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where for the sake of simplicity the arguments upon
which D~ operates are omitted. By mathematical in-

duction this result can be generalized to yield

and similarly

D (Cp& i, Z(xr. x„~ )n)

The recursion formulas for T-products are the direct
=P&(—&)"(C'e»' ', -(xi' ' 'x~)@»'+'), (& &9) consequences of (B.19) and (8.2O).
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The Dirac Hamiltonian for a particle in a nonexplicitly time-dependent 6eld is converted to an even
Dirac matrix by means of a single canonical transformation. When the interaction term is an odd Dirac
matrix, the transformed Hamiltonian is expressed in a very simple form. An exact transformation is also
found for two-particle wave equations of Breit's type. The transformed Hamiltonian is then a NU-separating
matrix, in Chraplyvy's sense.

In the nonrelativistic limit expansions in powers of 1/m or 1/c are made. The approximate wave equations
are in agreement with previous transformation results.

INTRODUCTION

A SPIN ~ particle in interaction with various types
of external fields is described by a spinor f

satisfying an equation of the Dirac type. ' ' For different
purposes it is of interest to have this equation converted
to a two-component equation of the Pauli type. This
was earlier achieved by an elimination method that
gives an equation for the large components of f. In
this equation, however, there are terms nonlinear in
t3/t)t and non-Hermitian interaction terms like the
imaginary electric moment term. Furthermore, the
exact interpretation remains in terms of the four-
component wave function.

A diferent treatment is due to Foldy and Wouthuy-
sen. 4 By means of a canonical transformation of the
wave equation, a representation is found where the
Hamiltonian is an even Dirac matrix. Then the Dirac
equation splits into two uncoupled equations of the
Pauli type, describing particles in positive- and nega-
tive-energy states, respectively. When the particle is
free, the transformation is exhibited in a simple, closed
form. In the presence of interactions, however, a
transformation in closed form has not been found, but
an infinite sequence of transformations can be made,
each of which makes the Hamiltonian even to one
higher order in the expansion parameter 1/srt.

' W. Pauli, Revs. Modern Phys. 13, 203 (1941).
~ L. L. I"oldy, Phys. Rev. S7, 688 (1952).' W. A. Barker and Z. V. Chraplyvy, Phys. Rev. S9, 446 (1953).' L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

Progress on this point has been made by Case' who
found the transformation in closed form for spin ~

particles and spin 0 particles in time-independent
magnetic fields.

The Foldy-Wouthuysen transformation method has
been extended to two-particle wave equations by
Chraplyvy, '' who found that in the case of equal
masses, the postulate of an even-ever transformed
Hamiltonian is too far-reaching. When the less stringent
requirement of a uU sepuratirtg -(or an /I. separatirtg)-
Hamiltonian was introduced, a whole class of usable
transformations could be found, but none of them is
given explicitly.

In the present paper it is found that the exact
transformation of the Dirac equation for one particle,
can easily be generalized to two-particle wave equations
when Chraplyvy's less stringent requirement is used.

SUMMARY OF THE FOLDY-WOUTHUYSEN
TRANSFORMATION

The wave function in the Dirac theory is a column
matrix with four components f„, where fi and its are
called upper components and fs and ice lower compo-
nents. P satisfies the wave equation,

its (ct/c) t)P =HP,

the Hamiltonian being a Hermitian four-by-four matrix,

H= prrtcs+cet p+interaction terms.

~ K. M. Case, Phys. Rev. 95, 1323 (1954).
~ Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953).
r Z. V. Chraplyvy, Phys. Rev. 92, 1310 (1953).
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The nonvanishing elements of the matrix P are
Pi'i Pop 1 and Poo ——P44= —1. It anticommutes with
the cx-matrices.

A matrix v is called even if co ~=co~ =0, and odd if
=co~~=0, where m=1, 2 and l=3, 4. The product of

two even or two odd matrices is an even matrix, and
the product of an even and an odd matrix is an odd
matrix. If the Hamiltonian were a sum of even matrices
only, the Dirac equation would split into two sets of
equations, one for the upper components and one for
the lower components. A necessary and sufhcient condi-
tion for a matrix to be even (odd) is that it commute
(anticommute) with p. Thus the n matrices are odd,
and ce p is an odd operator.

Any Dirac matrix M can be written as the sum of an
even and an odd matrix,

M= 2 CO GO 2 CO GO

where the first term on the right is the even part of cv,

and the second term the odd part of co.

The Hamiltonian is put in the form,

H =pmc'+ h+ 8,

where b is an even operator and 6 is an odd operator.
In the present paper both of these are assumed to be
nonexplicitly time-dependent. Now consider the canon-
ical transformation,

0"=e'9
the operator S being Hermitian and nonexplicitly
time-dependent. Then P' satisfies the wave equation,

its(8/Bt)P'= H'P',
eire —is

=a+ i[s,aj—-', [s,[s,a]j+ ".
Putting S= —ip8/2mco, we obtain with 1/m as expan-
sion parameter,

H'=Pmc'+ h+ (8'+[@,8j)
2ssc

X=H(ao) i. (6)

If we assume that zero is not an energy eigenvalue,
X is defined in the energy representation by,

XPe H(E') 'Ps=E~E——
~

QE)

which gives +Pe when E)0 and PE wh—en E&0.
Obviously, we have the operator identities

X2= 1 and X=X*.

(Ho) & can be represented by a binomial expansion,

where 5 is odd and Hermitian,

S= —(i/2p)p .p tan '(p/mc), p= (p')l. (3)

We note the property,

e ' P= (cosS i s—inS)P=P(cosS+i sinS) =Pe' . (4)

TRANSFORMATION IN CLOSED FORM

If the operator U is unitary and not explicitly time-
dependent, the transformation

P'= UP, H'= UHU*

leaves Eq. (1) in the Hamiltonian form,

ih (8/Bt) P'= H'P'.

In order that B' be even, it is necessary and sufhcient
that

[p,UaU*j=o.

Multiplying from the left by U* and from the right
by U, the condition reads,

[U*pU,H]=o,
where U*PU (like P) is an Hermitian operator with
eigenvalues +1 and —1.

Now one may ask: Do we know any Hermitian
operator which commutes with H and whose only
eigenvalues are +1 and —1? If we do, it may be
possible to identify it with U*PU. An operator of this

type is:

(-:B,[~,hjj+l~')+
ng2c4

(——) (a —Eo)"
(a)—:=E;p j

n=oE e) 4 Eoo ) (7)

The lowest order odd term is of first order, i.e., of ore
order higher than in the original Hamiltonian. Sy a
sequence of further canonical transformations, the
generator of the transformation at each step being
chosen to be

S=—(i/2mc')P)& (odd terms in the

Hamiltonian of lowest order in 1/m),

we can make the Hamiltonian even to any desired
order in 1/m.

When the particle is free, the Hamiltonian is con-
verted to an even operator by a single transformation,

H'=e'e(Pmc'+ce p)e ' =P(m'c'+c.'P')' (2)

with Eo a positive number. Operating on a wave
function f, this expansion will produce convergent
results provided that all energies E in the spectrum of

P satisfy
—1 & (H —EoP)/Eo'&1, i.e., 0 &

~
E~ &Eov2.

In the nonrelativistic limit one should put Eo=tÃc .
Then (H' Eo')/Eg will be "sm—all" and of first order
in 1/m.

We also mention a representation of (H') '* in terms
of the Poisson integral:

~N
(H') &= lim dg exp( —q'Hs').
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We also postulate
U*pU=h.

U"P='PU,

which is true for the free-particle Foldy-Wouthuysen
transformation, Kq. (4). Then Eq. (8) reads

The exponential operator is defined by means of its
Taylor expansion. This form will give convergent
results for all finite E'WO.

Now we look. for a unitary operator U with the
property

Furthermore, by pure algebra,

U*pU=h, UpU*=p'Ap, pU= Uh=hU*= U*p. (13a,b,c)

The even character of the transformed Hamiltonian
can now be easily verified by direct calculation,

PH'=PUHU*= UhHU*= UHh U*= UHU*P=H'P,

i.e., fP,H'j =0 and H' is even.
As a consequence of (13b) we have a simple expression

for the transform of Pmc', which is the predominating
term in the nonrelativistic limit

PU'= h, or O'= Ph. (10)
(Pme') ' =mc'UP U"=mc'PhP. (14)

Here the operator Ph is unitary,

(Ph) (Ph)*=PhhP =PP = 1,

and the eigenvalues are consequently on the unit circle
in the complex plane. As a result an explicit, convergent
solution is intricate to attain. The following solution
has, however, been found:

If U is written in exponential form,

U= e'e =cosS+i sinS,

with S Hermitian, we get the following equations for S:
i sinS=-', (U—U*)

=-', (Ph —hP)L1+-', (Ph+hP —2)», (15a)

ei.e.,
U=-'(1+ph)D+-'(ph+hp —2)j-, (11a) S (U+ U,) L1+ (ph+hp

U*=x2(1+hP)$1+', (P'A+hP —2)) &. (11b) or

The —
~ root operator is defined by the binomial

expansion in powers of ~ (Ph+hP —2).
To examine the convergence, let us consider an

eigenfunction e~ for ph,

Phag
——e"eg.

Multiplying from the left by e '9P, we get

hPNq=e "uq, ~ (Ph+hP —2)eq= ~ (cos5—1)eq.

Thus, the expansion will produce convergent results
when

—1 (-', (cos8—1)(1, i.e., cosl) —1.

If we take it for granted that —i is not an eigenvalue
of Ph (which is always true when the particle is free or
when the interaction term is odd), then the expansion
for U is well defined.

In order to prove that the U given above is a solution,
we note that ph and hp commute. Then

U'=x(1+Ph)2L1+x~(Ph+hP 2)3 '
=Phk1+x~(Ph+hP —2)lL1+x4(Ph+hP —2)j '=Ph

From (11) we see that U* can be written

sin2S= 2 sinS cosS= ~~i [h,P),
cos2S= 2 cos'S —1 = -,'P„P)~.

(16a)

(16b)

Since cosS is a positive-definite operator, S can always
be expressed by means of the first set of equations as a
sin ' function (or a tan ' function, but then with a
reduced domain of convergence). If cos2$ is positive
definite, the second set can be used as well. This is true
when the particle is free or when the interaction term
is an odd operator, say.

TRANSFORMATION WHEN INTERACTION
TERM IS ODD

The Hamiltonian can then be written H=Pmc'+8,
and the following operators are even:

H'= m'e'+ 8'

(H') -'*= (m'e'+ 6') &,

hH = (m'e'+ 6') &.

For the operator hP+Ph we find

H(H2) *'P+PH(EP) &=( HP+PH)( H) &=2mc'(H') &

Hence,
U*=hPU,

U*U= hP U'= hPPh =1.

which shows that the —-,'root operator in U commutes
with H. Furthermore,

H(1+'AP) =H+HhP=H+PHh = (1+Ph)H,
Furthermore, U satisfies the postulated relation (9).
This is easily seen from the expressions for U and U*
when one notes that the —-', root operator is even.

Hence, we can conclude that the transformed
Hamiltonian II'= UIIU* is an even operator.

Let us summarize the properties of U,

and consequently

For the transformed Hamiltonian we get the following
exact result:

U'=Ph, UU*=1, U*P=PU. (12a,b,c) H'= UHU*= U'H=PhH=P(m2c'+8')&. (17)
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S=——,
' tan '(iP8/mc'). (21)

If we put 8= n (cp—eA), then the last expression
gives the transformation found by Case. ~ For A=O
we get

S= ——,
' tan-'(iPn y/mc),

which is equal to the operator given by Foldy and
Wouthuysen4:

S= —(i/2P)P p tan '(P/mc), P = (p') . (3)

This can be seen by means of the power expansion for
tan ' and the relation (n p)'= p'.

TRANSFORMATION IN THE NONRELATIVISTIC LIMIT

In the Hamiltonian,

H =Pmc'+ 8+8

Pmc' is now the predominating term. We take 1/m as
expansion parameter and assume h and 6 to be of
zeroth order in 1/m. Choosing Eo——mc' in the expansion
(7) for (H2) '*, we have to third order:

P 1
Pa=1+ 8+ ([8,h]—8')

mc' 2m'c4

For purposes of illustration let us consider an
electron in a magnetostatic field H = curlA,

H=Pmc'+ n. (cp eA)—=Pmc'+ 8,
H'= P[m'c'j(cy—eA)' —eAco 8]'*, o = —-', in X e. (18)

For a n.eutron in an electrostatic field E, we use a Dirac
equation amplified with a Pauli' interaction term,

H= pMc'+cn p+.ippn E=pMc'+8,

where p, is the magnetic moment and M the neutron
mass.

H'=P[M'c4+c'p' ph—cP div E
—~4~ (EXu —p& E)+~'E']'. (»)

If we write U in exponential form, U=e', then 5
shall satisfy

sin2$=-,'i[A,P]= iP8(H—') &

cos2S=-,'Pi,P]+=mc'(H') ~.

Here cos25 is positive-definite so we have the solution,

S=——', sin '[iP8(H2) —'*]

or, with a reduced domain of convergence,

=1+ 8+ ([8,h]—-', 8').
2mc' 4m'c4

(23)

Sy means of the expansions written down here, H'
can be found to second order:

H'= UHU*=mc'PXP+U($+8) U~

=pm''+ h+— 8'— [8,[8,8]], (24)
2mc' Sm'c4

which is in agreement with the Foldy-Wouthuysen
expansion for the transform of a nonexplicitly time-
dependent Hamiltonian.

TWO-PARTICLE PROBLEM: TERMINOLOGI
AND NOTATION

We consider the wave equation for two Dirac
particles,

ih(B/Bt)/=K p,

with the Hamiltonian written in the form

~=P'mrc'+P"mire'+ (Sh)+ ($8)+(8h)+ (88). (25)

Quantities referring to each of the two particles are
labeled by Roman numbers I and II, respectively. The
wave function has sixteen components Pi,x with k, E
=1, 2, 3, 4. The lower case subscript refer to particle I
and the capital index to particle II.The components are
classified as upper-upper iP„ii, upper-lower P r„ lower-

upper ihip, and lower-lower fir, with e, U=1, 2; /, L
=3, 4. The Hamiltonian is composed of terms which
are direct products of Dirac matrices, labeled by I and
II, respectively. When a matrix is single, the direct
product with the unit matrix is understood. We
distinguish even-even terms, even-odd terms, odd-even
terms, and odd-odd terms. (Sh) stands for the sum of
all even-even terms, (88) stands for the sum of all
even-odd terms, and so forth.

When a matrix co'~" acts on f, the first matrix
affects the index k, and the second matrix affects the
index E.

then q and q* are "small" and of first order. In terms
of q and q* the transformation matrix reads

U= (1+kq) L1+-'(q+q"')] '

Since q+q*= —qq*, the term ~i(q+q*) is actually of
order (1/m)' so we have, to second order,

U= (1+lq)[1—
8 (q+q*)+ . .]

= 1+kq —
8 (q+q*)+

If we put

PA= 1+q, i.e., XP=1+q*,

+ ([8,[8,h]]—[h,[8,h]]—28').
4m'c'

(22)
nm=na XX aZ.

Thus, any Dirac matrix labeled by I commute with

any of those labeled by II.
According to Chraplyvy, ' a matrix 0"' is called

uU-separating when the components (0"'f)„rT are
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expressed by P„U only; whereas, (0"'f)„r,, (&"'f)rrr and
(0"'P)rr, do not depend on furr. If the Hamiltonian
were a NU-separating matrix, there would be a separate
four-component equation for the upper-upper compo-
nents of f, and all other components could be put
equal to zero.

TWO-PARTICLE PROBLEM: TRANSFORMATION
IN CLOSED FORM

Ke shall limit our considerations to the problem of
finding a transformation in closed form which makes
the Hamiltonian m U-separating.

According to Chraplyvy, ' the most general expression
of a mU-separating matrix is

11"'=f1—-'(1+0') (1+0")0—Ã(1+&') (1+&")
+-,'(1+Pr) (1+P")Q(1+Pr)(1+P"), (26)

with 0 an arbitrary matrix.
As a consequence we have the commutation relation

[(1+/ )(1+P ) 0"')=0. (»)
This is also a sufhcient condition for a matrix to be
NU-separating because if 0 is a matrix which satisfies
this commutation relation, then 0 can be expressed in
terms of itself as the right-hand side of the general
expression.

Now we put

which then gives the equation,

BU'= A or U'= BA. (33)

As in the one-particle theory, we have the solution

U=r~(1+BE)[1+r~.(BE+KB 2)) —&, (34)

which is unitary with the property (32), and which is
convergent when —1 is not an eigenvalue of BA. The
properties which were summarized in (12) and (13)
can be directly translated to the two-particle transfor-
mation matrix by putting B for P and h for X.

We want I' to be a function of X such that

P(K)—&B when K~Prmrc'+I3"mrrc'.

Then in the nonrelativistic limit the predominating
term of BI' and I'" will be 1.

The simplest function having this property is a
polynomial of third degree,

M' (mr —mrr)'SC (ae )'
+I

4mrmrr L. M J Mc CMc )

on an energy eigenfunction Pz, 4 gives +err when

P(P) is positive and —Ps when P(P) is negative.
Furthermore, we postulate the property,

(32)

1.e.)

(1+Pr) (1+Prr) =2B+2,

B=k(Pr+0"+O'0" 1)— (28)

( K
+ I ~, M =mr+mrr. (3&)

& Mc'&

Then, a necessary and sufhcient condition for a matrix For equal masses there is a solution of second degree as
to be NU-separating is well:

[Biles] —0 (29)

U*BU=P(P') '= (31)

where P = P(K) is a real function of K. The eigenvalues
of I' are assumed to be diferent from zero. Operating

The role played by B in the two-particle theory is
analogous to that played by P in the single-particle
theory. By means of (28) one can easily verify that
B'= 1.

We make a canonical transformation of the wave
equation by means of a unitary matrix U, such that
the transformed Hamiltonian,

BC'= UXU,

becomes uU-separating, which means that UKU*
commutes with B, or, equivalently,

[U*BUPC) =0.

As in the single-particle theory we look for an
operator which can be put equal to U*BU. The only
eigenvalues must be +1 and —1, and the operator
must commute with K. We put

BC ( BC
P= —1+ +( I

M 2m.
Mc' &Mc')

(36)

P= B+e+o),

where e commutes and co anticommutes with B. For
either of the polynomials e was of second order and co

of first order in 1/c. In this notation, to fourth order,

Bh=1+B(a ',aP ,'Bco'+-',$(a, e).
————

+8~ +~B[~ [~ ~)) (3&)

TWO-PARTICLE PROBLEM: NONRELATIVISTIC LIMIT

In the case of equal masses the transformed Hamil-
tonian has been calculated to second order in 1/c under
the assumption that (hh) and (88) is of order c and
(h8) and (88) of order c'. The calculation was done
for each of the two polynomials above. Use was made
of the fact that any matrix M can be written as the sum,

M = ', (M+BMB)+ ', (M-BMB), -—
where the first part commutes and the second part
anticommutes with B. I' was written in the form,
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~ (BE+KB 2)—= ——co'+—'cu'+ s B[(o,[(v,e]7, (38)

V= 1+—Bc@——con ——Bcua+ ~[+,e]
+ (11/128)o)4+—,',B[(u,[(o,e]]. (39)

The following expression for the transformed Hamil-
tonian, correct to second order, was obtained:

PI+PII+2PIPrr
+ [(~~),(«)7

64m'c'

3+ 2PI+ '7PII+PIPII
««)', («)'7+

64m'c'

where

X Ka +i'm/ +BC' p (40)
3+4PI+PIPII

(«) (&~)'(~6)
64m'c'

PI (1 +PII)
K.'=p'mc'+p"mc'+ (bh)+ (ed)'

4mc'

PII (1+PI) 1+PII
+ («)'+ [[(«),(»)7,(6h)7

4mc' 16m'c4

1+PI PI(1+PII)
+ [[(«),(h~)], (~8)7— (8~)'

16m'c4 16m'c'

PII (1+PI} PI+PII
(h&)'+

16m'c' 8mc'

PI+.4PIIy 3PIPII

~.'=+ [[(&h),(«)7+,(«)7+
64m'c4

4pI +pl I+3pIpI I

[[(he),(«)]+,(&h)]+
64m'c'

pII
+ I [(&~),(«)7,(«)7

64m'c4

+ [[(he),(8~)],(«)7
64m'c4

3+4prrgprprrt (0h) (88)'(88) (40b)
64m'c'

~. =+-, (1-P*)«~8)+Z ~..7+-, (1-P**)[(«)

+Z X.,]+-', (1—P'P")[(ee)+Z X..]. (40c)

A large number of terms of even-odd, odd-even and
odd-odd type are only indicated by means of the
symbols P K„, P X„, and P K„, respectively. The
terms (40c) will not be present in the reduced wave
equation for the upper-upper components at all, because
of the left multipliers which give zero.

For either of the two polynomials which de6ne P,
the transformed Hamiltonian can' be written as the
expression above, but P K„ is not the same in the
two cases. The difference is of second order.

Putting m& =mz& =m in the Hamiltonian found by
Chraplyvy' by means of the "least change" transfor-
mation, one will And complete agreement between
(40a) and corresponding terms in Chraplyvy's Hamil-
tonian. Terms corresponding to (40b) will also be found,
but with different left multipliers. Identical results are,
however, obtained when p' and p" are set equal to 1.

Thus, for equal masses and to second order, the
reduced wave equations will agree.


