

r L. Marton, Revs. Modern Phys. 28, 172 (1956).
s D. Pines, Revs. Modern Phys. 28, 184 (1956).
s U. Fano, Phys. Rev. 105, 1202 (1956).
4P. A. Wolff, Phys. Rev. 92, 18 (1953); however, see H.

Kanazawa, Progr. Theoret. Phys. Japan 18, 227 (1955).
s R. H. Tredgold, Physica 22, 1219 (1956).' Leder, Mendlowitz, and Marton, Phys. Rev. 101, 1460 (1956).' E. J. Sternglass, Nature 178, 1387 (1956).

electrons, and for giving decisive experimental con-
Qrmation of the importance of collective eGects in an
insulator, as predicted by theory. In the following, the
characteristic energy-loss spectrum and the mean
excitation potential of the LiH crystal are estimated.
One finds that fast charged particles should excite the
valence electrons to energy levels of predominantly
collective character. The results differ so significantly
from those one obtains by considering only one-electron
band transitions (which is not justified by theory) that
stopping experiments in single scattering and multiple
scattering can demonstrate clearly the excitation of
collective polarization oscillations in this insulator
crystal.

2. EXCITATION LEVELS

Suppose the response of a substance to an electro-
dynamic disturbance can be described by the excitation
of coupled one-electron and field oscillators. One may
then separate these oscillators into their transverse and
longitudinal normal modes by a suitable transformation
of the total Hamiltonian. ' The transverse normal modes
do not contain collective components. They correspond
to just the one-electron oscillators (f,&o ) of oscillator
strength f„and frequency cu„ in the semiempirical
Drude-formulation of the dielectric constant e(ce). The
eigenfrequencies of the longitudinal normal modes are
given by the solutions co=0„of the equation e(&v) =0.
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They de6ne a set of coupled oscillators (F„,Q„), where

F„=foi,'Lde(cv)/d(oP)fo„} —L f„
and

Qn' &—n+oir fn,

as long as the damping is small and the co„are so
widely spaced that oi~sf &&oi„+is oi—„' T.he frequency
o~„= (kn.e'p/rl)& is the "plasma" frequency in a sub-
stance with an electron density p.

The transverse modes (f,oi ) are observed as optical
absorption bands or in anomalous dispersion as the
poles of e(o~); the longitudinal modes (F„,Q„) are
observed in the stopping of charged particles or (as in
the case of alkali metals) as the limiting frequencies
for metallic reAection.

3. CHARACTERISTIC ENERGY LOSSES

The characteristic energy losses of singly scattered
electrons correspond to the excitation of the longitudinal
oscillators (F„,Q„). Generally, one finds for inner
atomic shells that AQ,~Anil) fur„f;&, i.e., the one-particle
behavior predominates. This applies also to most
molecular substances, where the mean density of valence
electrons is so low that AQ, i~Ao~ i)Aoi„f i'*. In metals
with tightly bound ion-core electrons, one finds
Ao&;)&AQ~, i Ace„f~~i')Are~, i. In ionic and valence lat-
tices, and in transition and noble metals, the situation
varies between these two extremes. Corrections for
damping, ion-core polarization, and local-6eld effects
are negligibly small if Ace„f,i )Ao~, i, i.e., if collective
oscillations are the determining mode in the longi-
tudinal excitation of valence electrons. This should be
the case in the LiH crystal.

4. MEAN EXCITATION POTENTIAL

In the theory of the stopping power of matter for
fast charged particles, the only characteristic material
constant is the mean excitation potential I of the
stopping electrons in the target material. It is averaged
according to

lnI =Q „F„inAQ„,

over all excitation levels (F,Q ).Equation (1) gives the
exact prescription for obtaining the I value of any
substance, which, however, in practice can be applied
only to the lightest elements. For complicated systems,
semiempirical approximation methods must be used.
Depending on the approximations made for the solutions
of the equation e(co) =0, they fall into two groups. They
will be referred to as the optical and statistical method.

a. Oytical Method

In the optical metho'd one sets F =f„and Q„=o~„,
i.e., one neglects the collective components, so that
optical absorption data can be used for estimating
mean excitation potentials. The resulting (I ),n~ values

8 W. Srandt, Phys. Rev. 104, 691 (1956); 105, 734(E) (1957).

are then lower limits. In this approximation, the optical
method is limited to cases where not only

b. Statistical Method

A second method with emphasis on the collective
behavior of electrons can be derived from the statistical
model of the atom. In this model, the relative con-
tributions of both the one-electron and the collective
modes of oscillation to the dynamic behavior of the
electron cloud are prescribed by the electron density
distribution; they vary continuously with the distance
r from the nucleus, but are nearly indepedent of the
atomic number Z.

Taking the collective component to be the indicative
term for the dynamic behavior, one may approximate
Eq. (1) by Eq. (3):

lnI=Z ' p(r)d'r in'(r)Ao~~(r)$, (3)

where X=J'p(r)d'r and ~0„(r)= L4ire'p(r)/m]&. The
function x(r) = (1+a&ss(r)/oi~s(r)1& measures the relative
contributions of the collective and one-electron fre-
quency components. On an atomic scale, Eq. (3) is
analogous to Eq. (1) in that it averages over the con-
tinuous frequency spectrum of the statistical atom. It
should be a good approximation, because the main
contributions come from the bulk of the electron cloud
to which the statistical model applies best. Equation (3)
includes the contributions of the long-range collective
oscillations in dense substances as density-dependent
changes of p(r), and the accompanying changes of y(r).
In fact, if the atomic interaction is sufficiently strong,
or, equivalently, if the density of a substance is suK-
ciently high, p(r) varies only slowly throughout the
substance. Then, I(r) =x(r)Ace~(r) can be considered
as the average pertinent to r over momentum space,
as defined by Eq. (1) including the long-range col-
lective effects, and Eq. (3) as a Stieltje-integral (rela-
tive to a local Debye length) over space coordinates,
to complete the averaging over phase space. Equation(3)
will be applied in this sense to the valence electrons of
the LiH crystal. Lindhard and ScharfP' first discussed
Eq. (3) and tested its applicability to light elements.

' R. M. Sternhehner, Phys. Rev. 92, 351 (1954).' J.Lindhard and M. ScharG, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 27, No. 15 (1953).

(see Sec. 2), but specifically r)„'~1. However, if
1&'rt„'«ro„+is/cv, the frequency becomes Q„s=rt„sro„'.
Inserting this expression in Eq. (1) and approximating
f„by the relative occupation number E~—' yields

lnI= E ' Q„X„inLrt„(Ie)onto' = 1nLUIontl (2)

Detailed estimates of rt ("zero-energy" polarization
effect)' ' show that indeed rt&1.1 for most substances.
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If tss=0 and p=constant, Eq. (3) yields Kramers'
mean excitation potential of an isotropic electron
plasma.

The electron density distribution of the Thomas-
Fermi model is not a good approximation for light
elements. If one approximates p(r) by hydrogenic wave
functions, Eq. (3) breaks up into shell contributions.
For example, one finds by inserting in Eq. (3) Slater
wave functions of effective quantum number n* and
eGective charge Z„* that

N„'
t
Z„*) -**

I"(2e*+1) ( rs* J

ry exp/(ts* —1)F(2rs*+1)—(e*+-',)], (4)

where F(y) =d lnI'(y)/dy. In this case,

lnI= N—' P„N„lnLX„(I„)««j = lnfxI««$, (5)

in analogy to Eq. (2). In particular, for E shells,

(It)««=0.893Ni'Zi*' ry, (6)

and, for I. shells,

(Is).r« ——0.151¹Zs**ry.

If applied to dense substances, the validity ranges of
the two methods can be assessed roughly by considering
the relation (rl„'—1) (X„'—1)=1. If rl„'&2, the optical
method offers the better approximation; if X„'(2) the
statistical method. If g„'~X„'~2, both methods should
be equivalent but least accurate. For the conduction
electrons of most metals, X,i'~1 and, hence, I,i

yfva, l* ~

It is important to note that Eq. (3) has been obtained
by an essentially heuristic argument from the assump-
tions that the atomic frequency distribution is described
correctly by p(r), and that p(r) varies slowly in space
compared to the local interelectronic spacing. Both
assumptions are open to question in many instances.
I values depend primarily on a sum rule and are in most
cases insensitive to the details of the energy transfer
mechanism. The sum rule is evidently well approxi-
mated by Eq. (3) because the I„„values of atoms in
all tested cases, including those pertaining to Eqs.
(5)—(7), are found to agree (within the uncertainty of X)
with I values obtained by Eq. (2)" and by experiment.
Such agreement is also found for the more general
results derived in the appendix from the statistical
model of the atom.

The situation is different for the LiH crystal. Its I
value is indeed sensitive to the excitation mechanism,
because the summation extends over excitation levels
of only a few electrons per atom, of which one-half are
valence electrons. Nevertheless, one is justified in
applying Eq. (3) to LiH, because the valence electron
density is so high that X,i 1, and varies sufFiciently
slowly. Characteristic energy loss spectra, of course,

"W. Brandt, Health Physics 1, 11 (1958).

are inherently sensitive to the excitation mechanism.
Therefore, the longitudinal excitation levels of the
valence electrons in LiH can be identified by measure-
ments of either I or the characteristic energy loss spec-
trum of charged particles, and the theoretical estimates
of Sec. 5 confirmed accurately.

S. APPLICATION TO LiH

A mixture of isolated atoms obeys Bragg's additivity
rule for stopping powers; that is, the stopping power of
such a "Bragg-gas" is equal to the stoichiometric sum
of the stopping powers of the component atoms. "Let
a Bragg-gas be composed of Li and H atoms and ions
such that its charge distribution corresponds to the
mean charge distribution in the LiH crystal. For
brevity, one may write Li+ H; a=0 denotes covalent
bonding, a= 1 ionic bonding. The mean excitation
potential of the Bragg-gas is then

Is(Lj+~H ~) = LIs (Lj+)Is (H ))~~ LIs (Lj)Is(H)3

The subscript 0 denotes isolated atoms. With the Io
values of the various atomic species, obtained as
described in Sec. 4, one finds 11&Is(LiH) &26 (ev) for
1&a&0. The electron density distribution calculated
by Mueller and Eyring" for the LiH molecule corre-
sponds to a=0.55, for which case Is(a=0.55) =19 ev.
As for Be,"Bragg's rule is quite inadequate for LiH,
because 50%%uq of the stopping electrons reside in valence
shells: inserting the actual electron density distribution
in Eq. (3) yields twice the Is value, namely I,i

——38 ev.
The statistical method can be applied to the valence

electrons in the LiH crystal, because hto„f,i'*=13 ev,
whereas the optical absorption edge lies near 7 ev,""
i.e., X,&'(2. In the following, p is set tentatively equal
to unity. The electron density distribution has been
calculated by Kwing and Seitz" from approximate
solutions of the Hartree-Fock equations of the crystal,
and by Lundquist" by the molecular orbital method.
They agree quite closely with one another and cor-
respond to the gross charge distribution a=0.3. The
experimental density distribution" corresponds to
a=0.46 and deviates in details from the theoretical
distributions. For the latter, one obtains by Eq. (3)
I(0.3)=39 ev" for the former I(0.46) =41 ev. A lower
limit for I is obtained by assuming the valence electrons
to be free, i.e., I(a) &I(f)=I'(Li+)(Ate„f,i')'*=31 ev.
I(f) would correspond to the mean excitation potential
of a covalent lattice, I(0). The valence electrons in a
purely ionic lattice would have a He-like configuration
in the H cell. The physical conditions in this hypo-
thetical lattice actually exceed the validity range of

' C. R. Mueller and H. Eyring, J. Chem. Phys. 19, 934 (1951).
"A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.

24, No. 19 (1948).
'4 W. Rausch, Z. Physik 111,650 (1939)."D.W. Ewing and F. Seitz, Phys. Rev. 50, 760 (1936).' S. O. I.undquist, Arkiv Fysik 8, 177 (1954).

W. Cochran, Revs. Modern Phys. 30, 47 (1958).
"W. Brandt, Physik. Verhandl. 8, 188 (19571.
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Eq. (3). Formal application of Eq. (3) gives an upper
limit for I(1) reflecting the excitation levels of highly
compressed H ions. One finds I(1)(54 ev. If charged
particles were not to excite collective oscillations in the
LiH crystal, the 7-ev band transition should be the de-
termining excitation, and I=23 ev. These results are
summarized in Fig. 1. The corresponding stopping
powers diGer suSciently for an experimental con6rma-
tion of the preponderance of collective over one-electron
excitations. *

The following characteristic energy-loss spectrum is
to be expected for the LiH crystal. If only band tran-
sitions were excited (corresponding to I=23 ev), the
predominant energy loss would appear as a broad peak
near 7 ev. Higher losses have lower intensity. If, as
expected theoretically, collective oscillations are excited
also (corresponding to I=39 ev), a pronounced peak
appears at &„~h(o„f,iI=14.5 ev, for X „=1,14. In
addition, multiples of the 14.5-ev peak occur with
decreasing intensity, and possibly weak combinations
of the one-electron and collective loss peaks. The
excitation of the Li E shell should not contribute to
energy losses (70 ev.

The approximate nature of the methods of calcu-

lation, and particularly Eq. (3), makes it diKcult to
assess the accuracy of the numerical estimates of I and
the characteristic energy-loss spectrum. Judging from

experience with other light substances, the error in the
numerical results should not exceed significantly the
uncertainty in the proper choice of x. The I values of
LiH are given for y= 1. A more detailed estimate shows

that 1&y&1.25; in fact, x=1.1 is consistent with the

expected characteristic energy loss 14.5 ev. In other

words, the theoretical estimates of the mean excitation
potential and main characteristic energy loss in crystal-
line LiH, if taken separately, have an uncertainty of
ca. 20%. Both combined must be consistent with one

another, which reduces the uncertainty to ca. 10%.

* 1Voie added in proof R L. Platz.—man . /Symposium on Radio
biology, edited by J.J.Nickson (John Wiley and Sons, Inc. , New
York, 1952), p. 160) has remarked that the stopping power of a
substance composed alternately of H+ and H atoms would exceed
the stopping power of H& by cu. 50 j&. It should be noted that this
statement actually refers to the stopping power of the ionic Bragg-
gas as compared to the stopping power of gaseous H~. Even if the
one-electron excitation levels of H in condensed H+H werenot
signi6cantly diferent from the one-electron excitation level of
free H (as Platzman implicitly assumes), collective etiects would
reduce this diiierence at the densities of liquid (boiling) H& (0.07
g/cm') and of solid Hs (0.09 g/cm'). One can demonstrate this
change by estimating the respective mean excitation potentials
of H+~H ~ for a=0 and a=1. Using the methods and notation
of the present paper, one 6nds that Io(0) =15 ev and I0(1)=0.8
ev, whereas for gaseous H2 I,&,=18 ev. For the liquid phase,
one estimates I~(0) = 19.5 ev and I~(1)=7.6 ev, for the solid phase
I,(0)=20 ev and I,(1)=8.6 ev. The relative differences of the
covalent and ionic mean excitation potentials, (l(0)—I(1)j/l(0),
decrease from 1 to 0.6 in condensing hydrogen from the gas phase
into the liquid and solid phases. The condensation of H& entails
an increase of the mean excitation potential by 10%.The I,l, (0),
I&(0), and I,(0) should nearly coincide numerically with the main
characteristic energy-loss lines of the three phases of H&.

lo —
LI++H

lo
CaC.CI«

I w~CI
~e

xst CJ

04J4J
a
C
4P 30—
L.

~~
o 40—

0
CJ
sc
4J
Co 50—
X

60—

Lit H

LIH
(4-0.55)

Covalent
Li-H-- 0

4 tn
g C
p 0

LiH -- 03~~ua

.+
Li H-.-, 1

Ionic

70

Bragg-Gas Molecule Crystal

Fro. 1. Mean excitation potentials of LiH in diGerent valence
states. The so)id line connects the theoretically expected I values.

An angle dependence of characteristic energy losses
Per se cannot give information about the collective
nature of energy losses. The magnitude of the angle
dependence in insulators depends so sensitively on the
details of the electronic structure that accurate pre-
dictions would have to be based on a self-consistent
field calculation of the LiH crystal. Such a calculation
is desirable also in view of the discrepancies between
the presently available theoretical and experimental
electron density distributions. Nevertheless, one can
estimate that the dispersion coefficient" " for the
characteristic energy loss in LiH is approximately
equal to 0.51X,&'~0.7, where 0.51 is taken to be the
dispersion coefficient for the case X,i—=1.
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6. SUMMARY

The main purpose of this paper is to draw attention
to, crystalline LiH as the best-suited substance for a
comprehensive theoretical and experimental investi-
gation of longitudinal electronic excitations in insu-
lators. Estimates of the characteristic energy-loss
spectrum and the mean excitation potential of LiH
are given. It is shown that stopping experiments under
conditions of single and of multiple scattering can
clearly identify the excitation of collective oscillations
in this insulator crystal. The combined measurements
of both experiments can provide sensitive tests of the
theory of longitudinal excitations in insulators for LiH,
because the results of both must be quantitatively
consistent with the same electronic excitation levels.
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APPENDIX

Lindhard and Schar8 applied Eq. (3) to the sta-
tistical Thomas-Fermi (TF) model of the atom. This
leads directly to Bloch's relation I=EZ. It is of interest
to consider I(Z) for the Thomas-Fermi-Dirac (TFD)
model, which includes the exchange interaction between
electrons. ' However, the TFD density distribution is
not an explicit function of Z and hence not suited for
the present purpose. A suKciently accurate approxi-
mation is the TFX distribution, which follows from the
TF distribution by a simple coordinate contraction
rTFx=X '~Tp. The scaling parameter X can be deter-
mined by the variational condition

pendence of X. inserting pTFx= (ZXp/4prp')(ppp/x)& in
Eq. (3) yields

Ip= 0.451Xphp'Z ry.

For the evaluation of the constant Xp, one may use the
fact that in the statistical model cop and ~„depend
linearly on Z. If

rpp' ———(e/mr) (dP/dr)
with

l

P = (Z%)—(1—1/Z) epr s ($) ~ g
—r

~

'ds$,
dp

one finds for Z&)1 and with the abbreviation

88 8=—L)t'Eg; +)t(E,.g+E, ,i,))=0.
N. N. that

gp —+0 &+0,

Introducing the proper expressions" for the E in terms
of the solution pp of the TF equation happ"= q 0&@ ', with
x=p 'r, one 6nds

(pr) lie,
Xp =1+ I

—
[
——

( pppsdg
(

ppp&g
—

&dg
- E2) s:s Z&~ p &p

=1+0.16Z r.

The coefEcient 0.16 is a lower limit for the Z: de-

2'P. Gombis, Die statistische Theoric des Atoms Nnd ihre
Awweldangen (Springer-Verlag, Wien, 1949). See pp. 390—392.

lnxp~-',
U p

Hence,

ppplx&dx ln(1+qp/x&ipse) = ln1.78.

Ip=0.802)ip~Z i'y—10.9(1+0.25Z '*)Z(ev).

In essence, this result confirms an earlier estimate by
Jensen" for a highly simplified atomic model, and agrees
with experimental observations. '" lt approaches
Bloch's relation for large Z.

"H. Jensen, Z. Physik 106, 620 (1937).
"W. Hrandt (to be published).
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X-ray diffraction studies of individual crystals of NiMn03 and CoMnO& show that these compounds
have the structure of ilmenite (space group 2U). The crystals have a plate-like crystal habit with the
threefold symmetry axis perpendicular to the faces of the platelet. Positions of atoms within the unit
cell have been determined by comparing calculated structure factors with those obtained from x-ray powder
patterns. There are two ¹iO-Mn configurations that appear to be favorable to a magnetic superchange
interaction, and these are sufhcient to extend magnetic ordering in three dimensions.

I. INTRODUCTION

UPEREXCHANGK interactions in rhombohedral
~ ~

~

~

~

~

~

~

~ ~

sesquioxides with particular reference to Cr203,
n —Fe203 and their solid solutions have been discussed

by Li.' The discussion can now be extended to include
ferrimagnetism in the compounds NiMn03 and CoMn03
which have the same structure as the mineral
ilmenite (FeTiOs).s ' This ABXs structure is related

' Y. Y. Li, Phys. Rev. 102, 1015 (1956).
2 The synthesis and bulk magnetic properties of these com-

pounds have been discussed by Swoboda, Vaughan, and Toole'
and Bozorth and Walsh. 4

3 Swoboda, Vaughan, and Toole, J. Phys. Chem. Solids (to be
published}.

R. M. Bozorth and D. K. Walsh, J. Phys. Chem. Solids
(to be published).

to that of Cr203, where both A and B are Cr atoms.
The metal atoms of ilmenites are arranged in alternate
layers between oxygen layers and are ordered in the
sequence AB-BA-AB-BA along the body diagonal of
the rhombohedron.

The principal geometric parameters for qualitative
understanding of superexchange interactions are the
metal-to-oxygen distances and the metal-oxygen-metal
angles. In order to consider such interactions in NiMn03
and CoMn03, the exact positions of the individual

atoms must be determined. Proof of ordering of the
metals into the AB-BA-AB sequence was obtained
from x-ray diGraction studies of individual crystals.
Positions of atoms within the unit cell were determined


